Owner-occupied housing costs, policy communication, and inflation expectations
by Joris Wauters, Zivile Zekaite and Garo Garabedian
Publisher

Pierre Wunsch, Governor of the National Bank of Belgium

Statement of purpose

The purpose of these Working Papers is to promote the circulation of research results (Research Series) and analytical studies (Documents Series) made within the National Bank of Belgium or presented by external economists in seminars, conferences and conventions organised by the Bank. The aim is therefore to provide a platform for discussion. The opinions expressed are strictly those of the authors and do not necessarily reflect the views of the National Bank of Belgium.

The Working Papers are available on the website of the Bank: http://www.nbb.be

© National Bank of Belgium, Brussels

All rights reserved. Reproduction for educational and non-commercial purposes is permitted provided that the source is acknowledged.

ISSN: 1375-680X (print)
ISSN: 1784-2476 (online)
Abstract

The ECB concluded its strategy review in 2021 with a plan to include owner-occupied housing (OOH) costs in its inflation measure in the future. This paper uses the Bundesbank’s online household panel to study how household expectations would react to this change. We conducted a survey experiment with different information treatments and compared long-run expectations for euro area overall inflation, interest rates, and OOH inflation. Long-run expectations are typically higher for OOH inflation than overall inflation, and both are unanchored from the ECB’s target at the time of the survey. We find significantly higher inflation expectations under the treatment where OOH costs are assumed to be fully included in the inflation measure. This information effect is heterogeneous as, among others, homeowners and respondents with low trust in the ECB react more strongly. However, inflation expectations remain stable when information about past OOH inflation is also given. Careful communication design could thus prevent expectations from becoming more de-anchored.

Keywords: Owner-occupied housing costs, survey experiment, inflation measurement, inflation expectations, ECB.

JEL Codes: D83, D84, E31, E50

Authors:
Joris Wauters, Economics and Research Department, National Bank of Belgium.
E-mail: joris.wauters@nbb.be
Zivile Zekaite, Irish Economic Analysis Division, Central Bank of Ireland.
E-mail: zivile.zekaite@centralbank.ie
Garo Garabedian, Monetary Policy Division, Central Bank of Ireland.
E-mail: garo.garabedian@centralbank.ie

The views expressed in this paper are those of the authors and do not necessarily reflect those of the Central Bank of Ireland, the National Bank of Belgium, or the Eurosystem. We thank Gabriel Arce Alfaro, Giuseppe Corbisiero, Bruno De Backer, Gabriele Galati, Jana Jonckheere, Reamonn Lydon, Stefan Nagel, Gert Peersman, Cian Ruane, Fons van Overbeek, Rafael Wouters, the Bundesbank BOP-HH team, and participants at the CBI seminar, the IEA, EcoMod, and ifo Conference on Macroeconomics and Survey Data for their comments and suggestions.
Non-technical summary

Increases in the cost of housing are critical for households, yet they are only partially included in the euro area's main consumer price inflation measure. Therefore, following a monetary policy strategy review in 2020-21, the European Central Bank (ECB) recommended expanding the coverage of owner-occupied housing (OOH) costs (associated with owning, maintaining, and living in one's home) in its inflation measure in the future. Since house prices increased significantly in recent years, there is a risk that implementing and communicating this policy will raise inflation expectations. Monetary policymakers need to anticipate such effects and adapt their communication accordingly.

This paper is the first to measure how implementing this policy would impact households' long-term inflation expectations. We ran a novel survey experiment using the Bundesbank's online household survey in July 2022. Our respondent sample was randomly divided into four groups, each provided with different information about the ECB's policy on OOH costs. Next, all respondents received the same three questions about long-term (i.e., ten years ahead) expectations for overall inflation, OOH cost inflation, and interest rates for the euro area. From these responses, we compare the means and uncertainty between the treatment groups.

We document four main results. First, consumers' long-term inflation expectations are significantly higher when assuming the ECB includes OOH costs in its inflation measure as of today. However, also informing about the average of past OOH cost inflation reverses this effect and lowers uncertainty around inflation expectations. Second, informing on OOH cost inclusion impacts inflation expectations for other goods and services. Hence, implementing the change in inflation measurement appears to make the 2% target less credible, which raises long-term inflation expectations for all consumer goods. Third, the treatment effects are heterogeneous. There are significant effects on overall inflation expectations for homeowners, those reporting before our survey to have low trust in the ECB's ability to meet its price stability objective, the low-educated, those with low income, and men. Homeowners' OOH inflation expectations also react significantly. Although we find no treatment effects on average for interest rate expectations, this changes in subgroup analyses. Finally, German households' long-term inflation expectations for the euro area are poorly anchored at the ECB's target of 2% at the time of the survey, and OOH inflation expectations are even higher.

The policy implication of our results is that, at the time of the survey, households generally lack trust that the ECB will achieve its inflation target, and this de-anchoring could be worsened by announcing the inclusion of OOH costs in inflation measurement. However, a careful communication design could prevent further de-anchoring.
TABLE OF CONTENTS

1. Introduction .. 1
2. Related literature ... 3
3. OOH cost inflation and euro area policy: a primer ... 5
4. Methodology .. 8
 4.1. Deutsche Bundesbank survey on consumer expectations 8
 4.2. Survey experiment .. 9
 4.3. Derivation of implied means and uncertainty ... 12
5. Average treatment effects ... 13
 5.1. Descriptive analysis ... 13
 5.2. Regression analyses ... 17
 5.2.1. Regression models .. 17
 5.2.2. Inflation and OOH inflation expectations ... 18
 5.2.3. Interest rate expectations ... 22
6. Inspecting the mechanism using mediation analysis ... 23
7. Exploring heterogeneity ... 27
 7.1. Inflation expectations .. 28
 7.2. OOH inflation expectations ... 30
 7.3. Interest rate expectations .. 31
8. Conclusion .. 32
Bibliography .. 35
Appendices ... 38
National Bank of Belgium - Working Papers Series ... 43
1 Introduction

Following a monetary policy strategy review in 2020-21, the European Central Bank (ECB) recommended expanding the coverage of housing costs of homeowners in the main euro area inflation measure. This paper studies how household inflation and interest rate expectations would respond to the announced implementation of this change, thereby informing policymakers about its potential implications. We contribute to the debate on the effects of changes to a central bank’s strategy on household inflation expectations, where some argue that such announcements are not understood by the public (Coibion et al., 2023) or have no impact (Galati et al., 2022) and others show that people do understand strategy changes and adjust expectations accordingly (Hoffmann et al., 2022a, 2023).

Survey evidence showed that increases in the cost of housing (i.e., purchase prices, accommodation costs, and rent) are the most salient price changes for European citizens, and the majority believe that housing costs are relevant when measuring inflation (ECB, 2021b; Wauters, 2021). In contrast, the harmonised index of consumer prices (HICP), which is used to measure euro area inflation, includes rental costs but excludes most owner-occupied housing (OOH) costs (associated with owning, maintaining, and living in one’s home). Accordingly, the ECB laid out a multi-year plan for how to account for all OOH costs in the HICP (ECB, 2021c).

How, if at all, would household expectations react to an announced change in inflation measurement? House prices have recently increased substantially more than consumer prices or OOH costs1, and evidence shows that US households overweight house prices when forming inflation expectations (Dhamija et al., 2023). Hence, announcing the inclusion of OOH costs could raise inflation expectations. Indeed, Meyler et al. (2021) find that most professional forecasters would raise the level and uncertainty of their long-term euro area inflation expectations if OOH costs were fully included in the HICP. Since euro area monetary policymakers are more actively communicating with the wider public, it is beneficial to anticipate how the announced change would impact household inflation expectations.

This paper is the first to analyse quantitatively how including OOH costs in the HICP would affect long-term euro area inflation expectations of households. To shed light on the underlying mechanism, we also measure interest rate expectations and provide the first data on OOH inflation expectations. In addition, we examine whether the communication design matters. So far, only Ehrmann et al. (2023) study household beliefs considering the ECB’s strategy outcomes that also include information about the plan to cover housing costs more extensively in the future. However, their primary focus is how communication about policy

1 For example, during the period 2017Q3-2022Q2, the average annual growth of euro area HICP was 2%, while for OOH costs and house prices, it was 4.1% and 5.8%, respectively.
strategy affects the credibility of the ECB. Also, we focus on the actual implementation of the new strategy.

To answer our research questions, we implemented a novel survey experiment using the Bundesbank’s online household survey in July 2022. We randomly divided the respondent sample into four groups and presented each with different information treatments. The first treatment group, our ‘baseline’, only received general information about the ECB’s inflation target. The second group was informed of the current policy regarding OOH costs: it received the baseline text and was also told that most OOH costs are currently not included in the HICP. The third treatment group received the same information as the second group but was instructed to assume that the ECB includes OOH costs in HICP as of today. Finally, the fourth group received the same text as the third group, as well as a sentence stating that the average OOH inflation was 2.2% in the ten years before the survey. Next, all respondents received the same three questions. We asked them about their expectations for overall inflation and OOH cost inflation in the euro area ten years ahead (i.e., the year 2032). In addition, respondents were asked where they thought interest rates would be in 2032 relative to today.

We estimate average treatment effects by comparing the mean expectation and uncertainty across the four groups. Next, we examine the drivers of the treatment effect on overall inflation expectations. Intuitively, overall inflation expectations can be considered a weighted average of expected OOH cost inflation and expected inflation of other (non-OOH) components. Thus, we gauge the extent to which group differences in mean OOH inflation expectations explain differences in overall inflation expectations. Finally, we also explore whether the treatment effects are heterogeneous across respondent types.

The four main results of this paper are as follows. First, providing information on OOH policy scenarios impacts long-term inflation expectations. Specifically, the third group, which is asked to assume the ECB includes OOH costs in the HICP as of today, has significantly higher long-term inflation expectations than the first two (baseline and current policy) groups. However, this effect is reversed for the fourth group that receives the same information plus the average of past OOH cost inflation. Relative to the third group, it has significantly lower averages for overall and OOH cost inflation and significantly lower uncertainty for overall inflation. Thus, central bank’s strategy changes can influence inflation expectations, in line with Hoffmann et al. (2023). By contrast, long-term expectations for interest rates are not significantly different across the treatment groups.

Second, between-group differences in OOH inflation expectations contribute modestly to the treatment effects on overall inflation expectations. Instead, the key role comes from between-group differences in inflation expectations for other (non-OOH) components. Intuitively, respondents appear to interpret the implementation of OOH cost inclusion such that the 2% target becomes less credible, which impacts long-term inflation expectations for all
HICP components.

Third, the treatment effects appear heterogeneous across the population. There are significant effects on overall inflation expectations for homeowners, those reporting before our survey to have low trust in the ECB’s ability to meet its price stability objective, the low-educated, those with low income, and men. Homeowners’ OOH inflation expectations also react significantly. Although we find no treatment effects on average for interest rate expectations, this changes in subgroup analyses. Respondents informed on OOH policy and average past OOH inflation show significantly higher long-term interest expectations (relative to baseline) when they are homeowners, highly educated, high-income, have high trust in the ECB, or are male.

Finally, German households’ long-term euro area inflation expectations are poorly anchored at the ECB’s target of 2% at the time of the survey. Across the four treatment groups, about 20% probability weight is given to inflation outcomes above 5%. The average probability weights are also much lower for outcomes below 2% than above 2%. This finding echoes Galati et al. (2023), who recently found that long-term inflation expectations of Dutch households are not anchored for the euro area or the Netherlands. Moreover, we find that OOH expectations exceed those for overall inflation, with even more weight given to high inflation outcomes (close to 30%).

Overall, the policy implication of our results is that, at the time of the survey, households generally lack trust that the ECB will achieve its inflation target, and this de-anchoring could be worsened by announcing the inclusion of OOH costs in inflation measurement. Moreover, this effect depends on the respondent’s characteristics. However, a careful communication design could prevent further de-anchoring, such as adding information on average past OOH inflation.

The paper proceeds as follows. Section 2 reviews related literature. Subsequently, Section 3 provides background information on OOH cost inflation and the ECB’s policy plans. Section 4 describes the methodology of our survey experiment. The following three sections describe our results. We first discuss the main treatment effects in Section 5, followed by an examination of the underlying mechanism (Section 6) and an exploration of heterogeneity in the treatment effects (Section 7). Finally, Section 8 concludes.

2 Related literature

Our paper connects to several strands of the literature studying household inflation expectations with survey data (see D’Acunto et al., 2023, for an overview). Firstly, our analysis
contributes to the recent debate on whether changes in the monetary policy strategy of a central bank (actual or hypothetical) influence household economic expectations. Several studies suggest that announced policy strategy changes may not be noted or understood by the public. Ehrmann et al. (2023) show that the general public largely missed the announcement of the ECB’s Strategy Review outcomes. US consumers were also found to be mostly unaware of the Federal Reserve’s strategy change to average inflation targeting (AIT) (Coibion et al., 2023). They revised their economic expectations after being directly informed about the old or the new strategy in a survey experiment. However, the revisions were similar in each case, indicating a lack of understanding. Similarly, clarifying the symmetric ECB’s inflation target at the end of the latest monetary policy strategy review had little to no impact on Dutch consumers’ short- and long-term inflation expectations (Galati et al., 2022). In contrast, others show that German consumers are able to understand the difference between an AIT regime and the current ECB monetary policy strategy when informed and revise their inflation expectations accordingly (Hoffmann et al., 2022a). Furthermore, the clarification of the symmetric inflation target of the ECB raises medium-term inflation expectations among German consumers (Hoffmann et al., 2023). Ehrmann et al. (2023) show that communicating and explaining the inflation target and strategy can enhance credibility in reaching the inflation target.

Differently from these studies, we focus on the impact of an announced (planned) change in inflation measurement on inflation expectations and the channels of this effect. Hence, our work relates closely to Ehrmann et al. (2023), who use a survey experiment with various information treatments on the ECB’s strategy review outcomes and examine the impact on the ECB’s credibility in reaching its inflation target. They find no incremental effect of informing on the plan to cover housing costs more extensively in the future (compared to only informing on the ECB’s symmetric inflation target). While their information treatment signals a future commitment to include OOH costs, ours asks to assume OOH policy is in place today — similar to the survey of Meyler et al. (2021) with professional forecasters. This distinction makes the policy on OOH more concrete and, along with our varying degrees of information provision and examination of underlying mechanisms, informs on communication challenges when implementing the inclusion of OOH costs.

Secondly, our study adds to the literature on central bank communication with the general public. Using simple language and relatable messages improves the public’s understanding of central bank communications and establishes more trust in central banks (Bholat et al., 2019). Including information about past economic developments helps steer household expectations, as shown by Coibion et al. (2022) using simple numerical data on past inflation. Communication about the medium-term inflation outlook by central banks influences the inflation expectations of households, especially over shorter horizons. Hoffmann et al. (2022b)
show that the ECB’s communication on the inflation outlook effectively lowers above-target inflation expectations, with qualitative information having a greater impact than quantitative information. However, Dräger et al. (2023) find that providing numeric inflation forecasts from the ECB’s Survey of Professional Forecasts has a greater impact on inflation expectations than the central bank (qualitative) communication about the temporary nature of inflation. In this paper, we analyse how varying degrees of information on OOH inclusion influence households’ inflation expectations. We show that including simple numerical information on past OOH inflation helps to avoid an upward jump in inflation expectations, assuming the full inclusion of OOH costs into the HICP.

Thirdly, this paper focuses on long-term inflation and OOH inflation expectations, connecting it to research on the anchoring of inflation expectations. Many studies highlight that household inflation expectations are inconsistent with the inflation target. Galati et al. (2023) report such evidence using the survey of Dutch households, while a similar result is also found for the US (Binder and Rodrigue, 2018). Similarly, longer-term expectations of German households have signalled risks that inflation would remain above the ECB’s target for some time (Hoffmann et al., 2022b). We are the first to measure households’ long-term OOH inflation expectations for the euro area and find them to exceed long-term expectations for overall inflation. Both long-term expectation measures show significant probability mass above the inflation target.

Finally, our empirical analysis of OOH inflation expectations across socio-demographic characteristics relates to the literature on house price expectations. Kindermann et al. (2021) show that housing tenure strongly predicts house price expectations, with renters having higher house price expectations than homeowners. Kuchler et al. (2022) report, in addition to homeownership, a role for past house price developments. Armona et al. (2019) find that information about house price growth influences consumers’ house price expectations. We document that homeowners also respond differently to information treatments regarding the inclusion of OOH costs in inflation.

3 OOH cost inflation and euro area policy: a primer

The ECB’s price stability objective is 2% inflation, measured as the year-on-year percentage change in the HICP over the medium term. However, this price index only partially covers owner-occupied housing (OOH) costs related to owning, maintaining, and living in one’s home (Eiglsperger et al., 2024). Specifically, it does not cover what homeowners pay to buy their dwellings, the costs of the consumption of dwelling services, and major renovations. Presently, the HICP covers rents paid for housing (with a weight of around 6%), routine maintenance,
minor repairs, and other running costs for tenants and owner-occupiers.\(^2\)

The ECB’s first strategy review in 2003 recognised the benefits of including OOH costs, concluding that “the inclusion of owner-occupied housing services in the HICP is desirable”; however, due to practical and conceptual challenges, the main inflation measure was not changed (Issing, 2003). The second strategy review from 2020-2021 reaffirmed this message using online ‘listens portals’ with citizens. Indeed, housing costs are critical to households: when asked for which types of goods and services citizens feel the effects of price changes the most, the modal reply was an increase in the cost of housing (i.e., purchase prices, accommodation costs, and rent). Moreover, an overwhelming majority confirmed that housing costs are a relevant component of inflation (ECB, 2021b; Wauters, 2021). As a result, the recent strategy review recommended including OOH costs in the HICP in the future.

Yet, the inclusion of OOH costs into the HICP faces challenges. First, it has to conform to the HICP framework, which exclusively considers actual monetary transactions for consumption. Although an owned dwelling offers consumable housing services (e.g., shelter), it also contains an investment component in the form of the non-depreciable land on which the dwelling rests. Ideally, the cost of the asset component should not be present in the consumer price index. Second, the inclusion should meet the HICP requirements regarding its monthly frequency and timeliness of data release, with the flash estimate being available at the end of the reference months and the final release of data two weeks after.

The recent strategy review’s work stream on inflation measurement considered candidate methods for OOH inclusion into the HICP (Nickel et al., 2021, Section 4). Based on this analysis, the ECB’s latest monetary policy strategy recommended using the net acquisition (NA) method. This method covers the costs associated with the acquisition (or construction) and maintenance of an owner-occupied property, such as transaction fees and taxes, dwelling insurance, major renovations and repairs. It treats a dwelling as a durable good that is part asset (land) and part consumable (structure), and measures the costs using a market price at the point of purchase. The NA method’s main strength is its congruence with the HICP framework: it is based on actual monetary transactions between the household sector and other sectors, reflecting prices of (mostly new-build) dwellings and costs of self-build dwellings. Transactions on the secondary housing market between households are thus excluded. By contrast, the method’s main disadvantage is that it contains an asset price (or ‘investment’) component.

The ECB therefore proposed a roadmap based on four main steps (ECB, 2021a). As the first step, an internal analytical HICP would be adopted, which includes OOH with approximated weights. This computation would use the quarterly owner-occupied housing

\(^2\)Running costs include water supply, refuse and sewage collection, electricity, gas, other fuels, and housing-related insurance.
costs price index (OOHPI), which Eurostat (i.e., the European Statistical Office) created based on the NA approach (European Commission, 2018). Based on the existing OOHPIs, Eurostat would aim to deliver an experimental quarterly HICP that includes OOH costs in the second step. Once all necessary legal work has been completed in the third step, this index would become an official quarterly HICP that includes OOH costs. Finally, the fourth step would aim to include OOH costs in the HICP at a monthly frequency and in a timely manner. Since achieving these four steps requires time, the ECB Governing Council’s monetary policy assessments would, in the meantime, include OOH costs in its wider set of supplementary inflation indicators. In addition, the ECB supported further research to better isolate the consumption component from the market price.

To what extent would the inclusion of OOH costs affect overall HICP inflation? Figure 1 shows inflation rates for HICP, OOH costs, and the house price index (HP) for Germany and the euro area. Between 2014 and 2022, house price inflation was highest in both regions, followed by OOH inflation and HICP inflation. OOH inflation lies closer to HICP inflation than house price inflation because it excludes secondary housing market transactions between households and includes items other than new house purchase prices (such as major repairs and insurance). According to work from the inflation measurement work stream and ECB staff, over the past ten years, the average gap between HICP and HICP with OOH (using a 9% weight) would have been small, peaking at only 0.3 p.p. between 2011 and 2021 (Nickel et al., 2021; Eiglsperger et al., 2022, 2024).

While OOH inclusion may have a relatively limited impact on inflation (partly due to the OOHPI’s modest weight in the overall consumer basket), this may not hold for inflation expectations. For instance, our survey experiment took place in July 2022 following a bout of strong growth in German house price inflation (see Figure 1). So, if economic agents perceive house price inflation as representing OOH inflation, then the announcement of OOH cost inclusion might de-anchor inflation expectations.

Indeed, a recent special ECB survey of professional forecasters offers evidence of this risk (Meyler et al., 2021), showing that most forecasters (about 60%) would raise the level and uncertainty of their long-term inflation expectations for the euro area if OOH costs are fully included in the HICP. However, the evidence is qualitative and lacks a measure of the.

3 All euro area countries except Greece currently compile quarterly OOHPIs, and a euro area index is available. The series is released around one quarter and one week after the end of the reference quarter, thus falling short of the high frequency and timeliness standards of the HICP.

4 For more details on legal and practical implementation steps, see Eiglsperger et al. (2022).

5 The largest difference for HICP excluding energy and food would be 0.6 p.p. The average gap is also likely to have been small even if looking further back until 1999 (using backcast OOHPI series from the inflation measurement work stream).

6 A caveat of our survey experiment is that the results could differ in a housing market that is not running hot. Future research could investigate if our results are state-dependent.
Figure 1: Year-on-year inflation rates (%, quarterly frequency) of OOH costs, HICP, and house prices:

Notes: The figure shows the year-on-year growth (%, quarterly frequency) of the owner-occupied housing price index (OOH), the Harmonised Index of Consumer Prices (HICP), and the house price index (HP) for Germany (left-hand side panel) and the euro area (right-hand side panel). The final observation is 2022Q2, the last data point before our survey. Sources: ECB Data Portal and Eurostat.

effect size. Regarding household expectations, Ehrmann et al. (2023) examine how the ECB’s credibility in achieving price stability in the next years depends on information treatments with strategy review conclusions. One of the treatments informs about the inflation target and the plan to broaden the coverage of housing costs in the measurement of inflation in the future. Informing on OOH inclusion has no incremental impact compared to only informing on the target, which may be because it only generally refers to an intended plan. In the next sections, we depart from these studies by providing a quantitative measure of how household inflation expectations respond to the inclusion of OOH costs.

4 Methodology

4.1 Deutsche Bundesbank survey on consumer expectations

Our survey was implemented using the Bundesbank Online Panel Households (BOP-HH), an online and rotating panel survey of individuals in Germany aged 16 years or older.7 This survey started in 2019 and has been held monthly since April 2020. The questionnaires contain core questions, repeated in every wave, and wave-specific questions. The survey collects information on individuals’ expectations regarding the development of inflation, house prices

7For more information, see https://www.bundesbank.de/en/bundesbank/research/survey-on-consumer-expectations and Beckmann and Schmidt (2020).
and interest rates in Germany, as well as their past and planned expenditures and socio-demographic characteristics.

Our questions were implemented in July 2022 (i.e., Wave 31). In addition to the answers to our three proposal questions, we include household-level information from the standard questionnaire in our analyses to explore potential heterogeneity. Our full sample for that month contains 4,538 observations.

The Bundesbank provides survey weights to ensure that the sample is representative of the German population. All summary statistics and regressions reported below take into account these survey weights.

4.2 Survey experiment

Our survey experiment divides the sample randomly into four ‘treatment’ groups, labelled T1 to T4. Each group received a different information treatment before being asked to respond to our three questions, which are the same for all respondents. We thus implement a ‘between-subjects’ survey design to compare the average responses across different treatment groups.

Randomised information treatments. Our information treatments are based on four pieces of text, which are:

1. *The European Central Bank (ECB) is the central bank of the 19 countries in the euro area. It aims for an inflation rate of 2% over the medium term. The main inflation rate in the euro area is determined by changes in the prices of goods and services in a representative consumption basket over time.*

2. *The calculation of this inflation rate does not take into account changes in most owner-occupied housing costs.*

3. *The ECB recommends that these costs be taken into account in the future when calculating the inflation rate. For the following three questions, please assume that these costs will be taken into account from now on.*

8The full questionnaires for all waves are available on the Bundesbank’s consumer survey webpage in English and German, the latter being the language in which the survey was implemented.

9After the term ‘inflation rate’ an optional info box with the following definition is shown: “Inflation is the percentage increase in the general price level. It is mostly measured using the consumer price index. A decrease in the price level is generally described as deflation.”

10After the term ‘owner-occupied housing costs’, another optional info box is shown: “The costs of owner-occupied housing comprise all expenditure on an apartment or house. In particular, these are the costs for the purchase or construction of a property and the maintenance of owner-occupied property (e.g. renovation and major repairs).” This info box is also available in our third question.
4. Over the past ten years, the average price increase in the costs of owner-occupied housing in the euro area was 2.2%.

Group T1 is our ‘baseline’ group that receives only general information about the ECB and its inflation target in the first text segment. Group T2 receives the first two pieces of text and is told that OOH costs are only partially included in the HICP (‘current policy’). By comparing the responses of T2 to T1, we can gauge whether the information that OOH costs are largely omitted in the current inflation measure is known to households, i.e., how it affects their expectations if it is new and relevant information to them. To be clear, we expect consumers in T2 to reduce their perceived weight of OOH costs in the HICP but not set them to zero, as we state that most (instead of all) OOH costs are excluded.

Group T3 receives the first three pieces of information and is asked to assume that OOH costs are fully included in HICP as of today (‘OOH policy’). In this scenario, the composition of the consumption basket changes, but the inflation target remains unchanged at 2%. Therefore, we expect that this scenario should not affect long-term inflation expectations if the achievement of the ECB’s target is credible. By contrast, a shift in long-term inflation expectations due to a change in the price index composition would signal a loss in the central bank’s credibility.

Finally, group T4 receives all four text segments (‘OOH policy + mean’). Like group T3, these respondents are asked to assume that the OOH policy is in place. However, they also learn that OOH inflation was, on average, 2.2% in the euro area during the ten years before the survey’s launch.11 We conjecture that this value is lower than what respondents expected on average, which may reinforce the credibility of the ECB’s ability to achieve its inflation target.

Survey questions. We ask all respondents the same three questions about long-term expectations for overall inflation, interest rates, and OOH cost inflation in the euro area. Similar to Galati et al. (2023), the long term is defined as ten years ahead. The first question and its response categories (in bullets) are:

\textit{Question 1: How likely do you think it is that the euro area inflation rate will be as follows in ten years’ time, i.e. in 2032?}

- Deflation or inflation of less than 1%
- Inflation between 1% and less than 2%

11Data on OOH cost inflation is available at the quarterly frequency and with a lag. The 2.2% average applies to 2012Q1-2021Q4 and reflects the latest available data when preparing the survey.
• Inflation between 2% and less than 3%
• Inflation between 3% and less than 4%
• Inflation between 4% and less than 5%
• Inflation of 5% or more

For this question and the third question on OOH cost inflation, respondents were asked to assign probability weights over the listed range of possible outcomes, which had to add up to 100%. By asking for a probability distribution rather than a point forecast, we can infer the uncertainty around the implied mean and the perceived probability that inflation would fall within (or outside) a range around the 2% target of the ECB. A potential drawback is that respondents might perceive this structure as complicated. Therefore, we limited the number of answer bins to six for simplicity.12

Our next two questions intend to study the transmission channels of the policy change: Is a treatment effect on inflation expectations driven by its induced changes in expected OOH cost inflation or expected interest rates (or both)? Question 2 focuses on interest rates and has a single-choice response option.

Question 2: Do you think that euro area interest rates will be lower, the same or higher than they are today in ten years’ time, i.e. in 2032, as a result of monetary policy? They will be...?13

• Significantly lower (- -)
• Somewhat lower (-)
• About the same (=)
• Somewhat higher (+)
• Significantly higher (+ +)

This question may help explain differences in overall and OOH inflation expectations across the groups. For example, respondents might expect interest rates to be higher to contain inflation augmented with OOH costs.

Our third question focuses on the distribution of OOH inflation expectations and has the same response categories as question 1:

12 In the end, response rates were high, namely 95% for the first and third questions focusing on the distribution of expected (OOH) inflation and 98% for the second question on interest rates, which has a more basic format.

13 Respondents received the following note: ‘Monetary policy influences the cost of borrowing. Higher interest rates mean higher borrowing costs. Lower interest rates mean that it is cheaper to borrow money.’
Question 3: How likely do you think it is that the costs of owner-occupied housing in the euro area will change as follows in ten years’ time, i.e. in 2032?

Our survey relates to Meyler et al. (2021), who asked professional forecasters qualitatively if they would lower, raise, or leave their long-term inflation expectations unchanged after the ECB includes OOH costs in HICP. We expect that professional forecasters were more aware of the current policy strategy at the time of the special ECB survey than households. Therefore, our information treatments include varying degrees of information on OOH policy to provide a quantitative measure of how much households react. This approach also differentiates our work from Ehrmann et al. (2023), who explore how communicating and explaining the inflation target and strategy can enhance credibility in reaching the inflation target. One of their treatment groups includes information on the symmetric inflation target and general information on the ECB’s plan to work towards a broader coverage of housing costs in HICP. Therefore, our information treatments are more informative on communication challenges when implementing the inclusion of OOH costs.

Our questions focus on the euro area, while the standard questions of the Bundesbank survey concern developments in Germany. Yet, as discussed in Section 5, we exploit the information from the standard questions in our analyses to enhance estimation precision. For example, people with above-average long-term inflation expectations for Germany also tend to have above-average long-term inflation expectations for the euro area. German inflation expectations can thus measure 'pre-treatment characteristics' (or proxy for their 'prior' belief about euro area inflation expectations), which can be used in a regression model.

4.3 Derivation of implied means and uncertainty

Our regression analyses below use implied means from the probabilistic responses to our questions on (OOH) inflation expectations. We derive these means using a simple ‘mass at mid-point’ method, which computes a weighted average of the central points of the intervals (see, e.g., Dovern and Kenny, 2020; Rondinelli and Zizza, 2020; D’Acunto et al., 2023). Specifically, each individual’s mean (OOH) inflation expectation y_i is

$$y_i = \sum_{j=1}^{6} p_{ij} C_j \quad \forall i,$$

where \(p_{ij}\) denotes the subjective probability weight given by individual \(i\) to bin \(j\), and \(C_j\) is the midpoint of bin \(j\). We assume the tail intervals in the probability distributions are twice

14Next to information on the inflation target, it mentions ‘In addition, the ECB has heard the calls of European citizens for a broader coverage of housing costs in the measurement of inflation and it will work towards making this possible’.
as wide as middle intervals, i.e., 2 percentage points. This adjustment accounts for the first bin potentially capturing negative values. Hence, the midpoints \((C_1, \ldots, C_6)\) for the six bins in Questions 1 and 3 are \((0, 1.5, 2.5, 3.5, 4.5, 6)\).

We calculate long-term (OOH) inflation uncertainty based on the variance of the subjective probability distribution, \(\text{var}_i\), of each individual (e.g., Dovern and Kenny, 2020):

\[
\text{var}_i = \sum_{j=1}^{6} p_{ij} (y_i - C_j)^2 \quad \forall i. \tag{2}
\]

5 Average treatment effects

This section first provides a descriptive analysis of the average subjective probability distributions of long-term expectations for overall inflation, OOH cost inflation, and interest rate expectations across the four treatment groups. We then estimate the treatment effects using regression analyses.

5.1 Descriptive analysis

Overall inflation expectations. Figure 2a plots the average subjective probability distribution of euro area inflation expectations for the four treatment groups, with the 95% confidence intervals. The average probability of inflation falling between 1% and 3% is around 30%, while the average probability assigned to the inflation rate of 4% or above exceeds 40%. Therefore, long-term inflation expectations are, on average, inconsistent with the inflation target at the time of the survey. This finding resonates with Galati et al. (2023), who show that Dutch consumers’ expectations of euro area and Dutch inflation ten years ahead are not well anchored at the ECB’s target (surveys from Dec 2019 to Sep 2020). However, the high inflation in the years before our survey could be key, as Hoffmann et al. (2022a) report — also using the Bundesbank survey — that German consumers’ expectations are well-anchored around the inflation aim (surveys in Oct 2020 and Jan-Feb 2021).

The probability assigned to high inflation outcomes (i.e., 5% or more) is the largest when respondents are asked to assume that OOH costs are included in the inflation measure as of today (treatment T3).

\[\text{As in D’Acunto et al. (2023), we find that the computed means are similar to those derived by fitting a generalised Beta distribution to the subjective density (see Engelberg et al., 2009). We used the R code of Krüger and Pavlova (2024) for this comparison. Their code is available at https://github.com/FK83/forecasthistogram.}\]

\[\text{16 We obtain similar measures based on the Expected Ranked Probability Score (EPRS) method of Krüger and Pavlova (2024), which requires no functional form assumptions due to its ordinal interpretation of the survey outcome categories.}\]
Figure 2: Average distribution of long-term inflation expectations by treatment group

(a) Overall inflation expectations for 2032

Notes: Average subjective probability distributions of long-term expectations for overall inflation from Question 1 (panel a) and OOH inflation from Question 3 (panel B), together with 95% confidence intervals. There are four treatment groups (T1 to T4): Baseline group T1 receives information about the ECB’s target and the main inflation measure in the euro area; group T2 also learns that most OOH costs are currently excluded from euro area HICP; groups T3 and T4 are asked to assume that OOH costs are included in HICP as of today, but only T4 is informed about past average OOH inflation. The p-values for the t and Hotelling tests are provided in Appendix Table A.1.
However, additional information on average past OOH cost inflation (under treatment T4) lowers the probability of high inflation outcomes and increases the mass in the two central bins that include inflation rates between 2% and 4%. Following Hoffmann et al. (2022a), we test the joint and bin-by-bin differences between the probability distributions for all treatment pairs using the \(t \)-test and the Hotelling (1931) test. Overall, there is some evidence of statistically significant differences between groups T1, T3, and T4. These results are shown in Appendix Table A.1.

OOH inflation expectations. OOH inflation expectations are generally higher than overall inflation expectations for all the groups (Figure 2b). The range consistent with the 2% inflation target is given a probability of less than 30%, which is lower than in the case of inflation expectations. The highest probability is always assigned to rates of 5% or more, at around 30%. Again, under treatment T4 (‘OOH policy + mean’), high inflation outcomes (≥ 4%) are deemed less likely than under treatment T3, while 2%-4% OOH inflation rates are more likely. Based on the statistical tests, we find very little evidence of significant differences between treatment groups (see Appendix Table A.1).

Figure 3: Mean expected inflation and OOH inflation by treatment group

Notes: Implied mean (OOH) inflation expectations are shown based on the computed averages from the individual probability distributions. There are four treatment groups (T1 to T4): Baseline group T1 receives information about the ECB’s target and the main inflation measure in the euro area; group T2 also learns that most OOH costs are currently excluded from euro area HICP; groups T3 and T4 are asked to assume that OOH costs are included in HICP as of today, but only T4 is informed about past average OOH inflation.
Implied means for questions Q1 and Q3. Using the method described in Section 4.3, we create a series of mean expected (OOH) inflation rates based on each individual’s subjective probability distribution. Then, average treatment group expectations are derived from individual means. Figure 3 shows these mean expectations and their 95% confidence bands. Average inflation expectations are highest for group T3 (‘OOH policy’), while for groups T2 (‘current policy’) and T4 (‘OOH policy + mean’), the averages are only a bit above that from baseline group T1. Average OOH expectations increase from T1 to T2, are similar between groups T2 and T3, and decline for T4 to the lowest average. Average OOH inflation expectations are higher than average inflation expectations in the first three treatments but not in the T4 group, where they are the same.\(^ {17}\)

Interest rate expectations. Figure 4 plots the responses to the second question, which asks about interest rates in 2032 relative to today.

Figure 4: Average euro area interest rate expectations for 2032 by treatment group

Notes: Average subjective probability distributions of long-term interest rate expectations from Question 2, together with 95% confidence intervals. There are four treatment groups (T1 to T4): Baseline group T1 receives information about the ECB’s target and the main inflation measure in the euro area; group T2 also learns that most OOH costs are currently excluded from euro area HICP; groups T3 and T4 are asked to assume that OOH costs are included in HICP as of today, but only T4 is informed about past average OOH inflation. The p-values for the \(t\) and *Hotelling* tests are provided in panel C of Appendix Table A.1.

\(^{17}\)The gap between OOH and overall inflation expectations is statistically significantly different from zero for treatment groups T1 and T2 but not for groups T3 and T4.
Most respondents believe interest rates will be higher ten years from now. In general, the average probability of interest rates being slightly higher (+) exceeds 50%, while the probability of interest rates being much higher (++) is just below 20%. Despite historically low interest rates preceding the survey, non-negligible probabilities are also assigned to lower and unchanged interest rates. The evidence based on the equality tests indicates that interest rate expectations are not significantly different across the groups.\footnote{The differences between treatments are also insignificant when using a balance statistic, i.e., a simple weighted average of a recoded variable taking values from -2 (significantly lower) to 2 (significantly higher).}

5.2 Regression analyses

In this subsection, we use regression models to examine the average treatment effects on household expectations about overall inflation, OOH inflation, and interest rates.

5.2.1 Regression models

We estimate several linear regression models using OLS with robust standard errors. The first is an analysis of variance (ANOVA) regression of average expected long-term inflation (π) or OOH inflation (π_{ooh}) on the treatment dummy variables:

$$\pi_{i}^{(ooh)} = \alpha + \sum_{j=2}^{4} \beta_j T_{ij} + \varepsilon_i.$$ \hspace{1cm} (3)

$\pi_{i}^{(ooh)}$ is the mean expected (OOH) inflation for individual i, dummy variable T_{ij} equals 1 if individual i was in treatment group j ($j = 2, 3, 4$) and 0 otherwise, and the error $\varepsilon_i \sim N(0, \sigma^2)$. Parameter α measures the mean for the baseline group T1; the β_j parameters show the average treatment effect of group j relative to the baseline group.

Next, we estimate analysis of covariance (ANCOVA) models that add a continuous covariate to the above ANOVA model:

$$\pi_{i}^{(ooh)} = \alpha + \sum_{j=2}^{4} \beta_j T_{ij} + \gamma (X_i - \bar{X}) + \varepsilon_i,$$ \hspace{1cm} (4)

where $(X_i - \bar{X})$ denotes the additional de-meaned covariate. The mean \bar{X} accounts for the survey weights, and the de-meaning is done to maintain the interpretation of α as the unconditional mean under treatment T1.

Since the treatment groups were randomly assigned, there is no need to correct for confounding using additional control variables. Still, an ANCOVA specification can increase
statistical power for detecting group differences (McKenzie, 2012). We consider a range of pre-treatment characteristics from the standard questionnaire based on their correlation with the left-hand-side variable. We used long-term German inflation expectations (5-year horizon) as a covariate (and as a proxy for prior expectations) in the estimations with overall expectations as the outcome variable (with a correlation of 0.4). For the estimations with expected OOH inflation as the outcome variable, we used short-term German house price expectations (1-year horizon), with a correlation of 0.24.19 Since these covariates are measured before our experimental questions, there is no risk of distorting the estimated treatment effect.20

Extension with socio-demographic controls. We also extend the above regression models in (3) and (4) with standard socio-demographic controls. These extensions include a component $\delta' \left(Z_i - \bar{Z} \right)$ on the right-hand side, where Z_i is a vector with individual characteristics including gender, income group, age group, region, a dummy for a Bachelor's degree or more, a dummy for living in a big city, and a dummy for being an owner-occupier.

More specifically, the income group measures the total net monthly household income, and is divided into the following four dummy variables: under 2500€, 2500€ to 3499€, 3500€ to 4999€, and 5000€ or more. The age group is divided into three dummy variables: under 30 years, 30 to 59 years, and 60 years and older. The region variable groups federal states into north, west, south, and east dummies. The homeownership dummy indicates households living in the dwelling they own. Renters who own other real estate are registered as 0.

Ordered logit model. Since our interest rate expectations (question Q2) are measured as a qualitative variable, we first recode by assigning values of -2 (significantly lower), -1 (somewhat lower), 0 (about the same), 1 (somewhat higher), and 2 (much higher). We then estimate an ordered logit model with the same covariates as in the above equations. In terms of the $(X_i - \bar{X})$ covariate, we use short-term German expectations about lending rates from the main questionnaire, which is also a qualitative variable to which we assign scores.

5.2.2 Inflation and OOH inflation expectations

Table 1 reports the estimation results of equations (3) and (4) for overall inflation and OOH inflation expectations as response variables. The top of the table shows the estimate of α.

19The correlation with long-term German inflation expectations is slightly lower, so we choose house price expectations as a proxy instead. Our selected covariates are winsorised at 2.5 and 97.5 percentiles before de-meaning.

20Leppink (2018) raises the concern that ANCOVA assumes no interaction between treatment dummies and the X_i covariate, which may not hold. We followed his recommendation to check whether model selection criteria favour moderated regression models (MODREG) that include interactions. For both expected (OOH) inflation rates, we found evidence favouring the more parsimonious ANCOVA specification.
the mean expected inflation for baseline group T1. Next, the table lists estimated treatment effects β_1, β_2, and β_3 for groups T2 to T4 relative to the baseline group, followed by differences in average inflation expectations between groups T2 to T4 (e.g., $\beta_3 - \beta_2$). Finally, coefficient estimates for the ANCOVA controls are shown at the bottom.

Columns 1 to 4 summarise the treatment estimates for long-term overall inflation expectations. Column 2 accounts for socio-demographic variables, column 3 for the ANCOVA control, and column 4 for both. Average inflation expectations for the baseline treatment (T1), receiving no information about OOH costs, are about 3.72% across models. The third treatment group (T3), which is asked to assume OOH costs are included in the inflation measure, has the highest average inflation expectations. Treatment effect β_3 is statistically significant at the 10% level in the ANOVA model with socio-demographic controls and at the 5% level in the ANCOVA models, reaching values close to 0.2 p.p.

While this coefficient may appear small, it is an economically important effect. For instance, the literature typically reports that inflation expectations are higher for women than men, and lower for the high-educated (e.g., D’Acunto et al., 2023). Our estimates show that the treatment effect is larger (in absolute value) than the statistically significant impact of female gender (0.14) or Bachelor’s education or more (-0.17) in the ANCOVA model from column 4 with socio-demographic controls. Second, our point estimate exceeds the treatment effect that Hoffmann et al. (2022a) report when German households are asked to assume the ECB adopts a hypothetical average inflation targeting (AIT) regime compared to the current regime (IT). They find an upward effect of 0.12 on inflation expectations five to ten years ahead and a similar-sized effect for expectations two to three years ahead.²¹

Treatment T3 also raises inflation expectations relative to group T2, which is informed about the current policy that largely excludes OOH costs in the price index. Thus, using more precise inference, we confirm our previous finding in Section 5.1 that the average expected inflation in ten years is higher in group T3 than in groups T1 and T2. Interestingly, the fourth treatment, which also provides information about the long-term OOH inflation average, lowers average inflation expectations relative to the T3 group, and this effect is significant in the ANCOVA models. The T4 treatment thus reverses an increase in expectations caused by the treatment T3.

Columns (5)-(8) of Table 1 show the results for long-term OOH inflation expectations. Average expectations are around 3.88% for the baseline group, which is about 0.16 p.p. higher than their average overall inflation expectations. While groups T2 and T3 feature higher OOH expectations by about 0.10 p.p. relative to the baseline group, these differences are

²¹Using a DSGE model calibrated to match the latter gap under relatively well-anchored expectations, they show that the AIT regime implies significantly less volatile inflation and a lower chance for interest rates to reach the zero lower bound.
not statistically significant. However, treatment T4 has significantly lower OOH inflation expectations than treatments T2 and T3. Hence, providing information about past OOH inflation, which is below average expectations, lowers OOH inflation expectations. In Section 6, we measure and discuss how much shifts in OOH expectations explain changes in overall inflation expectations.

The additional covariate included in the ANCOVA models, i.e., either long-term inflation expectations for Germany or short-term local house price inflation expectations, has a significant coefficient with a positive sign. Intuitively, people with above-average inflation expectations for Germany also tend to show above-average inflation expectations for the euro area. Capturing this cross-sectional variation improves the model fit and increases precision, even more so when adding socio-demographic characteristics. Hence, our favoured model specification for interpreting the estimation results is the ANCOVA model with socio-demographic controls (columns 4 and 8).

Table A.2 of Appendix A shows estimates using overall (OOH) inflation uncertainty measures as dependent variables. Treatment T4 significantly lowers inflation uncertainty relative to treatment groups T3 and T2. Thus, providing a past average of OOH inflation reduces not only inflation and OOH inflation expectations but also uncertainty surrounding overall inflation expectations. However, we find no evidence for treatment effects for OOH inflation uncertainty.

In sum, announcing the inclusion of OOH costs in the main inflation measure raises households’ long-term inflation expectations. However, providing additional information on the long-term average of OOH inflation reverses this effect, reduces uncertainty about overall inflation, and lowers OOH inflation expectations. Hence, while Ehrmann et al. (2023) find that informing consumers on the future intention to include OOH costs in HICP has no impact on the ECB’s credibility, we find that the actual implementation would raise household inflation expectations. This result aligns with the qualitative finding of Meyler et al. (2021) that professional forecasters would raise the level of their long-term inflation expectations in case OOH costs are included in inflation measurement. However, while forecasters would also raise the uncertainty surrounding their long-term inflation expectations, we do not find this to hold for households. Finally, our finding that including simple information on the past average of OOH inflation lowers inflation expectations echoes Coibion et al. (2022), who report such effects for US households using data or forecasts on headline inflation.

We use uncertainty around one year ahead German inflation expectations as the additional covariate for the ANCOVA models. Long-term expectations are not available in a probabilistic distribution, and there are much fewer observations available for uncertainty regarding house price expectations. However, the results for OOH expectations uncertainty are similar when using the latter measure.
Table 1: Average treatment effects on overall and OOH inflation expectations

<table>
<thead>
<tr>
<th></th>
<th>Inflation</th>
<th>OOH inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>(\alpha): Baseline mean (T1)</td>
<td>3.72***</td>
<td>3.74***</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>(\beta_2): Current policy (T2)</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>(\beta_3): OOH policy (T3)</td>
<td>0.14</td>
<td>0.16*</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>(\beta_4): OOH policy + mean (T4)</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>(\beta_3 - \beta_2)</td>
<td>0.11</td>
<td>0.14*</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>(\beta_4 - \beta_2)</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>(\beta_4 - \beta_3)</td>
<td>-0.09</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>DE LT inflation exp.</td>
<td>0.12***</td>
<td>0.12***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>DE ST house price exp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>4307</td>
<td>4158</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>Socio-demographic controls</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: OLS estimates of Equation 3 (4) are shown in columns 1-2 (3-4) for inflation expectations and columns 5-6 (7-8) for OOH inflation expectations. Additional controls are long-term inflation expectations for Germany (DE LT inflation exp.) and short-term house local price expectations (DE ST house price exp.). There are four treatment groups (T1 to T4): Baseline group T1 receives information about the ECB’s target and the main inflation measure in the euro area; group T2 also learns that most OOH costs are currently excluded from euro area HICP; groups T3 and T4 are asked to assume that OOH costs are included in HICP as of today, but only T4 is informed about past average OOH inflation. Robust standard errors in parentheses. Significance as * \(p<0.10 \), ** \(p<0.05 \), *** \(p<0.01 \).
5.2.3 Interest rate expectations

Table 2 reports the results for long-term interest rate expectations. We use two ordered logit models, with and without socio-demographic characteristics. German short-term expectations about lending interest rates serve as our ANCOVA control variable. Overall, we find no statistically significant effects of the treatments on interest rate expectations and, thus, no discernible implications for monetary policy.

Table 2: Average treatment effects on interest rate expectations

<table>
<thead>
<tr>
<th></th>
<th>Interest rate expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>β_2: Current policy</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
</tr>
<tr>
<td>β_3: OOH policy</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
</tr>
<tr>
<td>β_4: OOH policy + mean</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
</tr>
<tr>
<td>$\beta_4 - \beta_2$</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
</tr>
<tr>
<td>$\beta_4 - \beta_3$</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
</tr>
<tr>
<td>ST DE lending rate exp.</td>
<td>0.71***</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
</tr>
</tbody>
</table>

Observations | 4465 | 4298 | 4458 | 4292 |
Pseudo R^2 | 0.00 | 0.01 | 0.03 | 0.04 |
Socio-demographic controls | No | Yes | No | Yes |

Notes: Ordered logistic regression results for Question 2. The additional control is short-term lending rate expectations for Germany (ST DE lending rate exp.). There are four treatment groups (T1 to T4): Baseline group T1 receives information about the ECB’s target and the main inflation measure in the euro area; group T2 also learns that most OOH costs are currently excluded from euro area HICP; groups T3 and T4 are asked to assume that OOH costs are included in HICP as of today, but only T4 is informed about past average OOH inflation. Robust standard errors in parentheses. Significance as * $p<0.10$, ** $p<0.05$, *** $p<0.01$.
6 Inspecting the mechanism using mediation analysis

Framework. In the previous section, we documented higher long-term inflation expectations when asked to assume the new OOH policy is implemented (treatment T3). Yet, this effect vanished when information on past average OOH inflation was also provided (treatment T4). In this section, we explore the mechanism behind these effects.

We assume that the average inflation expectation of a treatment group ($\bar{\pi}$) is based on a weighted average of average expected OOH inflation ($\bar{\pi}_{ooh}$) and average expected inflation for the other (non-OOH) components ($\bar{\pi}_{other}$) using weight $\bar{\omega}$ ($0 \leq \bar{\omega} \leq 1$):

$$\bar{\pi} = \bar{\omega}\bar{\pi}_{ooh} + (1 - \bar{\omega})\bar{\pi}_{other}. \quad (5)$$

Hence, the difference between two treatment groups’ average inflation expectations can arise through three (non-mutually exclusive) channels. That is, an information treatment can affect expected OOH inflation ($\bar{\pi}_{ooh}$), inflation expectations for the other (non-OOH) inflation components ($\bar{\pi}_{other}$) — which essentially represent the current inflation measure — or the weight $\bar{\omega}$ that controls the relative importance of OOH inflation vs other components.

We use mediation analysis to identify the contributions from these three channels. Intuitively, this method decomposes the total effect of a treatment (X) to a response variable (Y), i.e. $X \implies Y$, in two parts. First, an indirect effect that passes through a mediator (M). Conceptually, this effect goes first from $X \implies M$, then from $M \implies Y$. Second, the remaining direct effect measures the impact from X to Y while holding mediator M constant. In our case, X is the random information treatment, M is expected OOH inflation, and Y is expected overall inflation. Using (5) and labelling two treatment groups with subscripts 0 and 1, the total treatment effect $\bar{\pi}_1 - \bar{\pi}_0$, i.e., the difference between two groups’ average overall inflation expectations, can be expressed as:23

$$\bar{\pi}_1 - \bar{\pi}_0 = \bar{\omega}_1\bar{\pi}_{ooh} + (1 - \bar{\omega}_1)\bar{\pi}_{other} - \bar{\omega}_0\bar{\pi}_{ooh} - (1 - \bar{\omega}_0)\bar{\pi}_{other}$$

$$= \bar{\omega}_1 (\bar{\pi}_{1ooh} - \bar{\pi}_{0ooh}) + (1 - \bar{\omega}_1) (\bar{\pi}_{1other} - \bar{\pi}_{0other}) + (\bar{\omega}_1 - \bar{\omega}_0) (\bar{\pi}_{ooh} - \bar{\pi}_{other}). \quad (6)$$

The indirect effect reflects the contribution of between-group differences in OOH inflation expectations to the total effect. By contrast, the direct effect expresses the treatment effect when the mediator variable is held constant, i.e., $\bar{\pi}_{1ooh}$ is set equal to $\bar{\pi}_{0ooh}$. The direct effect’s first term captures between-group differences in inflation expectations for other components; its second term is the impact of a shift in the relative weight $\bar{\omega}$.

23To obtain the second line of (6), add and subtract the terms $\bar{\omega}_1\bar{\pi}_{0ooh}$ and $(1 - \bar{\omega}_1)\bar{\pi}_{0other}$ to the right-hand side of the first line and re-arrange terms.
Estimation. The total treatment effect \((X \implies Y) \) is measured using the \(\pi_i \) regressions from Section 5.2.\(^{24}\) To identify the direct treatment effect, we estimate these models with individual OOH inflation expectations \((\pi_i^{ooh}) \) as an additional right-hand side variable in (4). In a model without interactions between OOH inflation and treatment dummies, the coefficient for expected OOH inflation measures the average weight \(\bar{\omega} \), and the regression coefficient for the treatment dummy captures the direct effect of the treatment while holding the mediator (i.e., expected OOH inflation) constant. However, interacting OOH expectations with the treatment dummies delivers group-specific weights \(\bar{\omega}_j \) \((j = 1, \ldots, 4)\) and direct effects that depend on the value of the mediator.

We only report results from the regressions with interactions, as the results are similar without them. For each treatment pair comparison \(\bar{\pi}_k - \bar{\pi}_l \), we evaluate the direct treatment effect at the mean of expected OOH inflation of the reference group \((\bar{\pi}_l^{ooh}) \), as in (6).\(^{25}\) Given the estimated total and direct effects, we derive the indirect effect by subtracting the latter from the former. The standard errors are computed based on 2000 bootstrap replications.

Accounting for confounding. In the previous subsection, the regression estimates from \(X \implies M \) or \(Y \) posed no risk of confounding due to the randomisation of the treatment variable \(X \). However, this need not be the case in mediation regressions of \(Y \) on \(X \) and \(M \) jointly. Indeed, pre-treatment conditions such as the respondent’s characteristics and experience might affect both OOH and overall inflation expectations. Consequently, we focus on the ANCOVA regression models from Section 5.2 that include socio-demographic controls like gender and income as right-hand side variables (see Table 1, columns 4 and 8). We also experimented with the inclusion of additional controls, like inflation perceptions, but found the coefficient estimates for the mediator (or weights) to be about the same.

In principle, post-treatment conditions could also lead to confounding. For example, the random treatment might affect expected monetary policy conditions (our second question), which could jointly impact expected OOH and overall inflation. However, when we appropriately control for this post-treatment variable, we find that the estimated (direct) effects are the same.\(^{26}\)

\(^{24}\)Here, we include both long-term German inflation expectations and short-term German house price expectations as covariates in the regression of the total treatment effect. Doing so ensures that the total effect equals the sum of the indirect and direct effects — the latter of which is estimated with a different equation.

\(^{25}\)Acharya et al. (2016, page 6) discuss the conditions under which regression estimates of the direct effect identify the indirect effect, with the latter being the difference between the overall treatment effect and the direct effect. Our assumptions comply with these conditions.

\(^{26}\)Specifically, we use the sequential \(g \)-estimation procedure described in Acharya et al. (2016). These results, and those from the preceding paragraph, are available upon request.
Results for OOH inflation as mediator. Table 3 reports the estimated average (total) treatment effects on inflation expectations in column (2) and their decomposition into indirect and direct effects in columns (3) and (4). Note that the total effects are essentially the same as those reported in Table 1, column (4).

Table 3: Decomposition of average treatment effects on inflation expectations using mediation analysis

<table>
<thead>
<tr>
<th>Compared treatment groups</th>
<th>Total effect</th>
<th>Indirect effect</th>
<th>Direct effect</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>β2</code>: Current policy vs baseline</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.03)</td>
<td>(0.07)</td>
</tr>
<tr>
<td><code>β3</code>: OOH policy vs baseline</td>
<td>0.20**</td>
<td>0.01</td>
<td>0.19**</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.03)</td>
<td>(0.08)</td>
</tr>
<tr>
<td><code>β4</code>: OOH policy + mean vs baseline</td>
<td>0.03</td>
<td>-0.03</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.03)</td>
<td>(0.07)</td>
</tr>
<tr>
<td><code>β3 - β2</code>: OOH policy vs current</td>
<td>0.16**</td>
<td>-0.01</td>
<td>0.17**</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.02)</td>
<td>(0.07)</td>
</tr>
<tr>
<td><code>β4 - β2</code>: OOH policy + mean vs current</td>
<td>-0.02</td>
<td>-0.05**</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.03)</td>
<td>(0.07)</td>
</tr>
<tr>
<td><code>β4 - β3</code>: OOH policy + mean vs OOH</td>
<td>-0.18**</td>
<td>-0.04*</td>
<td>-0.13*</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.02)</td>
<td>(0.07)</td>
</tr>
</tbody>
</table>

Note: The table shows the decomposition of the total treatment effect (column 2) into the contributions from the indirect (column 3) and direct effects (column 4). Due to rounding, the sum of entries in columns (3) and (4) can differ from that in column (1). There are four treatment groups (T1 to T4): Baseline group T1 receives information about the ECB’s target and the main inflation measure in the euro area; group T2 also learns that most OOH costs are currently excluded from euro area HICP; groups T3 and T4 are asked to assume that OOH costs are included in HICP as of today, but only T4 is informed about past average OOH inflation. Significance as * p<0.10 , ** p<0.05, *** p<0.01.

The first key message is that when the total treatment effect is large and positive, as in the `β3` and `β3 - β2` estimates, this is essentially fully driven by the direct effect. Recall that mediation analysis refers to the direct effect as the treatment effect while keeping the mediator variable — OOH inflation expectations in our case — constant. The difference between the total effect and the direct effect (i.e., the indirect effect) thus measures how strongly the mediator variable participates in the causal effect of the treatment (Acharya et al., 2016). Indeed, the indirect effect of informing on OOH policy (T3) is close to zero due to the combination of modest treatment effects on OOH inflation expectations (Table 1, column 8) and a minority weight $\bar{ω}$ (see below).

What explains the dominance of the direct effect? Recall from (6) that the direct effect cap-
tures the impact of between-group differences in the OOH weight ($\bar{\omega}$) and non-OOH inflation expectations. Digging deeper, we find that changes in $\bar{\omega}$ are not a key driver. When assuming a constant weight across groups, we estimate $\bar{\omega} = 0.27$. When the OOH weight is allowed to vary using a regression with interactions, it becomes $(\bar{\omega}_1, \bar{\omega}_2, \bar{\omega}_3, \bar{\omega}_4) = (0.36, 0.24, 0.24, 0.25)$. Therefore, $\bar{\omega}$ is largest for the baseline group (T1), and informing respondents that most OOH items are excluded from the inflation basket ('current policy') reduces its weight for treatment group T2. While this is an intuitive result, it is surprising that the estimated weights for treatments T3 and T4 remain very close to that of T2 instead of increasing again due to the ECB’s intention to better account for OOH costs. Yet, as the differences are small relative to the average of 0.27, we find similar (in)direct estimates when assuming the same weight across groups.

Note that the OOH share estimates ($\bar{\omega}$) sizably exceed the 9% OOH weight used in ECB simulations for actual inflation (Section 3). This gap resonates with evidence of US consumers overweighing house prices in their inflation expectations (Dhamija et al., 2023) and with the fact that transactions in the secondary housing market (and mortgage payments) will remain excluded from the OOH-augmented HICP. Remarkably, our $\bar{\omega}$ estimates align with the average budget share of households’ housing costs. For instance, Wittekopf et al. (2022, Chart A) report a share of households’ self-reported ratio of housing costs to disposable income just below 30% for Germany (using ECB CES and EU-SILC data). Our survey asks for respondents’ reported expenses in the last month for several categories, including housing costs (rent, mortgage, and ancillary costs). When we proxy disposable income by summing savings and expenses across all categories, we find a similar average ratio of housing costs to disposable income of 28%. When we exclude savings, the ratio of housing costs as a share of total expenses climbs to 32%, which is close to the estimated OOH share for our baseline group, i.e. $\bar{\omega}_1 = 0.36$.

Higher inflation expectations for items other than OOH expenses thus drive the large direct effects. We describe a Bayesian learning framework in Appendix B to provide intuition for this finding. In the model, respondents start with high prior long-term (OOH) inflation expectations for the euro area and update those after receiving an information treatment. All respondents in our survey experiment received information on the ECB’s 2% inflation target, yet they were not equally informed about the policy on OOH costs. The information on OOH policy can impact the degree of trust in reaching the target and, therefore, how strongly they update their priors from high values toward the 2% figure. When asked to assume the ‘OOH policy’ (T3) is in place, respondents find the ECB’s target less credible and update their priors less down to the 2% inflation target. As a result, the posterior mean of their inflation expectations for non-OOH components is higher than those of other groups.

Turning to treatment group T4, which was also informed on past average OOH inflation of
2.2%, we find the indirect effect to become negative and statistically significant in comparisons against T2 and T3 (p-values < 10% or < 5%). These significant effects align with those from column (8) in Table 1. Hence, group T4’s lower average OOH inflation expectations drive overall inflation expectations down. For instance, the large negative total effect of $\beta_4 - \beta_3$ (-0.18) is explained for about one quarter by the indirect effect (-0.04). Consistent with the notion of credibility of the inflation target from the previous paragraph, we see that the direct effect remains important but negative in this case (-0.13). Therefore, informing on average OOH inflation of 2.2% reinforces the credibility of the ECB’s target, which creates spillover effects that lower inflation expectations for the other components.

Results for expected interest rates as mediator. We repeat this exercise with expectations for monetary policy rates as a mediator instead of expectations for OOH inflation. Overall, we find no evidence of important indirect effects, which means that monetary policy expectations are not a helpful channel for explaining changes in overall inflation expectations across treatments. This result resonates with the insignificant treatment effects found for monetary policy rates in Section 5.2.

7 Exploring heterogeneity

This section explores whether the average treatment effects from Section 5.2 are heterogeneous across selected socio-demographic characteristics. Specifically, we consider housing tenure, education, income, and gender. In addition to these standard characteristics, we exploit information from previous survey waves on trust in the ECB to deliver price stability. We thus aim to analyse whether the respondent’s trust in the ECB can explain average treatment effects, as discussed in the previous sections.

For each of these characteristics, we define a dummy variable Z_i to split individuals into two groups (e.g., high vs low-income) and estimate an extension of the ANCOVA model (4) that includes interactions with dummy Z_i:

$$
\pi_i^{(ooh)} = \alpha + \tilde{\alpha}Z_i + \sum_{j=2}^{4} T_{ij} \left(\beta_j + \tilde{\beta}_j Z_i \right) + \left(X_i - \bar{X} \right) \left(\gamma + \tilde{\gamma} Z_i \right) + \epsilon_i.
$$

(7)

The parameters with a \sim symbol measure the interaction coefficients for the socio-demographic characteristic Z_i, and X_i represents the same control variable as in Table 1.\(^{27}\) Note that the estimation of (7) gives the same results as split sample regressions of (4) under $Z_i = 0$ and $Z_i =\)

\(^{27}\)Our results are similar when using ANOVA models or when including the other socio-demographic controls (available upon request).
1. Hence, we examine whether a treatment effect is conditional on the level of characteristic Z_i. For simplicity and sample size limitations, we consider only one characteristic each time when defining Z_i.

Characteristics. We use the dummy variable Z_i to split the sample into 1) owners and renters (housing tenure), and 2) men and women (gender).28 For the characteristics with more than two categories, we classify those with 3) a net household income of at least €3,500 per month as high-income respondents, and 4) those with at least a bachelor’s degree as highly educated.

We also use a measure of trust in the central bank by exploiting the panel structure of the database to match the anonymous survey respondents’ responses over time. We do so because the February and June 2022 survey waves contained the following question on trust in the ECB: “On a scale from 0 to 10, how much do you trust that the European Central Bank (ECB) is able to deliver price stability?”. Since the modal response is five, we label those with a score of five or above as having a high level of trust.29 A caveat is that we treat trust as a pre-treatment characteristic, while, in principle, this can change after the information treatment. Hence, our measure acts as a proxy.

7.1 Inflation expectations

Table 4 reports the split sample estimation results of (4) using overall inflation expectations π_i as the response variable. We first compare the group asked to assume that the OOH policy is in place (T3) with the baseline treatment group (T1). Recall that the first main result from Table 1 is a significantly higher average inflation expectation for T3 than T1. Here, we find that this effect is only highly significant (p-value $< 5\%$) and economically relevant for homeowners, the low-educated, and those with low trust in the ECB. The effect is also significant at the 10\% level for the high-income group and men, but the coefficients remain similar to those of their counterparts.

Focusing on $\beta_3 - \beta_2$, the gap between the group assuming OOH policy (T3) and the group informed on current policy (T2), we find the significantly positive effect from the full sample estimates to be repeated for the low-educated and the low-income group (p-value $< 5\%$ or $< 1\%$).

28 The survey does not ask about homeownership status every month. Hence, for the respondents who did not provide this information in our survey wave, we use the panel structure of the database to retrieve the most recent response to this question in a previous survey wave.

29 We can match about 80\% of the observations in our survey wave to previous responses on trust. Note that the respondents asked in February are different from those in June. Since trust can change over time, we also did a robustness check using only the information from the June 2022 survey wave and found the results to remain broadly robust.
Table 4: Heterogeneity of treatment effects on inflation expectations

<table>
<thead>
<tr>
<th>Treatment pairs</th>
<th>β_2</th>
<th>β_3</th>
<th>β_4</th>
<th>$\beta_4 - \beta_2$</th>
<th>$\beta_4 - \beta_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owners</td>
<td>0.17 (0.10)</td>
<td>0.25** (0.11)</td>
<td>0.09 (0.09)</td>
<td>0.09 (0.11)</td>
<td>-0.08 (0.09)</td>
</tr>
<tr>
<td>Renters</td>
<td>-0.14 (0.17)</td>
<td>0.09 (0.16)</td>
<td>-0.01 (0.16)</td>
<td>0.23 (0.15)</td>
<td>0.13 (0.14)</td>
</tr>
<tr>
<td>High</td>
<td>0.11 (0.10)</td>
<td>0.08 (0.10)</td>
<td>0.03 (0.10)</td>
<td>-0.03 (0.10)</td>
<td>-0.07 (0.09)</td>
</tr>
<tr>
<td>Low</td>
<td>0.02 (0.11)</td>
<td>0.23** (0.11)</td>
<td>0.03 (0.10)</td>
<td>0.21** (0.11)</td>
<td>0.01 (0.10)</td>
</tr>
<tr>
<td>High</td>
<td>0.31*** (0.12)</td>
<td>0.20* (0.12)</td>
<td>0.16 (0.12)</td>
<td>-0.12 (0.09)</td>
<td>-0.16* (0.09)</td>
</tr>
<tr>
<td>Low</td>
<td>-0.20 (0.14)</td>
<td>0.19 (0.14)</td>
<td>-0.02 (0.12)</td>
<td>0.40*** (0.12)</td>
<td>0.18 (0.13)</td>
</tr>
<tr>
<td>High</td>
<td>0.06 (0.11)</td>
<td>0.02 (0.12)</td>
<td>-0.08 (0.11)</td>
<td>-0.04 (0.11)</td>
<td>-0.14 (0.12)</td>
</tr>
<tr>
<td>Low</td>
<td>0.14 (0.13)</td>
<td>0.36** (0.15)</td>
<td>0.05 (0.12)</td>
<td>0.22 (0.14)</td>
<td>-0.09 (0.12)</td>
</tr>
<tr>
<td>Male</td>
<td>0.10 (0.10)</td>
<td>0.20* (0.12)</td>
<td>0.01 (0.10)</td>
<td>0.11 (0.11)</td>
<td>-0.09 (0.09)</td>
</tr>
<tr>
<td>Female</td>
<td>-0.02 (0.15)</td>
<td>0.14 (0.13)</td>
<td>0.09 (0.13)</td>
<td>0.15 (0.13)</td>
<td>0.10 (0.13)</td>
</tr>
</tbody>
</table>

Note: Heterogeneous treatment effect estimates from equation (7) are shown for overall inflation expectations. There are four treatment groups (T1 to T4): Baseline group T1 receives information about the ECB’s target and the main inflation measure in the euro area; group T2 also learns that most OOH costs are currently excluded from euro area HICP; groups T3 and T4 are asked to assume that OOH costs are included in HICP as of today, but only T4 is informed about past average OOH inflation. Robust standard errors in parentheses. Significance as * p<0.10, ** p<0.05, *** p<0.01.

Another main result from Table 1 is that informing on the average of past OOH cost inflation (T4) reduces inflation expectations compared to T3. Here, this negative $\beta_4 - \beta_3$ effect is statistically significant at the 5% level for the low-educated and those with low trust in the ECB, and significant at the 10% level for homeowners, low-income households, and men. These significant negative effects reverse the positive impact of treatment T3. As a result, the inflation expectations of treatment T4 are not significantly different from the baseline group (T1), as measured by β_4.

29
7.2 OOH inflation expectations

In the full sample results (Table 1), OOH inflation expectations were significantly lower when asked to assume OOH policy is in place and informing them on past OOH cost inflation (T4), compared to groups T2 (‘current policy’) and T3 (‘OOH policy’). In Table 5, we show that these effects on OOH inflation expectations \(\pi^{\text{ooh}}_i \), measured by \(\beta_4 - \beta_2 \) and \(\beta_4 - \beta_3 \), are present for homeowners but not for renters.

Table 5: Heterogeneity of treatment effects on OOH inflation expectations

<table>
<thead>
<tr>
<th>Treatment pairs</th>
<th>(\beta_2)</th>
<th>(\beta_3)</th>
<th>(\beta_4)</th>
<th>(\beta_4 - \beta_2)</th>
<th>(\beta_4 - \beta_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owners</td>
<td>0.22*</td>
<td>0.26**</td>
<td>-0.11</td>
<td>0.04</td>
<td>-0.33***</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.11)</td>
<td>(0.11)</td>
<td>(0.12)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Renters</td>
<td>-0.02</td>
<td>-0.18</td>
<td>-0.08</td>
<td>-0.17</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.19)</td>
<td>(0.18)</td>
<td>(0.16)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>Housing tenure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Education</td>
<td>-0.20</td>
<td>-0.25*</td>
<td>-0.43***</td>
<td>-0.05</td>
<td>-0.23</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>Low Education</td>
<td>0.16</td>
<td>0.15</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.17</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.13)</td>
<td>(0.13)</td>
<td>(0.12)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Income</td>
<td>0.19</td>
<td>0.10</td>
<td>-0.08</td>
<td>-0.09</td>
<td>-0.28**</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.13)</td>
<td>(0.12)</td>
<td>(0.13)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>Low Income</td>
<td>0.08</td>
<td>0.08</td>
<td>-0.08</td>
<td>0.00</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.16)</td>
<td>(0.16)</td>
<td>(0.14)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>Trust in ECB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Trust</td>
<td>0.01</td>
<td>0.15</td>
<td>-0.14</td>
<td>0.14</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.13)</td>
<td>(0.14)</td>
<td>(0.13)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>Low Trust</td>
<td>-0.06</td>
<td>-0.01</td>
<td>-0.31***</td>
<td>0.05</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.13)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.12</td>
<td>0.17</td>
<td>0.05</td>
<td>0.04</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.13)</td>
<td>(0.12)</td>
<td>(0.13)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Female</td>
<td>0.12</td>
<td>-0.01</td>
<td>-0.26</td>
<td>-0.14</td>
<td>-0.38**</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.16)</td>
<td>(0.16)</td>
<td>(0.14)</td>
<td>(0.15)</td>
</tr>
</tbody>
</table>

Note: Heterogeneous treatment effect estimates from equation (7) are shown for OOH inflation expectations. There are four treatment groups (T1 to T4): Baseline group T1 receives information about the ECB’s target and the main inflation measure in the euro area; group T2 also learns that most OOH costs are currently excluded from euro area HICP; groups T3 and T4 are asked to assume that OOH costs are included in HICP as of today, but only T4 is informed about past average OOH inflation. Robust standard errors in parentheses. Significance as * p<0.10 , ** p<0.05, *** p<0.01.

In contrast to the full-sample results, homeowners’ OOH expectations increase significantly relative to the baseline (T1) with the treatments T2 and T3, though these effects are reversed by treatment T4. Moreover, a significantly negative \(\beta_4 \) effect is present among those with higher education and low trust in the ECB, and \(\beta_4 - \beta_2 \) is also significantly negative for those
with higher income and women. Trust in the ECB does not appear to explain the negative $\beta_4 - \beta_3$ effect, as it’s negative and significant for both trust groups.

7.3 Interest rate expectations

Table 6: Heterogeneity of treatment effects on interest rate expectations

<table>
<thead>
<tr>
<th>Treatment pairs</th>
<th>β_2</th>
<th>β_3</th>
<th>β_4</th>
<th>$\beta_3 - \beta_2$</th>
<th>$\beta_4 - \beta_2$</th>
<th>$\beta_4 - \beta_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owners</td>
<td>0.14</td>
<td>0.08</td>
<td>0.30**</td>
<td>-0.06</td>
<td>0.16</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.16)</td>
<td>(0.15)</td>
<td>(0.19)</td>
<td>(0.17)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>Renters</td>
<td>-0.18</td>
<td>0.06</td>
<td>0.01</td>
<td>0.24</td>
<td>0.19</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.21)</td>
<td>(0.21)</td>
<td>(0.19)</td>
<td>(0.19)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>High Education</td>
<td>-0.33</td>
<td>-0.04</td>
<td>0.13</td>
<td>0.29</td>
<td>0.46**</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.20)</td>
<td>(0.22)</td>
<td>(0.19)</td>
<td>(0.21)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>Low</td>
<td>0.07</td>
<td>0.07</td>
<td>0.14</td>
<td>0.00</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.14)</td>
<td>(0.16)</td>
<td>(0.15)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>High Income</td>
<td>-0.17</td>
<td>0.14</td>
<td>0.40**</td>
<td>0.32</td>
<td>0.58***</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.19)</td>
<td>(0.18)</td>
<td>(0.21)</td>
<td>(0.20)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Low</td>
<td>0.04</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.08</td>
<td>-0.09</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.17)</td>
<td>(0.18)</td>
<td>(0.17)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>High Trust ECB</td>
<td>-0.20</td>
<td>0.18</td>
<td>0.33*</td>
<td>0.38*</td>
<td>0.53**</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.20)</td>
<td>(0.20)</td>
<td>(0.22)</td>
<td>(0.22)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Low</td>
<td>0.03</td>
<td>0.06</td>
<td>0.15</td>
<td>0.03</td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.19)</td>
<td>(0.20)</td>
<td>(0.20)</td>
<td>(0.21)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Male</td>
<td>-0.08</td>
<td>0.03</td>
<td>0.26*</td>
<td>0.11</td>
<td>0.35**</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.16)</td>
<td>(0.18)</td>
<td>(0.16)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>Female</td>
<td>0.02</td>
<td>0.07</td>
<td>0.08</td>
<td>0.05</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td>(0.18)</td>
<td>(0.20)</td>
<td>(0.19)</td>
<td>(0.19)</td>
<td>(0.19)</td>
</tr>
</tbody>
</table>

Note: Heterogeneous treatment effect estimates are shown for interest rate expectations based on an ordered logit model. There are four treatment groups (T1 to T4): Baseline group T1 receives information about the ECB’s target and the main inflation measure in the euro area; group T2 also learns that most OOH costs are currently excluded from euro area HICP; groups T3 and T4 are asked to assume that OOH costs are included in HICP as of today, but only T4 is informed about past average OOH inflation. Robust standard errors in parentheses. Significance as * p<0.10 , ** p<0.05, *** p<0.01.

Finally, Table 6 shows heterogeneous treatment effects on interest rate expectations.30 Remember that the average treatment effects were insignificant when using the full sample. However, this result appears to hide some degree of heterogeneity. Treatment T4 significantly

30Unlike the previous two tables, these estimates are based on an ordered logit model.
raises interest rate expectations (p-value < 10% or lower) relative to both the baseline group (T1) and the group informed on current policy (T2) for high-income families, those with high trust in the ECB, and men. There is also a significant increase relative to T1 for homeowners and relative to T2 for the high-educated.

Summing up. The effects on overall inflation expectations following, respectively, treatments T3 and T4 are heterogeneous across households. Information treatments on OOH particularly affect respondents who are low educated, have a low income, lacked trust in the ECB’s ability to meet its price stability objective before our survey, and men.

In addition, we find a significant reaction of overall and OOH inflation expectations of homeowners but not of renters. In light of the mediation analysis from the previous section, this result is consistent with a role for the indirect treatment effect on the mediator (i.e., OOH inflation expectations) in explaining the total treatment effect on overall inflation expectations.

It is challenging to establish a link with expectations on future monetary policy. For example, we do not see that subgroups with insignificant β_3 treatment effects on overall inflation have significantly more restrictive monetary policy expectations.

8 Conclusion

Owner-occupied housing (OOH) costs are highly important to euro area households, yet they are only partially included in the ECB’s main consumer price inflation measure. In response, the ECB concluded its 2021 strategy review with a plan to include OOH costs in its inflation measure in the future.

This paper measured whether implementing this policy would impact households’ expectations. We ran a novel survey experiment using the Bundesbank’s online household panel and randomly divided respondents into four treatment groups, each receiving different information concerning the ECB’s policy on OOH costs. We then compared these treatment groups’ long-run expectations for overall inflation, interest rates, and OOH inflation in the euro area ten years ahead.

Our results indicate that long-term inflation expectations for the euro area are de-anchored among German households at the time of the survey. Across the four treatment groups, respondents expect high inflation to persist ten years into the future and give low weight to outcomes close to the 2% target. Moreover, expectations for OOH inflation tend to exceed those for overall inflation.

The information provisions regarding the ECB’s treatment of OOH costs impact these long-term expectations. Overall inflation expectations are significantly higher for those asked
to assume the ECB’s measure of inflation accounts for OOH costs as of today relative to a baseline group receiving only general information on the ECB’s inflation target. However, this positive effect on long-term inflation expectations reverses when respondents also receive information that OOH inflation was 2.2% on average during the ten years before the survey. We also find this additional information on past OOH average inflation significantly lowers expectations for OOH cost inflation and the uncertainty surrounding overall inflation expectations.

Using mediation analysis, we find that between-group differences in OOH inflation expectations contribute modestly to the treatment effects on overall inflation expectations. Instead, the key role comes from between-group differences in inflation expectations for other (non-OOH) components. Using a Bayesian learning model, we argue that respondents find the 2% medium-term inflation target less credible when asked to assume OOH policy is in place. As a result, they update their prior long-term inflation expectations for all HICP components less strongly to the target. However, including information on average OOH inflation reinforces the target’s credibility, lowering the expectations for both OOH and non-OOH inflation components.

The information treatments have heterogeneous effects on overall inflation expectations: they are significant for homeowners, those reporting before our survey to have low trust in the ECB’s ability to meet its price stability objective, the low-educated, those with low income, and men. Homeowners’ OOH inflation expectations also react significantly. Although we find no treatment effects on average for interest rate expectations, this changes in subgroup analyses. Respondents informed on OOH policy and average past OOH inflation show significantly higher long-term interest expectations (relative to baseline) when they are homeowners, highly educated, high-income, highly trusting in the ECB, or male.

The policy implication from our results is that households generally seem to lack trust that the ECB will achieve its inflation target, and communicating on OOH policy could further raise overall inflation expectations. Moreover, this effect depends on the respondent’s characteristics. However, careful communication design that informs on past average OOH inflation being low could prevent inflation expectations from de-anchoring.

Our analysis features several caveats, which could be addressed in future research. First, we measured (OOH) inflation expectations following a sustained period of relatively high house price inflation, which could explain the gap between OOH and overall inflation expectations. In this context, it is reassuring that, even in a hot housing market, careful policy communication can avoid an increase in inflation expectations when including OOH costs in HICP. Still, it’s an open question of whether some of our findings depend on the state of the housing market. Second, the effects of the information experiments are conditional on the consumer receiving the information. If the ECB’s communication would reach different
household segments unequally, then this could affect the realised effect on inflation expectations. Third, our finding of stronger effects on homeowners’ (OOH) inflation expectations is particularly relevant since Germany typically has the lowest homeownership rate of euro area countries. The effects of policy communication could thus be heterogeneous across countries and stronger than what we report for German households. Finally, we have focused on long-term inflation expectations and have not measured treatment effects at short- and medium-term horizons.
References

Appendix

A. Additional results

Table A.1: Test results for the equality of average subjective probabilities

<table>
<thead>
<tr>
<th>Bin/Treatment pair</th>
<th><1%</th>
<th>[1%; 2%)</th>
<th>[2%; 3%)</th>
<th>[3%; 4%)</th>
<th>[4%; 5%)</th>
<th>≥5%</th>
<th>Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1=T2</td>
<td>0.47</td>
<td>0.45</td>
<td>0.56</td>
<td>0.27</td>
<td>0.28</td>
<td>0.55</td>
<td>0.70</td>
</tr>
<tr>
<td>T1=T3</td>
<td>0.12</td>
<td>0.40</td>
<td>0.32</td>
<td>0.86</td>
<td>0.47</td>
<td>0.30</td>
<td>0.50</td>
</tr>
<tr>
<td>T1=T4</td>
<td>0.08</td>
<td>0.03</td>
<td>0.20</td>
<td>0.26</td>
<td>0.85</td>
<td>0.75</td>
<td>0.04</td>
</tr>
<tr>
<td>T2=T3</td>
<td>0.50</td>
<td>0.93</td>
<td>0.67</td>
<td>0.22</td>
<td>0.68</td>
<td>0.10</td>
<td>0.60</td>
</tr>
<tr>
<td>T2=T4</td>
<td>0.36</td>
<td>0.14</td>
<td>0.07</td>
<td>0.97</td>
<td>0.47</td>
<td>0.78</td>
<td>0.20</td>
</tr>
<tr>
<td>T3=T4</td>
<td>0.72</td>
<td>0.16</td>
<td>0.03</td>
<td>0.21</td>
<td>0.70</td>
<td>0.17</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Panel B: OOH inflation expectations

<table>
<thead>
<tr>
<th>Bin/Treatment pair</th>
<th><1%</th>
<th>[1%; 2%)</th>
<th>[2%; 3%)</th>
<th>[3%; 4%)</th>
<th>[4%; 5%)</th>
<th>≥5%</th>
<th>Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1=T2</td>
<td>0.47</td>
<td>0.72</td>
<td>0.96</td>
<td>0.28</td>
<td>0.85</td>
<td>0.32</td>
<td>0.83</td>
</tr>
<tr>
<td>T1=T3</td>
<td>0.82</td>
<td>0.41</td>
<td>0.72</td>
<td>0.08</td>
<td>0.37</td>
<td>0.42</td>
<td>0.34</td>
</tr>
<tr>
<td>T1=T4</td>
<td>0.52</td>
<td>0.72</td>
<td>0.12</td>
<td>0.86</td>
<td>0.37</td>
<td>0.46</td>
<td>0.67</td>
</tr>
<tr>
<td>T2=T3</td>
<td>0.73</td>
<td>0.61</td>
<td>0.68</td>
<td>0.40</td>
<td>0.47</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>T2=T4</td>
<td>0.18</td>
<td>0.42</td>
<td>0.10</td>
<td>0.35</td>
<td>0.27</td>
<td>0.09</td>
<td>0.27</td>
</tr>
<tr>
<td>T3=T4</td>
<td>0.45</td>
<td>0.17</td>
<td>0.25</td>
<td>0.10</td>
<td>0.08</td>
<td>0.13</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Panel C: interest rate expectations

<table>
<thead>
<tr>
<th>Bin/Treatment pair</th>
<th>‘-’</th>
<th>‘-’</th>
<th>‘=’</th>
<th>‘+’</th>
<th>‘+ +’</th>
<th>Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1=T2</td>
<td>0.13</td>
<td>0.75</td>
<td>0.44</td>
<td>0.76</td>
<td>0.59</td>
<td>0.46</td>
</tr>
<tr>
<td>T1=T3</td>
<td>0.56</td>
<td>0.81</td>
<td>0.09</td>
<td>0.27</td>
<td>0.89</td>
<td>0.49</td>
</tr>
<tr>
<td>T1=T4</td>
<td>0.25</td>
<td>0.14</td>
<td>0.27</td>
<td>0.44</td>
<td>0.51</td>
<td>0.27</td>
</tr>
<tr>
<td>T2=T3</td>
<td>0.28</td>
<td>0.60</td>
<td>0.30</td>
<td>0.15</td>
<td>0.49</td>
<td>0.42</td>
</tr>
<tr>
<td>T2=T4</td>
<td>0.58</td>
<td>0.26</td>
<td>0.69</td>
<td>0.27</td>
<td>0.94</td>
<td>0.66</td>
</tr>
<tr>
<td>T3=T4</td>
<td>0.55</td>
<td>0.12</td>
<td>0.57</td>
<td>0.70</td>
<td>0.42</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Notes: P-values are shown for t- and Hotelling tests. Values below or equal to 0.1 are shown in bold. There are four treatment groups (T1 to T4): Baseline group T1 receives information about the ECB’s target and the main inflation measure in the euro area; group T2 also learns that most OOH costs are currently excluded from euro area HICP; groups T3 and T4 are asked to assume that OOH costs are included in HICP as of today, but only T4 is informed about past average OOH inflation.
Table A.2: Average treatment effects on (OOH) inflation uncertainty

<table>
<thead>
<tr>
<th></th>
<th>Inflation uncertainty</th>
<th>OOH inflation uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>α: Baseline mean (T1)</td>
<td>0.82***</td>
<td>0.80***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>β_2: Current policy</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>β_3: OOH policy</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>β_4: OOH policy + mean</td>
<td>-0.09</td>
<td>-0.09</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>$\beta_3 - \beta_2$:</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>$\beta_4 - \beta_2$:</td>
<td>-0.07</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>$\beta_4 - \beta_3$:</td>
<td>-0.13*</td>
<td>-0.15**</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>DE inflation uncertainty</td>
<td>0.02***</td>
<td>0.02***</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Observations</td>
<td>4307</td>
<td>4158</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Socio-demographic controls</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: This table summarises main estimation results for inflation uncertainty. OLS estimates of Equation 3 (Equation 4) are shown in columns 1-2 (3-4) for uncertainty in inflation expectations and columns 5-6 (7-8) for uncertainty in OOH inflation expectations. There are four treatment groups (T1 to T4): Baseline group T1 receives information about the ECB’s target and the main inflation measure in the euro area; group T2 also learns that most OOH costs are currently excluded from euro area HICP; groups T3 and T4 are asked to assume that OOH costs are included in HICP as of today, but only T4 is informed about past average OOH inflation. Robust standard errors in parentheses. Significance as * p < 0.10 , ** p < 0.05, *** p < 0.01.

B. A Bayesian learning framework

This section complements the mediation analysis from Section 6 by discussing a Bayesian learning framework to interpret the results. In short, the framework shows how, starting from high inflation expectations before the survey, respondents might ‘update’ their expectations differently downward to 2%, depending on the information treatment they received.

Priors. We use prior distributions to capture respondents’ average long-term inflation expectations before receiving an information treatment. As in Section 6, we denote expected
OOH inflation with $\bar{\pi}^{ooh}$ and expected inflation for other components with $\bar{\pi}^{other}$. For simplicity, the framework considers shifts in aggregate probability distribution across respondents within a treatment group (as if an ‘average’ respondent is used). The long-term expectations for the two inflation subcomponents are treated as unknown parameters, $\theta = (\bar{\pi}^{ooh}, \bar{\pi}^{other})'$, such that the aggregate distributions have normally distributed priors $\theta \sim N(\mu, \Omega)$, where $\mu = (\bar{\pi}^{ooh}, \bar{\pi}^{other})'$ and $\Omega = \left(\begin{array}{cc} \sigma^2_{ooh} & \sigma \\ \sigma & \sigma^2_{other} \end{array} \right)$. Hence, underbar symbols refer to prior parameters, and upperbar symbols below refer to posterior parameters.

On average, people have a prior weight $\bar{\omega}$ in mind for the importance of OOH costs in the consumer basket. Taken together, the prior distribution for overall inflation $\bar{\pi}$ is normally distributed as $\bar{\pi} \sim N(\bar{\mu}, \sigma^2)$, with

$\bar{\mu}^\pi = \left(\bar{\omega} (1 - \bar{\omega}) \right) \bar{\mu}$,

$\sigma^2 = \left(\bar{\omega} (1 - \bar{\omega}) \right) \Omega \left(\bar{\omega} (1 - \bar{\omega}) \right)'$.

Data. For ease of exposition, we consider group T4, which receives all information. The first piece of text on the ECB’s 2% inflation target can be expressed as a data equation (numbers as 100%) to update the priors:

$$2 = \bar{\pi} + \epsilon_1,$$

(8)

where error term ϵ_1 is normally distributed as $\epsilon_1 \sim N(0, \sigma_1^2)$. Given the new information on ECB policy, we consider the prior OOH inflation weight $\bar{\omega}$ to be rescaled using a parameter δ (with $0 \leq \delta \leq 1$) as $\bar{\omega}^* = \delta \bar{\omega}$. Therefore, the above equation translates to the following data equation for the θ components:

$$2 = \bar{\omega}^* \bar{\pi}^{ooh} + (1 - \bar{\omega}^*) \bar{\pi}^{other} + \epsilon_1.$$

(9)

Intuitively, the 2% number provides information on the potential location of long-term inflation in the euro area. The variance σ^2_1 measures the ECB’s perceived credibility. The more credible the ECB, the smaller σ^2_1 is, and the stronger the prior means of the θ parameters will be ‘shrunk’ to 2%.

Unlike groups T1 to T3, group T4 also receives information on average OOH inflation over the past ten years. This information can be written into a second data equation:

$$2.2 = \bar{\pi}^{ooh} + \epsilon_2,$$

(10)

where error term $\epsilon_2 \sim N(0, \sigma^2_2)$. Variance parameter σ^2_2 controls the degree of ‘shrinkage’ of
π\text{ooh} to the 2.2% figure. If the information is considered relevant, the variance will be low, and the updating will be strong. All else equal, \(\pi\text{other}\) will also be updated due to this equation when the priors are correlated.

Updating the priors to posteriors. The prior equations allow us to write \(\theta = \mu + \epsilon_{\theta}\), where \(\epsilon_{\theta} \sim N(0_{2x1}, \Omega)\). The data equations can be written as

\[
Y = X\theta + \epsilon_y,
\]

where \(\epsilon_y \sim N(0_{2x1}, \Omega_y)\). The structure of \(Y, X, \) and \(\Omega_y\) depends on the treatment. For treatment group T4, we have that

\[
X = \begin{pmatrix} \delta \omega & (1 - \delta \omega) \\ 1 & 0 \end{pmatrix},
\]

\[
Y = \begin{pmatrix} 2 \\ 2.2 \end{pmatrix},
\]

\[
\Omega_y = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}.
\]

Combining the priors and data leads to the posterior distribution \(\theta \sim N\left(\bar{\mu}, \bar{\Omega}\right)\), where \(\bar{\Omega} = (\Omega^{-1} + X'\Omega_y^{-1}X)^{-1}\) and \(\bar{\mu} = \bar{\Omega}\left(\Omega^{-1}\mu + X'\Omega_y^{-1}Y\right)\). For groups T1 to T3, we only use the first row of \(X\) and the top left corner of \(\Omega_y\). Based on the posterior means for the subcomponents, the posterior distribution of overall inflation will be normally distributed as \(\bar{\pi} \sim N(\bar{\mu}_\pi, \bar{\sigma}_\pi^2)\), with \(\bar{\mu}_\pi = \begin{pmatrix} \delta \omega & (1 - \delta \omega) \end{pmatrix}\bar{\mu}\), and \(\bar{\sigma}_\pi^2 = \begin{pmatrix} \delta \omega & (1 - \delta \omega) \end{pmatrix}\bar{\Omega}\begin{pmatrix} \delta \omega & (1 - \delta \omega) \end{pmatrix}.'\)

Interpretation of the average treatment effects. We consider each treatment group to have its own parameters \(\delta\) and \(\sigma_1^2\). That is, the text snippets could have spillover effects such that the overall effect of the information treatments is more than the sum of its parts. For example, the information that average OOH inflation was 2.2% over the past ten years could raise the ECB’s credibility as perceived by the respondent. This would imply a lower \(\sigma_1^2\) in the equation corresponding to the first text snippet.

Our survey does not measure prior expectations for euro area inflation. Instead, we compare posterior expectations after the respondents receive some information. Therefore, there are different channels through which the posterior means \(\bar{\mu}\) can differ across groups, and more information (or restrictions) is needed to pin down all relevant parameters. As an illustration, we compute the means of \(\bar{\pi}\) and \(\bar{\pi}\text{ooh}\) using the above Bayesian learning model for all four treatment groups and use an optimiser to find the Bayesian model parameters that deliver the smallest sum of squared deviations between (i) the learning model implied means and
(ii) the means from the regression estimates in columns (4) and (8) from Table 1. The prior means and variances for \(\theta \) are assumed to be equal across treatment groups. Since individual OOH inflation expectations tend to be significantly above overall inflation expectations, we restrict the prior means as \(\mu^{\text{ooh}} \geq \mu^{\text{other}} \). In addition, all variance parameters were restricted to be above 0.5 and below 12. The weights \(\bar{\omega}_1 \) to \(\bar{\omega}_4 \) were calibrated based on the estimated weights from Section 6.

Table A.3 shows the minimisation procedure’s starting and estimated parameter values for the Bayesian learning parameters. Based on the estimated parameters, the means from Table 1 can be replicated up to one basis point. The estimated prior means and variances are about the same for the \(\theta \) parameters. However, there is important variation for the \(\sigma_1^2 \) parameter across groups. The T3 respondents would attach close to no credibility to the 2% value under the announced ECB policy, as shown by a high \(\sigma_1^2,T_3 \). However, the additional information in T4 helps restore credibility about the target and lowers \(\sigma_1^2 \) again. In addition, the moderate \(\sigma_2^2 \) value for T4 indicates that the information on average OOH inflation is used to update the priors on \(\bar{\pi}^{\text{ooh}} \).

The model also provides intuition for why OOH inflation expectations increase for group T2 (current policy) vs baseline group T1 while overall inflation expectations remain similar between both groups. The lower estimated weight \(\bar{\omega} \) for group T2 (compared to T1) implies a weaker updating of the prior distribution for OOH inflation from a relatively high mean toward the lower value of the 2% inflation target. As a result, group T2’s posterior distribution for expected OOH inflation is higher than for T1. However, the posterior mean of overall inflation is similar between both groups because the higher posterior mean for OOH inflation expectations is offset by a lower weight \(\bar{\omega} \).

In sum, the output of the presented numerical exercise is consistent with the mediation analysis from the main text: the combination of shifts in \(\sigma_1^2 \) parameters across groups and the majority weight \((1 - \bar{\omega}^*) \) for non-OOH components emphasise the importance of direct effects. Nevertheless, we caution that this is just one numerical example for interpreting the results. Indeed, applying different restrictions and starting values for the minimisation procedure can deliver different parameter estimates that replicate the main treatment effects from Table 1.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(\mu^{\text{ooh}})</th>
<th>(\mu^{\text{other}})</th>
<th>(\sigma_1^2)</th>
<th>(\sigma_2^2)</th>
<th>(\sigma_1^2,T_1)</th>
<th>(\sigma_1^2,T_2)</th>
<th>(\sigma_1^2,T_3)</th>
<th>(\sigma_1^2,T_4)</th>
<th>(\sigma_2^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting values</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Estimated values</td>
<td>3.95</td>
<td>3.95</td>
<td>0.54</td>
<td>0.5</td>
<td>1.30</td>
<td>2.22</td>
<td>11.99</td>
<td>1.93</td>
<td>4.04</td>
</tr>
</tbody>
</table>

416. “Heterogeneous household responses to energy price shocks, by G. Peersman and J. Wauters, Research series, October 2022.

