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Abstract 
 
Sequential Monte Carlo (SMC) methods are widely used for filtering purposes of non-linear 

economic or financial models. Nevertheless the SMC scope encompasses wider applications such 

as estimating static model parameters so much that it is becoming a serious alternative to Markov-

Chain Monte-Carlo (MCMC) methods. Not only SMC algorithms draw posterior distributions of static 

or dynamic parameters but additionally provide an estimate of the normalizing constant. The 

tempered and time (TNT) algorithm, developed in the paper, combines (off-line) tempered SMC 

inference with on-line SMC inference for estimating many slightly different distributions. The method 

encompasses the Iterated Batch Importance Sampling (IBIS) algorithm and more generally the Re-

sample Move (RM) algorithm. Besides the number of particles, the TNT algorithm self-adjusts its 

calibrated parameters and relies on a new MCMC kernel that allows for particle interactions. The 

algorithm is well suited for efficiently back-testing models. We conclude by comparing in-sample 

and out-of-sample performances of complex volatility models. 
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1 Introduction

Sequential Monte Carlo (SMC) algorithm is a simulation-based procedure used in Bayesian

framework for drawing distributions. Its core idea relies on an iterated application of the

importance sampling technique to a sequence of distributions converging to the distribution

of interest1. For many years, on-line inference was the most relevant applications of SMC

algorithms. Indeed, one powerful advantage of sequential filtering consists in being able to

update the distributions of the model parameters in light of new coming data (hence the term

on-line) allowing for important time saving compared to off-line methods such as the popular

Markov-Chain Monte-Carlo (MCMC) procedure that requires a new estimation based on all

the data at each new observation entering in the system. Other SMC features making it

very interesting are an intuitive implementation based on the importance sampling technique

(Geweke (1989), Smith and Gelfand (1992) and Gordon, Salmond, and Smith (1993)) and a

direct computation of the marginal likelihood (i.e. the normalizing constant of the distribu-

tion, see e.g. Chib, Nardari, and Shephard (2002)).

Recently, the SMC algorithms have been applied to inference of static parameters (field in

which the MCMC algorithm excels). Neal (1998) provides a relevant improvement in this

direction by building a SMC algorithm, named annealed importance sampling (AIS), that

sequentially evolves from the prior distribution to the posterior distribution using a tem-

pered function, which basically consists in gradually introducing the likelihood information

into the sequence of distributions by means of an increasing function. To preclude particle

degeneracies, he uses MCMC kernels at each SMC iteration. Few years later, Chopin (2002)

proposes an Iterated Batch Importance Sampling (IBIS) SMC algorithm, a particular case of

the Re-sample Move (RM) algorithm of Gilks and Berzuini (2001), which sequentially evolves

over time and adapts the posterior distribution using the previous approximate distribution.

Again, an MCMC move (and a re-sampling step) is used for diversifying the particles. The

SMC sampler (see Del Moral, Doucet, and Jasra (2006)) unifies, among others, these SMC

algorithms in a theoretical framework. It is shown that the methods of Neal (1998) and

Gilks and Berzuini (2001) arise as special cases with a specific choice of the ’backward kernel

function’ introduced in their paper. These researches have been followed by empirical works

(see Jasra, Stephens, and Holmes (2007),Jasra, Stephens, Doucet, and Tsagaris (2011) and

1whereas the sequence does not have to evolve over the time domain
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Jeremiah, Sisson, Marshall, Mehrotra, and Sharma (2011)) where it is demonstrated that the

SMC mixing properties often dominate MCMC methods based on a single Markov-chain.

A relevant drawback of the SMC samplers lies in the many user-defined parameters which can

be difficult to tune for non-experts. Jasra, Stephens, Doucet, and Tsagaris (2011) develop an

adaptive SMC sampler that exploits the information of the history of the samples to auto-

matically compute the user-defined parameters on the fly. However the asymptotic properties

of such algorithms were not understood until recently. Del Moral, Doucet, and Jasra (2012)

and Beskos, Jasra, and Thiery (2013) have done many progress in this area, providing a the-

oretical justification for a class of adaptive SMC methods2. Nowadays papers are devoted to

build self-adapting SMC samplers by automatically tuning MCMC kernels (e.g. Fearnhead

and Taylor (2013)), by marginalizing the state vector (in a state space specification) using the

particle MCMC framework (e.g. Fulop and Li (2013) and Chopin, Jacob, and Papaspiliopou-

los (2013)), to construct efficient SMC samplers for parallel computations (see Durham and

Geweke (2012)) or to simulate from complex multi-modal posterior distributions (e.g. Herbst

and Schorfheide (2012)).

In this paper, we are interested in Bayesian settings where many estimations of slightly dif-

ferent parameter distributions are required such as for testing the forecast ability of a model.

For example, in a model comparison context the main methodology consists in repeating esti-

mations of the parameters given an evolving number of observations. In circumstances where

the Bayesian parameter estimation is highly demanding as it is usually the case for complex

models and where the number of available observations is huge, this iterative methodology

can be too burdensome. For instance, Markov-Switching (MS) GARCH models, used in the

empirical applications, may require several hours for one MCMC estimation (e.g. Bauwens,

Dufays, and Rombouts (2013)). Recursive forecast exercise on many observations is there-

fore out of reach. In order to easily compare models, we provide a generic SMC algorithm

that reduces the time requirement compared to MCMC methods by using previous poste-

rior parameter distributions in order to estimate the next one, that automatically tunes the

tempered function exhibited in the AIS algorithm and that limits the particle degeneration

2especially covering the adaptive Metropolis MCMC kernel and the adaptive tempered function of Jasra,

Stephens, Doucet, and Tsagaris (2011).
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observed in SMC algorithms evolving through time. The proposed tempered and time (TNT)

algorithm, based on the SMC sampler, exhibits the AIS, the IBIS and the RM samplers as

particular cases. It innovates by switching over tempered and time domains for estimating

posterior distributions. For example, it firstly iterates from the prior to the posterior distri-

butions by means of a sequence of tempered posterior distributions. It then updates in the

time dimension the slightly different posterior distributions by sequentially adding new obser-

vations, each SMC step providing all the forecast summary statistics relevant for comparing

models. The TNT algorithm combines the tempered approach of Neal (1998) with the IBIS

algorithm (IBIS) of Chopin (2002) if the model parameters are static or with the RM method

of Gilks and Berzuini (2001) if their support evolves with the SMC updates. Since all these

methods are built on the same SMC steps (re-weighting, re-sampling and rejuvenating) and

the same SMC theory, the combination is achieved without efforts.

The proposed methodology exhibits several advantages over numerical alternatives :

• SMC algorithms that directly iterate on time domain (Gilks and Berzuini (2001) and

Chopin (2002)) sometimes exhibit high particle discrepancies. Although the problem is

more acute for model where the parameter space evolves through time, it remains an

issue for models with static parameter at the very first SMC steps. To quote Chopin

(2002) (p 546) :

Note that the particle system may degenerate strongly in the very early stages,

when the evolving target distribution changes the most[...].

The combination of off-line/on-line SMC algorithms allows for limiting this particle dis-

crepancies observed at the early stage since the first estimated posterior distribution

is achieved by off-line method taking into account more than a few observations. One

advantage of using a sequence of tempered distributions to converge to the posterior

distribution consists in the number of SMC steps that can be used. Compared to SMC

algorithms that directly iterate on time domain where the sequence of distributions is

obviously defined by the number of data, the tempered approach allows for choosing

this sequence of distribution and for targeting the posterior distribution of interest by

using as much bridging distributions as needed. Moreover, thanks to the unified SMC

sampler theory, the proposed SMC algorithm preserves the appealing ’black box’ struc-
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ture of the IBIS one.

• Compared to MCMC approaches, after only one estimation, all the relevant quantities

for testing in-sample and out-of-sample performances of a model are computed (includ-

ing the marginal likelihood and the predictive marginal likelihood). Many estimators

have been proposed for computing the marginal likelihood from MCMC outputs (e.g.

Chib (1995), Chib and Jeliazkov (2001),Meng and Wong (1996)) but they all require

substantial coding efforts and are model-dependent which is not the case for SMC al-

gorithms. Lastly, the SMC algorithm is easily parallelized, a difficult feature to achieve

in MCMC frameworks.

A relevant drawback of SMC algorithms lies in the number of user-defined parameters to be

tuned for optimizing the estimation procedure. The paper comments on each parameter and

proposes generic solutions for all of them. Among the choices, a special attention is paid

to the MCMC kernel, which is the most critical one. We innovate by introducing into the

SMC technique the generic Metropolis algorithm called DREAM (Vrugt, ter Braak, Diks,

Robinson, Hyman, and Higdon (2009)) and its discrete extension, namely the D-DREAM

(see Bauwens, Dufays, and De Backer (2011)). Moreover, relying on the method of Atchadé

and Rosenthal (2005), we improve the DREAM proposal distributions by adapting the size

of the jump from one SMC iteration to another. By doing so, we also solve the issue of the

number of MCMC moves at each SMC step.

As empirical exercises, we study stationary and non-stationary volatility models and look

at their forecast abilities on the S&P 500 daily percentage returns. We emphasize that

change-point (CP-) GARCH models are easily inferred using the TNT samplers. Furthermore,

we document a Bayesian estimation of the (Discrete) Markov-switching Multifractal (MSM)

model (see Calvet and Fisher (2004)). To our knowledge, MSM models are uniquely estimated

using the maximum likelihood technique or the generalized method of moments (see Lux

(2006)). While the former is limited by the number of latent factors involved in the model,

the latter does not produce accurate estimates. By moving to the Bayesian framework, we

rule out these restrictions. The application compares the GARCH (Bollerslev (1986)), the

CP-GARCH process with the MSM model.
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The paper is organized as follows. Section 2 presents the SMC algorithm as well as its

theoretical derivation. We then show on simulations the desirable properties of the proposed

method compared to SMC alternatives in section 3. Finally we study the MSM forecast

performances compared to GARCH and CP-GARCH models in section 4. Section 5 concludes.

2 Off-line and On-line inferences

We first theoretically and practically introduce the tempered and time (TNT) framework. To

ease the discussion, let consider a standard state space model:

yt = f(θ, st, ωt) (1)

st = g(θ, st−1, vt) (2)

where st is a random variable driven by a Markov chain and the functions f(-) and g(-) are

deterministic given their arguments. The observation yt belongs to the set y1:T = {y1, ..., yT }

with T denoting the sample size and is assumed to be independent conditional to the state st

and θ with distribution f(yt|θ, st). The innovations ωt and vt are mutually independent and

stand for the noise of the observation/state equations. The model parameters included in θ

do not evolve over time (i.e. they are static). Let denote the set of parameters at time t by

xt = {θ, s1:t} defined on the measurable space Et.

We are interested in estimating many posterior distributions starting from π(xτ |y1:τ ), where

τ << T , until T . The SMC algorithm approximates these posterior distributions with

a large (dependent) collection of M weighted random samples {W i
t , x

i
t}Mi=1 where W i

t >

0 and
∑M

i=1W
i
t = 1 such that as M →∞, the empirical distribution converges to the pos-

terior distribution of interest, meaning that for any π(xt|y1:t)-integrable function g : Et → <

:
M∑
i=1

W i
t g(xit)→

∫
Et

g(xt)π(xt|y1:t)dxt almost surely.

The TNT method combines an enhanced Annealed Importance sampling3 (AIS, see Neal

(1998)) with the Re-sample Move (RM) SMC inference of Gilks and Berzuini (2001)4. For

3enhanced in the sense that the AIS incorporates a re-sampling step
4The IBIS algorithm being a particular case.
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building the TNT algorithm, we rely on the theoretical paper of Del Moral, Doucet, and Jasra

(2006) that unifies the two SMC inferences into one SMC framework called ’SMC sampler’.

The TNT algorithm first estimates an initial posterior distribution, namely π(xτ |y1:τ ), by an

enhanced AIS (E-AIS) algorithm and then switches from the tempered domain to the time do-

main and sequentially updates the approximated distributions from π(xτ |y1:τ ) to π(xT |y1:T )

by adding one by one the new observation. As discussed in section 2.3, the other domain

change (from time to tempered function) also exhibits some advantages. The TNT algorithm

therefore switches over these two domains during the entire inference. We now begin by

mathematically deriving the validity of the SMC algorithms under the two different domains

and by showing that they are particular cases of the SMC sampler. The practical algorithm

steps are given afterward (see subsection 2.3).

2.1 E-AIS : the tempered domain

The first phase, carried out by an E-AIS, creates a sequence of probability measures {πn}pn=0

that are defined on measurable spaces {En, ξn}, where En = En+1 = E 3 xτ , n ∈ {0, 1, ..., p}

is a counter and does not refer to ’real time’, p denotes the number of posterior distribution

estimations and πp coincides with the first posterior distribution of interest π(xτ |y1:τ ). The se-

quence distribution, used as bridge distributions, is defined as πn(xn|y1:τ ) = γ(y1:τ |xn)φ(n)f(xn)/Zn

where Zn =
∫
E γ(y1:τ |xn)φ(n)f(xn)dxn denotes the normalizing constant, γ(y1:τ |xn) and f(xn)

respectively are the likelihood function and the prior density of the model. Through an in-

creasing function φ(n) respecting the bound conditions φ(0) = 0 and φ(p) = 1, the E-AIS

artificially builds a sequence of distributions that converges to the posterior distribution of

interest.

Remark 1: The E-AIS makes up a sequence of random variables {xn}pn=0 that exhibit the

same support E also shared by xτ . The random variable xτ coincides with xp since φ(p) = 1.

The E-AIS is merely a sequential importance sampling technique where the draws of a pro-

posal distribution ηn with MCMC kernel combinations are used to approximate the next

posterior distribution πn+1, the difficulty lying in specifying the sequential proposal distri-

bution. Del Moral, Doucet, and Jasra (2006) theoretically develop a coherent framework for
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helping to choose a generic sequence of proposal distributions.

In the SMC sampler framework, we augment the support of the posterior distribution ensuring

that the targeted posterior distribution marginally arises :

π̃n(x1:n) = πn(xn)
n∏
k=2

Lk(xk−1|xk)

=
γn(xn)

Zn

n∏
k=2

Lk(xk−1|xk)

where γn(xn) = γ(y1:τ |xn)φ(n)f(xn), Zn =
∫
E γ(y1:T |xn)φ(n)f(xn)dxn is the normalizing con-

stant, and Lk(xk−1|xk) is a backward MCMC kernel such that
∫
E Lk(xk−1|xk)dxk−1 = 1.

By defining a sequence of proposal distributions as

ηn(x1:n) = f(x1)
n∏
k=2

Kk(xk|xk−1),

where Kk(xk|xk−1) is an MCMC kernel with stationary distribution πk such that it verifies

πk(xk) =
∫
EKk(xk|xk−1)πk(xk−1)dxk−1, we derive a recursive equation of the importance

weight :

wn(x1:n) =
γn(xn)

∏n
k=2 Lk(xk−1|xk)

Znf(x1)
∏n
k=2Kk(xk|xk−1)

= wn−1(x1:n−1)
Zn−1γn(xn)Ln(xn−1|xn)

Znγn−1(xn−1)Kn(xn|xn−1)
.

For a smoothly increasing tempered function, we can argue that πn−1 will be close to πn. We

therefore define the backward kernel by detailed balance argument as

Ln(xn−1|xn) =
πn(xn−1)

πn(xn)
Kn(xn|xn−1). (3)

It gives the following weights :

wn(x1:n) = wn−1(x1:n−1)
Zn−1γn(xn−1)

Znγn−1(xn−1)
(4)

∝ wn−1(x1:n−1)γ(y1:τ |xn−1)φn−φn−1

The normalizing constant Zn is approximated as

Zn
Zn−1

≈
M∑
i=1

W i
n−1

γn(xn−1)

γn−1(xn−1)
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where W i
n−1 = wn−1(xi1:n−1)/

∑M
j=1wn−1(xj1:n−1), i.e. the normalized weight.

The E-AIS requires to tune many parameters : an increasing function φ(n), MCMC kernels

of invariant distribution πn(.), a number of particles M , of iterations p, of MCMC steps J .

Tuning these parameters can be difficult. Some guidance are given in Herbst and Schorfheide

(2012) for DSGE models. For example, they propose a quadratic tempered function φ(n). It

slowly increases for small values of n and the step becomes larger and larger as n tends to

p. In this paper, the TNT algorithm generically adapts the different user-defined parameters

and belongs to the class of adaptive SMC algorithms. It automatically adjusts the tempered

function with respect to an efficiency measure as it was proposed by Jasra, Stephens, Doucet,

and Tsagaris (2011). By doing so, we preclude the difficult choice of the function φ(n) and

the number of iteration p. The number of MCMC steps J will be controlled by the accep-

tance rate exhibited by the MCMC kernels. The choice of MCMC kernels and the number of

particles are discussed later (see section 2.5).

2.2 The Re-sample Move algorithm : the time domain

Once we have a set of particles that approximates the first posterior distribution of interest

π(xτ |y1:τ ), a second phase takes place. Firstly, let assume that the support of xt does not

evolve over time (i.e. xt ∈ E ∀ t). In this context, the SMC sampler framework shortly

reviewed here for the tempered domain still applies. Let define the following distributions :

πt(xt) = π(xt|y1:t)

π̃t(x1:t) = πt(xt)
t∏

k=2

Lk(xk−1|xk)

ηt(x1:t) = f(x1)

t∏
k=2

Kk(xk|xk−1)

Lk(xk−1|xk) =
πk(xk−1)

πk(xk)
Kk(xk|xk−1)

Then the weight equation of the SMC sampler are equal to :

wt(x1:t) = wt−1(x1:t−1)
πt(xt−1)

πt−1(xt−1)
(5)
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which is exactly the weight equation of the IBIS algorithm (see Chopin (2002), step 1, page

543).

Let now consider the more difficult case where a subset of the support of xt evolves with t

such as xt = {xt−1, st} = {θ, s1:t−1, st} (see state space model equations (1),(2)) meaning that

∀t ∈ [1, T ], xt ∈ Et and Et−1 ⊂ Et. The previous method cannot directly be applied (due to

the backward kernel) but with another choice of the kernel functions, the SMC sampler also

operates. Let define the following distribution :

πt(xt) = π(xt|y1:t) (6)

π̃t(x1:t, x
∗
2:t) = πt(xt)

t∏
k=2

Lk(xk−1, x
∗
k|xk) (7)

ηt(x1:t, x
∗
2:t) = f(x1)

t∏
k=2

K̃k(xk, x
∗
k|xk−1) (8)

K̃k(xk, x
∗
k|xk−1) = q̃k(x

∗
k|xk−1)Kk(xk|x∗k) (9)

Lk(xk−1, x
∗
k|xk) = qk(xk−1|x∗k)Kk(x

∗
k|xk) (10)

Kk(x
∗
t |xt) =

πk(x
∗
k)Kk(xk|x∗k)
πk(xk)

by detailed balance argument (11)

To deal with the time-varying dimension of xt, we augment the support of the artificial se-

quence of distributions by new random variables (see x∗2:t in equation (7)) while ensuring that

the posterior distribution of interest πt(xt) marginally arises. Sampling from the proposal

distribution ηt(x1:t, x
∗
2:t) is achieved by drawing from the prior distribution and then by se-

quentially sampling from distributions K̃k(xk, x
∗
k|xk−1), which is composed by a user-defined

distribution q̃k(x
∗
k|xk−1) and an MCMC kernel exhibiting πk(xk) as invariant distribution.

Under this framework, the weight equation of the SMC sampler becomes :

wt(x1:t, x
∗
2:t) = wt−1(x1:t−1, x

∗
2:t−1)

πt(x
∗
t )qt(xt−1|x∗t )

πt−1(xt−1)q̃t(x∗t |xt−1)
(12)

By setting the distributions qt(xt−1|x∗t ) = δ{xt−1=θ∗,s∗1:t−1}, where δi denotes the probability

measure concentrated at i, and q̃t(x
∗
t |xt−1) = νt(s

∗
t |xt−1)δ{θ∗,s∗1:t−1=xt−1}, we recover the weight

equation of Gilks and Berzuini (2001) (see eq. (20), page 135) :

wt(x1:t, x
∗
2:t) = wt−1(x1:t−1, x

∗
2:t−1)

πt(xt−1, s
∗
t )

πt−1(xt−1)νt(s∗t |xt−1)
(13)

9



Like in Gilks and Berzuini (2001), only the distribution νt(.) has to be specified. For example,

it can be set either to the prior distribution or the full conditional posterior distribution (if

the latter exhibits a closed form).

Remark 2: The division π(xt|y1:t)
π(xt−1|y1:t−1) appearing in weight equations ((5),(13)) can be reduced

to Zt−1

Zt
f(yt|xt, y1:t−1)f(st|xt−1) which highly limits the computational cost of the weights.

2.3 The TNT algorithm

The algorithm initializes the M particles using the prior distributions, sets each initial weight

{W i
0}Mi=1to W i

0 = 1
M and then iterates from n = 1, . . . , p, p+ 1, ..., p+ (T − τ) + 1 as follows

• Correction step: ∀i ∈ [1,M ], Re-weight each particle with respect to the nth posterior

distribution

– If in tempered domain ( n ≤ p ) :

w̃in = γ(y1:τ |xin−1)φ(n)−φ(n−1) (14)

– If in time domain ( n > p ) and the parameter space does not evolve over time (i.e.

En−1 = En) :

w̃in =
γ(y1:τ+n−p|xin−1)

γ(y1:τ+n−p−1|xin−1)
= f(yτ+n−p|xin−1, y1:τ+n−p−1) (see remark 2) (15)

– If in time domain ( n > p ) and the parameter space increases (i.e. En−1 ⊂ En) :

Set xin = {xin−1, s
i
n} with sin ∼ νn(.|xin−1).

w̃in =
γ(y1:τ+n−p|xin)f(xin)

γ(y1:τ+n−p−1|xin−1)f(xin−1)νn(sin|xin−1)
(16)

Compute the unnormalized weights : W̃ i
n = w̃inW

i
n−1.

Normalize the weights : W i
n = W̃ i

n∑M
j=1 W̃

j
n

• Re-sampling step: Compute the Effective Sample Size (ESS) as

ESS =
1∑M

i=1(W i
n)2

10



If ESS < κ where κ is a user-defined threshold then re-sample the particles and reset

the weight uniformly.

• Mutation step: ∀i ∈ [1,M ], run J steps of an MCMC kernel with invariant distribution

πn(xn|y1:τ ) for n ≤ p and π(xτ+n−p|y1:τ+n−p) for n > p.

Remark 3: According to the algorithm derivation, note that the mutation step is not required

at each SMC iteration.

When the parameter space does not change over time (i.e. tempered or time domains with

En−1 = En), the algorithm reduces to the SMC sampler with a specific choice of the back-

ward kernel (see equation (3), more discussions in Del Moral, Doucet, and Jasra (2006)) that

implies that πn−1(.) must be close to πn(.) for non-degenerating estimations. The backward

kernel is introduced for avoiding the choice of an importance distribution at each iteration

of the SMC sampler. This specific choice of backward kernel does not work for model where

the parameter space increases with the sequence of posterior distributions (hence the use of

a second weighting scheme when n > p, see equation (12)) but the algorithm also reduces to

a SMC sampler with another backward kernel choice (see (10)). In empirical applications,

we first estimate an off-line posterior distribution with fixed parameters and then by just

switching the weight equation, we sequentially update the posterior distributions by adding

new information. This two phases preclude the particle degeneration that may occur at the

early stage of the IBIS algorithm (when the splitting time τ >> 0). The tempered function

φ(n) allows for converging to the first posterior distribution targeted as slowly as we want.

Indeed, as we are not constraint by the time domain, we can sequentially iterate as much

as needed to get rid of degeneracy problems. The choice of the tempered function φ(n) is

therefore relevant. In the spirit of a black-box algorithm as is the IBIS one, the section 2.4

shows how the TNT algorithm automatically adapts it at each SMC iteration.

Switching from the time to the tempered domains can also be beneficial. During the second

phase (i.e. updating the posterior distribution through time), one may observe high parti-

cle discrepancies especially when the space of the parameters evolves over time5. In that

5Theorem 1 in Chopin (2002) ensures that with a sufficiently large number of particles M , any relative

precision of the importance sampling can be obtained if the number of observations already covered is large
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case, instead of directly approximate the posterior distribution, we could rather apply the

importance weight on a tempered version of the targeted posterior distribution. Then, we

update the tempered posterior distribution by weight equations (14) until reaching the pos-

terior distribution of interest. Since all the three weight equations belong to the same SMC

sampler framework, one can switch from one domain to the other without any coding effort.

In practice, once the algorithm lies in phase two, at each correction step, we maximize the

effective sample size with respect to a tempered value φ̄. More precisely, the correction step

becomes (assuming for example that the parameter space does not evolve over time) :

1. Find φ̄ = argmaxφ̄
1∑M

i=1(W i
n)2

where W i
n = W̃ i

n∑M
j=1 W̃

j
n

is the normalized weights and the

unnormalized W̃ i
n depends on φ̄ as

W̃ i
n = W i

n−1w̃
i
n =

γ(y1:τ+n−p|xin−1)φ̄

γ(y1:τ+n−p−1|xin−1)
(17)

2. Compute the normalized weights {W i
n}Mi=1 under the value of φ̄.

For any φ̄ < 1, the sampler approximates a posterior distribution in the tempered domain.

The weight equation (17) is compatible with the E-AIS algorithm since the targeted distribu-

tion is γ(y1:τ+n−p|xn)φ̄f(xn)/Zn where Zn stands for the normalizing constant. However the

efficiency gains of this strategy can be small since only the numerator of the weight equation

(17) depends on φ̄. In practice, one can run an entire E-AIS on the data y1:τ+n−p when a

degeneracy issue is detected (i.e. the ESS falls below a user-defined value κ1 < κ) and cannot

be undertaken using weight equation (17). The adaption of the tempered function (discussed

in the next section) makes the E-AIS very fast since it reduces the number of iteration p at its

minimum given the ESS threshold κ. Controlling for degeneracy issue is therefore automated

and a minimal number of effective sample size is ensured at each SMC iteration.

2.4 Adaption of the tempered function

Previous works on SMC samplers usually provide a tempered function φ(n) obtained by

empirical trials6, making these functions model-dependent. Jasra, Stephens, Doucet, and

enough.
6a piecewise cooling linear function for Del Moral, Doucet, and Jasra (2006) and a quadratic function for

Herbst and Schorfheide (2012).
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Tsagaris (2011) propose a generic choice of φ(n) that only requires a few more codes. The

E-AIS correction step (see equation (14)) of iteration n is modified as follows

1. Find φ̄n such that

φ̄n = argmaxφ̄n
1∑M

i=1(W i
n)2

with κ >
1∑M

i=1(W i
n)2

Where κ is the threshold of the re-sampling step, W i
n = W̃ i

n∑M
j=1 W̃

j
n

is the normalized

weights and the unnormalized W̃ i
n depends on φ̄n as

w̃in =
γ(y1:τ |xin−1)φ̄n

γ(y1:τ |xin−1)φ̄n−1

2. Compute the normalized weights {W i
n}Mi=1 under the value of φ̄n.

Roughly speaking, we find the value φ̄n that maximizes the effective sample size (ESS) crite-

rion while keeping it just below the threshold κ of the re-sampling step.

This adaption implies that at each E-AIS iteration, the ESS is always ensured to be close to

κ, a property that was not at all ensured for fixed ex-ante tempered functions. Note also that

the algorithm applies the re-sampling step at each iteration and that the number of them

are reduced to a minimum with respect to the choice of κ. Because the tempered function is

adapted on the fly using the SMC history, the usual SMC asymptotic results do not apply.

Del Moral, Doucet, and Jasra (2012) and Beskos, Jasra, and Thiery (2013) provide asymp-

totic results by assuming that the adapted tempered function converges to the optimal one

(if it exists).

2.5 Choice of MCMC kernels

The MCMC kernel is the most computational demanding step of the algorithm and determines

the posterior support exploration, making its choice very relevant. Chopin (2002) emphasizes

that the IBIS algorithm is designed to be a true ’black box’ (i.e. whose the sequential steps

are not model-dependent), reducing the task of the practitioner to only supply the likelihood

function and the prior densities. For this purpose, a natural choice of MCMC kernel is the
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Metropolis-Hastings with an independent proposal distribution whose summary statistics are

derived using the particles of the previous SMC step and the weight of the current step. The

IBIS algorithm uses an independent normal proposal. It is worth noting that this ’black box’

structure is still applicable in this framework that combines SMC iterations on tempered and

time domains.

Nevertheless the independent Metropolis-Hastings kernel may perform poorly at the early

stage of the algorithm if the parameter posterior distribution is well behaved and at any

time otherwise. We rather propose to use an adaptive Metropolis algorithm of random walk

type (which can be theoretically justified by Beskos, Jasra, and Thiery (2013)) where the

symmetric distribution is characterized by particles of the n − 1 SMC iteration and a fixed

(at step n) scale parameter cn−1. Well-suited for uni- and multi-modal distributions, the

symmetric DiffeRential Evolution Adaptive Metropolis (DREAM) distribution of Vrugt, ter

Braak, Diks, Robinson, Hyman, and Higdon (2009) that is fully adapted has been proven to

dominate most of other RW alternatives. Relying on multiple MCMC, the DREAM proposal

updates the parameters of one Markov-chain by using a combination of the locations of the

other Markov-chains. This method can be transferred to the TNT framework as follows :

1. Propose new parameters x̃i for particle i at SMC iteration n, according to the rule

(omitting subscripts referring to SMC iterations) :

x̃i = xi + γ(δ, d)(

δ∑
g=1

xr1(g) −
δ∑

h=1

xr2(h)) + ζ, (18)

with ∀g, h = 1, 2, ..., δ, i 6= r1(g), r2(h); r1(.) and r2(.) stand for random integers

uniformly distributed on the support [1,M ]−i and it is required that r1(g) 6= r2(h) when

g = h; ζ ∼ N(0, η2
xI); and d is the number of elements in x. Since we take advantage of

the locations of multiple particles, η2
x is set to a small value and its presence ensures the

ergodicity of the MCMC algorithm. In the seminal paper, γ(δ, d) is chosen as 2.38/
√

2δd

since it constitutes the asymptotic optimal choice for normal posterior distribution

as demonstrated in Roberts and Rosenthal (2001).7 As the posterior distribution is

rarely Normal, we prefer adapting it from one SMC iteration to another so as the scale

parameter is fixed during the entire MCMC moves of each SMC step. The adapting

procedure is detailed below.

7in the sense of M →∞
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2. Accept the proposed x̃i according to a Metropolis ratio since the proposal distribution

is symmetric.

In the empirical application, the DREAM procedure is used for continuous as well as for

discrete random variables. For the latter case, we rely on the discretized version of the

DREAM algorithm developed in Bauwens, Dufays, and De Backer (2011). Only the equation

(18) slightly changes to account for discrete parameters. The modification is given by

x̃i = xi + round[γ(δ, d)(

δ∑
g=1

xr1(g) −
δ∑

h=1

xr2(h)) + ζ], (19)

where the round function stands for the nearest integer operator.

Two relevant issues should be discussed. First, the MCMC kernel makes interacting the

particles, which rules out the desirable parallel property of the SMC. To keep this advantage,

we apply the kernel on subsets of particles instead of on all the particles and we perform

paralelization between the subsets. Secondly and more importantly, the SMC theory derived

in Section 2 does not allow for particle interaction. Proposition 1 ensures that the TNT

sampler also works under a DREAM-type MCMC kernel.

Proposition 1. Consider a SMC sampler with a given number of particles M and MCMC

kernels allowing for interacting particles via the proposal distribution (18). Then, it yields a

standard SMC sampler with particle weights given by equation (4).

Proof. See Appendix A.

Adaption of the scale parameter γ(δ, d)

Since the chosen backward MCMC kernel in the algorithm derivation implies that the con-

secutive distributions approximated by the TNT sampler are very similar, we can analyze the

mixing properties of the previous MCMC kernel to adapt the scale parameter cn−1. Atchadé

and Rosenthal (2005) present a simple recursive algorithm to fix the value cn−1 in order to

achieve a specified acceptance rate in an MCMC framework. At the end of the n − 1 SMC

step, we adapt the scale parameter cn−1 (initialized at one) as follows :

cn−1 = p(cn−2 +
αn−1 − αtargeted

(n− 1)0.6
) (20)
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where the function p(.) is such that p(c) = c if c ∈ [A0, A1], p(c) = A0 if c < A0 and p(c) = A1

if c > A1, the parameter αn−1 stands for the acceptance rate of the MCMC kernel of the n−1

SMC step and αtargeted is a user-defined acceptance rate. The function p(.) precludes the de-

generacy of the recursive equation and if the optimal scale parameter lies in the compact set

[A0, A1], the equation will converge to it (in an MCMC context). In the empirical exercises,

we fix the rate αtargeted to 1
3 implying that every three MCMC iterations, all the particles

have been approximately rejuvenated. The number of MCMC iteration J is therefore fixed

to 3. It is worth emphasizing that the denominator (n− 1)0.6 has been chosen as proposed in

Atchadé and Rosenthal (2005) but its presence, which ensures the ergodicity property in an

MCMC context, is not relevant in our SMC framework since at each rejuvenation step, the

variance ci is fixed for the entire MCMC move.

When the parameter space evolves over time, the MCMC kernel can become model dependent

since sampling the state vector using a filtering method is often the most efficient technique

in terms of mixing. In special cases where the forward-backward algorithm (Rabiner (1989))

or the Kalman filter (Kalman (1960)) operate, the state can be filtered out. By doing so, we

come back to the framework with static parameter space. For non linear state space model,

recent works of Chopin, Jacob, and Papaspiliopoulos (2013) and Fulop and Li (2013) rely

on the particle MCMC framework of Andrieu, Doucet, and Holenstein (2010) for integrating

out the state vector. We believe that switching from the tempered domain to the time one

as well as employing the DREAM MCMC kernel could even more increase the efficiency of

these sophisticated SMC samplers. For example, the particle discrepancies of the early stage

inherent to the IBIS algorithm is present in all the empirical simulations of Fulop and Li

(2013) whereas with the TNT sampler, we can ensure a minimum ESS bound during the

entire procedure.

3 Simulations

We carry out two simulations for comparing the performance of the TNT algorithm to the

standard on-line SMC algorithms. To this purpose, we consider two volatility models : the

standard generalized auto-regressive conditional heteroskedastic (GARCH) model of Boller-

slev (1986) (with static parameters) and the Discrete Markov-switching Multifractal (MSM)
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model (see Calvet and Fisher (2004)) belonging to the stochastic volatility models (exhibiting

dynamic parameters). These two models are non-trivially estimated but remain tractable by

maximum likelihood principle to provide comparison with the maximum likelihood estimates.

Table 1 reviews the user-defined parameters that are employed in all the next simulations.

Parameters TNT algorithm IBIS and RM SMC

Threshold ESS κ 3M
4

3M
4

Sec. threshold ESS κ1
M
2 —

Nb. Particles M [200, 500, 1.000, 10.000] [200, 500, 1.000, 10.000]

Acc. rate αtargeted
1
3

1
3

Nb. MCMC J 3 3

Table 1: Chosen parameters for the standard sequential SMC and the TNT algorithms.

3.1 Static parameters : The GARCH model

Let assume a financial time series y1:T = {y1, ..., yT }. The GARCH model is specified as

follows :

yt = µ+ εt with εt|y1:t−1 ∼ i.i.d. N(0, σ2
t ) (21)

σ2
t = ω + αε2t−1 + βσ2

t−1 (22)

where the mean parameter µ ∈ < and the GARCH parameters ω ∈ <+,α, β ∈ [0, 1]2. We

impose the standard stationary condition α + β < 1 through the prior distributions8 and

gather the parameters in the set θ = {µ, ω, α, β}.

One simulated series of 3000 observations from the data generating process (DGP) docu-

mented in table 2 will be used to compare the different numerical methods. We perform an

exercise by starting at τ = 1500 and by adding one by one the other observations.

In Table 3, we compare the TNT algorithms with the IBIS one. It documents the number

of particles, the maximum auto-correlation time (Act., computed by Batch means (see Geyer

8µ ∼ N(0, 10), ω ∼ U [0, 1.5], α ∼ U [0, 0.3] and β|α ∼ U [0, 1− α].
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µ ω α β

0 0.1 0.07 0.9

Table 2: Data generating process of the GARCH model.

(1992))) on the GARCH parameters of the last SMC iteration, the elapsed time for com-

puting the first posterior distribution until the end (from τ = 1500 to 3000), the marginal

log-likelihood (MLL) estimators obtained for the entire set of observations and the average

of the acceptance rate observed at the end of each SMC iteration.

Regarding the auto-correlation times, all the SMC algorithms exhibit extremely low levels

which is one of the relevant advantages of these algorithms. Considering now the elapsed

time, the ’E-AIS with IBIS’ algorithm (meaning that it does not allow any switch back from

time to tempered domain) and the TNT one are clearly faster than the IBIS procedure. This

superior performance comes from the tempered domain used for estimating the first posterior

distribution. Not only starting by iterating on the tempered domain speeds up the estimation

procedure but also limits the particle deterioration since the first posterior distribution is di-

rectly targeted using all the available observations. To document this improvement, Figure 1a

shows the ESS of the IBIS algorithm from time one until time τ . This Figure should be put

in perspective with Figure 1b that clearly indicates no particle discrepancies and less SMC

iterations. The TNT algorithm furthermore allows for returning in the tempered domain for

keeping high the ESS level from one SMC step to another. The Figure 2 exhibits the value of

the tempered function φ for M = 1000 over the entire simulation but after the first E-AIS on

τ = 1500. We observe that the algorithm comes back to the tempered domain several times.

The cumulative gains in ESS are given in Table 3. Moving from time to tempered domain

highly increases the particle diversification. Keeping studying the Table 3, in term of MLL

estimations, the algorithms are equivalent. Finally, note that the adapting equation (20) for

obtaining a chosen acceptance rate performs very well. The average acceptance rate of each

SMC algorithm has reached the user-defined one.

We end this study on static parameter estimation by providing the ML estimates and their

respective standard deviations as well as the posterior means and the posterior deviations
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(a) (b)

Figure 1: ESS over SMC iterations of the IBIS algorithm (left) and the E-AIS (right) for
estimating the first posterior distribution of interest (τ = 1500 and M = 1000). For the
IBIS algorithm, several drops occur at the beginning of the sampler whereas the AIS method
controls the ESS level at each iteration.

Figure 2: Tempered values after the first E-AIS for a number of particle equal to 1000.

of the SMC methods based on the entire generated data. Table 4 displays the different

estimators. All the different methods lead to similar parameter values.
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Algorithms IBIS

Nb. Particles 200 500 1000 10000

Max. Act. 3.67 1.53 5.28 3.42

Elapsed time (in hour) 0.03 0.07 0.14 1.39

MLL -5957.78 -5957.80 -5957.83 -5957.87

Avg. Acc. rate 0.33 0.33 0.33 0.33

Algorithms E-AIS with IBIS

Nb. Particles 200 500 1000 10000

Max. Act. 8.03 3.49 2.72 7.09

Elapsed time (in hour) 0.02 0.04 0.08 0.76

MLL -5957.82 -5957.73 -5957.66 -5957.80

Avg. Acc. rate 0.32 0.32 0.32 0.32

Algorithms TNT

Nb. Particles 200 500 1000 10000

Avg. Max. Act. 1.29 7.11 4.04 2.29

Elapsed time (in hour) 0.02 0.04 0.08 0.76

MLL -5957.85 -5957.70 -5957.86 -5957.78

Cum. ESS Gain 26.41 51.67 183.75 1282.37

Avg. Acc. rate 0.31 0.30 0.32 0.32

Table 3: Summary statistics of the different SMC algorithms.
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µ ω α β

ML estimates

0.02 0.16 0.08 0.87

(0.03) (0.04) (0.01) (0.02)

IBIS estimates

0.02 0.19 0.09 0.86

(0.03) (0.05) (0.01) (0.03)

E-AIS with IBIS estimates

0.02 0.19 0.09 0.86

(0.03) (0.05) (0.01) (0.03)

TNT estimates

-0.01 0.19 0.09 0.86

(0.03) (0.05) (0.01) (0.03)

Table 4: Maximum likelihood estimates and their respective standard errors compared to the

parameter posterior mean of the SMC algorithms and their respective standard errors for

M = 10000.
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3.2 Dynamic parameters : The Discrete MSM Model

The univariate MSM model relies on k̄ first order Markovian processes where k̄ is determined

by model selection. These processes are combined with the unconditional variance of the

series to generate the variance dynamic. More precisely, defining a financial time series

y1:T = {y1, ..., yT }, the model is specified as follows :

yt = µ+ σ
k̄∏
i=1

M
1
2
i,tεt with εt ∼ i.i.d. N(0, 1) (23)

where the first-order Markovian processes are independently driven by the transition proba-

bilities :

Mi,t = Mi,t−1 with probability 1− γi

Mi,t ∼ M with probability γi

M denotes the shared stationary distribution of the Markov processes and satisfies the non-

restrictive assumption E(M) = 1 and E(M2) > 0 imposed by the fractal theory. It is usually

set to a discrete distribution or a Log-Normal one. Choosing a continuous distribution en-

hances the model flexibility but also renders unfeasible the estimation by Maximum Likelihood

(MLE). The model can still be estimated by particle filter (Calvet, Fisher, and Thompson

(2006)) and by Generalized Methods of Moments (see Lux (2006)). Lux investigated the Log-

Normal distribution and found no evidence with respect to the discrete distribution. This

paper focuses on the discrete one so the distribution M only counts two different states that

appear with equal probability: s1 = m0 and s2 = 2 −m0 where m0 is a random parameter.

The binomial distribution satisfies E(M) = 1 and E(M2) > 0 for any values of m0. To

identify the parameter as well as to ensure positiveness of the variance, the parameter m0

belongs to the set ]0, 1[ .

The transition probabilities γi that characterize different frequencies of the Markovian pro-

cesses are specified as

γi = 1− (1− γ1)b
i−1 ∀ 1 < i ≤ k̄

If b > 1, the probabilities grow with k and verify the inequalities: 0 ≤ γ1 ≤ . . . ≤ γk̄ ≤ 1. The

Markovian processes are thus generated from constraint transition probabilities and evolve
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at different frequencies. The frequencies ensure the long memory of the process yt in level as

k̄ →∞ (for a proof, see Calvet and Fisher (2004)).

The model only contains five parameters : the unconditional mean µ and variance σ2, the

parameter m0 of the discrete distribution M and the parameters {γk̄, b} that determine the

transition probabilities. However, the SMC algorithms will also include the k̄ latent factors

for easing the estimation, a technique called data augmentation. Therefore, the parameter

space increases over time and the IBIS algorithm is no longer practical.

To fully specify the model, the table 5 displays the prior distributions of the MSM parameters.

All the distributions are almost uninformative.

µ ∼ N(0,10) σ−2 ∼ G(3, 0.5) m0 ∼ U [0, 1]

γk̄ ∼ U[0,1] b ∼ U [1, 30]

Table 5: Prior Distributions of the MSM parameters. The distribution N(a, b) denotes the

normal distribution with expectation a and variance b, G(a, b) stands for the Gamma distri-

bution with density function : f(σ−2|a, b) = 1
Γ(a)baσ

−2(a−1)e−
1
σ2b and U [a, b] is the Uniform

distribution.

We simulate a time series of T = 1000 with DGP given by table 6. The exercise considers

parameter estimations from τ = 300 until the end of the sample. The MSM MCMC scheme

used in the SMC algorithms is documented in Appendix B where, as already mentioned, we

augment the parameter set with {Mi,1:T }k̄i=1 for easing the estimation as well as for being

able to estimate MSM models involving any number k̄ of Markovian processes. By doing so,

we improve over the ML approach of Calvet and Fisher (2004) which works for values of k̄

below or equal to 10.

µ σ2 m0 b γk̄ k̄

0 2 0.8 3 0.5 4

Table 6: Data generating process of the MSM model.
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In the context of evolving parameter space, the alternative to the E-AIS algorithm is the

RM one (see Gilks and Berzuini (2001), equivalent to apply the TNT algorithm on the time

domain only). Figure 3a shows the ESS criterion of the RM algorithm for estimating the

parameters of the data with τ = 300 (and a number of particles M = 1000). Two relevant

differences with Figure 3b should be put forward. Firstly, the RM algorithm requires many

more SMC iterations (300 compared to 14 for the E-AIS sampler). We also observe some

relevant ESS drops. For example, a minimum of 334 diversified particles is achieved at RM

iteration 209. For precluding such degeneracies, the RM algorithm should be run with more

particles.

Figure 3: ESS over SMC iterations of the RM algorithm (left) and the E-AIS (right) for
estimating the first posterior distribution of interest (τ = 300 and M = 1000). Sharp ESS
drops occur during the simulation.

We carry out a comparison between RM, E-AIS with RM and TNT algorithms on the MSM

data (with τ = 300 and T = 1000). As in the previous exercise, the E-AIS with RM algorithm

uses the E-AIS algorithm for estimating the first posterior distribution of interest and after-

ward, it applies the RM algorithm to update observation by observation the approximated

distribution. Figure 4 exhibits the ESS levels of each algorithm obtained during the simula-

tion with a number of particles equal to 1000. The TNT algorithm ensures that no ESS below

κ1 = 500 happens. If it is the case, an E-AIS is run in order to avoid this level of degeneracy.

For the two other algorithms, many relevant drops are depicted. At these iterations, the algo-

rithms only depend on a small set of particles for exploring the posterior distribution which

can sometimes results in misleading inferences. Consider now the Table 7 that documents the

following summary statistics : the number of particles used for the parameter estimation, the
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elapsed time in hours and the estimated MLL. For the TNT algorithm, we also document the

cumulative ESS gain due to switches to the tempered domain as well as the number of re-run

E-AIS sampler when the ESS should be below κ1. Looking at the elapsed time category,

the E-AIS with RM algorithm is the fastest SMC. It dominates the RM algorithm because

the first posterior distribution is obtained by tempered function instead of iterating on the

time domain. The TNT algorithm is slower than the two other SMC algorithms due to the

re-launch of the E-AIS sampler at several times in order to preclude degeneracy issues (see

Nb of E-AIS on the Table). Note that the cumulative ESS gain encourages the use of the

TNT algorithm since the levels are staggeringly high. Finally, the MLL estimates from all

the different methods are similar. Regarding the accuracy of the different methods, the Table

8 shows the MLE and the SMC parameter estimates given the entire data set. The SMC

algorithms exhibit accurate posterior means and standard deviations that are comparable to

the MLE.

(a) (b) (c)

Figure 4: Effective Sample Size over SMC iterations of the RM algorithm on Figure (a), of
the E-AIS combined with RM algorithm on Figure (b) and of the TNT algorithm on Figure
(c) .
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Algorithms RM

Nb. Particles 200 500 1000 10000

Elapsed time (in hour) 0.07 0.18 0.36 2.95

MLL -1757.00 -1755.25 -1755.89 -1756.22

Algorithms E-AIS with RM

Nb. Particles 200 500 1000 10000

Elapsed time (in hour) 0.05 0.15 0.31 2.78

MLL -1758.05 -1756.71 -1757.27 -1756.53

Algorithms TNT

Nb. Particles 200 500 1000 10000

Elapsed time (in hour) 0.10 0.22 0.41 4.15

MLL -1757.44 -1757.20 -1757.01 -1756.27

Cum. ESS Gain 709.81 1759.70 3414.57 41554.26

Nb of E-AIS 3 2 2 3

Table 7: Summary statistics of the different SMC algorithms for MSM data.
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µ σ2 m0 b γk̄

ML estimates

-0.01 1.95 0.78 3.76 1.00

(0.04) (0.10) (0.22) (1.48) (20.16)

RM estimates

-0.00 1.99 0.79 5.34 0.74

(0.04) (0.26) (0.05) (7.62) (0.18)

E-AIS with RM estimates

-0.01 1.99 0.79 4.64 0.74

(0.04) (0.28) (0.04) (7.03) (0.19)

TNT estimates

-0.01 1.98 0.80 5.16 0.77

(0.04) (0.27) (0.05) (7.31) (0.17)

Table 8: Maximum likelihood estimates and their respective standard errors compared to the

parameter posterior mean of the SMC algorithms and their respective standard errors for

M = 1000.
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4 Empirical applications

The TNT algorithm allows for comparing complex models through marginal likelihoods and

predictive marginal likelihoods. We propose to examine the predictive performances of the

MSM model in relation to the standard GARCH and the Change-point (CP-) GARCH ones.

The subsection (4.1) briefly describes the CP-GARCH specification while the next one (4.2)

focuses on model comparisons.

4.1 Change-point GARCH model

As alternative to the MSM model, we investigate the CP-GARCH model (see e.g. Bauwens,

Dufays, and De Backer (2011)) that allows for abrupt switching in the parameter values of

the GARCH model. We consider the following process :

yt = µ+ εt with εt|y1:t−1 ∼ N(0, σ2
t ) (24)

σ2
t = ωst + αstε

2
t−1 + βstσ

2
t−1 (25)

where st is a latent variable taking discrete values in [1,K + 1], with K being the number of

turning points, and is driven by a Markov-chain characterized by a transition matrix PCP :

PCP =


p1,1 1− p1,1 0 ... 0

0 p2,2 1− p2,2 ... 0

... ... ... ... ...

0 0 0 0 1


The parameter pi,j stands for the probability of moving from the state i to the state j. The

specification does not admit recurrent regimes and counts at most K+1 ones due to the

absorbing state at the end of the transition matrix. The number of structural breaks K is

determined by marginal likelihood.

The model exhibits a path dependence problem since the variance at a specific time t de-

pends on the lagged variance (which is unobservable and requires the entire path s1:t−1 to

be computed). In this context, the standard estimation procedure of Chib (1998) turns out

to be infeasible. For carrying out the estimation, we adapt the MCMC method of Bauwens,

Dufays, and De Backer (2011) to the TNT algorithm. The MCMC move alternates between

DREAM proposals for continuous parameters and the discrete version of it (given in equation
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(19)) for sampling the break date parameters. More details about the estimations are given

in appendix C.

The table 9 documents the prior distributions of the model parameters.

Mean parameter :

µ ∼ N(0,0.01)

GARCH parameters ∀i ∈ [1, 2] :

ωi ∼ U [0, 1] αi|βi ∼ U [0, 1− βi] βi ∼ U [0.5, 1]

Transition parameters ∀i ∈ [1, 2] :

{pi,i} ∼ Beta(ap = T, bp = 1)

Table 9: Prior Distributions of the CP parameters. The distribution N(a, b) denotes the

normal distribution with expectation a and variance b and U[a,b] stands for the uniform

distribution.

4.2 Model comparison on the S&P 500

The study bears on the S&P 500 daily percentage returns spanning from May 20, 1999 to April

25, 2011 (3000 observations). We estimate the different models using the TNT algorithm and

we fix the value τ = 1500 which controls the very first swing from the tempered to the time

domain. In the next subsections we detail the results obtained on the entire sample and then

we pay attention to the predictive performance of the different models from May 06, 2005

(1500th observation) by looking at the marginal log-likelihoods (MLLs) and the predictive

marginal likelihoods over time. The MSM model is estimated with a number of latent vectors

equal to 8 which is sufficient in financial applications (see Calvet and Fisher (2004), Lux

(2006)). The number of considered regimes for the CP-GARCH process goes up to 4.
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4.2.1 Results on the entire sample

Focusing on the whole sample and the MLL values of the different models, it appears that

the MSM model dominates the CP-GARCH model whatever the number of regimes. As em-

phasized by Table 10 that summarizes the MLLs, even the best CP-GARCH model (i.e. with

four regimes) performs poorly compared to the MSM one. The Graphic 5 shows the return

upper bound of the 95% confidence interval implied by two models as well as the detected

break dates for the CP-GARCH model with four regimes. The turning points occurring in

June 09, 2003, in February 22, 2007 and in March 12, 2007 can also be observed on the

Graphic by a change of volatility dynamics. The very short regime lasting one month in 2007

is characterized by a spectacular negative return that has not been seen since 2003 and puts

forward the CP-GARCH ability of capturing outliers.

CP-GARCH K=0 K=1 K=2 K=3 MSM model

MLL -4504.94 -4502.79 -4498.80 -4498.80 -4472.70

Table 10: S&P 500 daily percentage returns : MLL of the different models. The highest value

is bolded.

4.2.2 Model comparison over time

For the 1501 estimated posterior distributions (from π(xτ |y1:τ ) to π(xT |y1:T )), the TNT algo-

rithm provides an estimator of the MLL for each model. We can therefore observe the MLL

progress over the period. A sharp decrease means that the model cannot easily capture the

new observation. Figures 6 show the log-Bayes factors with respect to the GARCH model

for the best CP-GARCH and the MSM ones. We remind that the log-Bayes factor (BF) is

computed as the difference of the MLL of two models. Following the informal rule of Kass

and Raftery (1995), if the logarithm of the Bayes factor exceeds 3, we have strong evidence

in favor of the model with the highest value.

We first observe that the MSM model is always highly better than the benchmark one (i.e.

GARCH model with normal innovations). According to Kass and Raftery, we have strong
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Figure 5: S&P 500 daily percentage returns from 1999 to 2011. On the left plot, the upper
bound of the 95% confidence interval of the time series implied by the CP-GARCH with four
regimes as well as the detected break dates. The right Graphic displays the upper bound of
the 95% confidence interval implied by the MSM model with 8 latent vectors.

evidence in favor of the MSM model over the GARCH model for the entire period. Re-

garding the other alternative, the Graphics document that the CP-GARCH model, though

outperforms the standard GARCH one, competes badly with the MSM one.

Simultaneous sharp increases can be depicted on the plots. At these dates, the standard

GARCH dynamic is definetely not able to foresee the next return. The most staggering one

happens in February 27, 2007. On Graphic 5, we can observe that this day belongs to the

short regime occurring just before the financial crisis. In order to connect this outlier to the

financial crisis, it was the very day where Freddie Mac company announced that it will no

longer buy the most risky subprime mortgages and mortgage-related securities.

We now turn to the model forecast abilities in terms of predictive marginal log-likelihoods

(PMLLs). The PMLL, which corresponds to a ratio of marginal likelihoods (i.e.
f(Y1:t+h)
f(Y1:t)

),

is computed on three different horizons : the shortest one (h = 1), a mid-term prediction

(h = 5) and long term one (h = 50). Table 11 documents the average of predictive marginal

log-likelihoods over the period as well as their respective standard deviation. Although the

results are more mitigated than the previous exercise, we can still observe that the MSM

31



Figure 6: S&P 500 log-Bayes factors (log-BF) over time of the volatility models in relation
to the GARCH one. In black, the log-BF of the CP-GARCH model and in dashed black, the
MSM model. A positive value provide evidence in favor of the considered model compared to
the GARCH one.
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values are always higher than those of its competitors for any chosen horizon. Interestingly,

the CP-GARCH model and the GARCH one seem to perform equally although the former

process exhibits more complexity and requires advanced estimation tools. Nevertheless none

of these conclusions are significant.

Horizon h=1 h=5 h=50

GARCH -1.47 -7.34 -74.01

(1.14) (3.49) (27.11)

CP-GARCH -1.47 -7.34 -74.06

(1.09) (3.42) (27.31)

MSM -1.45 -7.26 -73.28

(1.02) (3.37) (27.69)

Table 11: Average of the PMLLs of the different models for several horizons. The highest

values are bolded.

5 Conclusion

We develop an off-line and on-line SMC algorithm (called TNT) well-suited for situations

where a relevant number of similar distributions has to be estimated. The method encom-

passes the off-line AIS of Neal (1998), the on-line IBIS algorithm of Chopin (2002) and the

RM method of Gilks and Berzuini (2001) that all arise as special cases in the SMC sampler

theory (see Del Moral, Doucet, and Jasra (2006)). The TNT algorithm benefits from the

conjugacy of the tempered and the time domains to avoid particle degeneracies observed in

the on-line methods. Moreover, the algorithm is automated for choosing the sequence of pos-

terior distributions using in the tempered domain and we introduce, in the SMC context, a

new adaptive RW MCMC scheme which combines the DREAM algorithm with the self-tuning

parameter method of Atchadé and Rosenthal (2005), making the TNT algorithm fully generic

(besides the user-defined number of particles). Simulations show that the TNT algorithms

perform as good as the other on-line SMC but without exhibiting any particle degeneracies.

The TNT sampler is an on-line algorithm that allows for easily comparing complex models.
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The paper therefore highlights this feature by comparing the MSM model with the GARCH

and the CP-GARCH models on the S&P 500 daily percentage returns. The marginal log-

likelihood clearly indicates evidence in favor of the MSM model compared to the other pro-

cesses. The results based on the predictive marginal log-likelihoods are more mitigated.

We believe that the TNT algorithm could be adapted to recent SMC algorithms such as

Fearnhead and Taylor (2013) and Fulop and Li (2013) since they propose advanced SMC

samplers based on the IBIS and the E-AIS samplers.

A Proof of Proposition 1

Using the notation x1:M
1:n = {x1

1, ..., x
M
1 , x1

2, ..., x
M
n } which stands for NxM random variables

and assuming that xji ∈ E ∀i, j as in the E-AIS method (tempered domain) or the IBIS one

(time domain), we consider the augmented posterior distribution :

π̃n(x1:M
1:n ) = [

M∏
i=1

πn(xin)]

n∏
k=2

Lk(x
1
k−1|x1:M

k )

M∏
q=2

Lk(x
q
k−1|x

1:q−1
k−1 , xq:Mk )

If the backward kernels Lk(.|.) denote proper distributions, the product of the distribution of

interest marginally arises :

π̃n(x1:M
n ) =

∫
[

M∏
i=1

πn(xin)]

n∏
k=2

Lk(x
1
k−1|x1:M

k )

M∏
q=2

Lk(x
q
k−1|x

1:q−1
k−1 , xq:Mk )dx1:M

1:n−1

= [
M∏
i=1

πn(xin)].

The SMC sampler with DREAM MCMC kernels leads to a proposal distribution of the form

:

ηn(x1:M
n ) = [

M∏
i=1

f(xi1)]
n∏
k=2

Kk(x
1
k|x1:M

k−1)
M∏
q=2

Kk(x
q
k|x

1:q−1
k , xq:Mk−1)

where Kk(.|.) denotes the DREAM subkernel with invariant distribution πk(.). Sampling one

draw from this proposal distribution is achieved by firstly drawing M realizations from the

prior distribution and then applying the DREAM algorithm (N-1)xM times. As proven in

Vrugt, ter Braak, Diks, Robinson, Hyman, and Higdon (2009) and Bauwens, Dufays, and
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De Backer (2011), the DREAM algorithm leads to the detailed balance equation :

[

M∏
i=1

πk(x
i
k−1)]Kk(x

1
k|x1:M

k−1)
M∏
q=2

Kk(x
q
k|x

1:q−1
k , xq:Mk−1)

= [

M∏
i=1

πk(x
i
k)]Kk(x

1
k−1|x1:M

k )
M∏
q=2

Kk(x
q
k−1|x

1:q−1
k−1 , xq:Mk )

Using this relation, we specify the backward kernel as

Lk(x
1
k−1|x1:M

k )
M∏
q=2

Lk(x
q
k−1|x

1:q−1
k−1 , xq:Mk )

=
[
∏M
i=1 πk(x

i
k−1)]Kk(x

1
k|x1:M

k−1)
∏M
q=2Kk(x

q
k|x

1:q−1
k , xq:Mk−1)

[
∏M
i=1 πk(x

i
k)]

.

The sequential importance sampling procedure generates weights given by

w̃n(x1:M
1:n ) ≡ π̃n(x1:M

1:n )

ηn(x1:M
n )

= w̃n−1(x1:M
1:n−1)

[
∏M
i=1 πn(xin−1)]

[
∏M
i=1 πn−1(xin−1)]

=
M∏
i=1

wn(xi1:n),

resulting in a product of independent weights exactly equal to the product of SMC sampler

weights (see equation (4)).

B Appendix : Markov-switching Multifractal model estima-

tion

In this appendix, we document how to simulate the MSM parameters from the joint posterior

distribution using an MCMC framework. Let gather all the MSM parameters into the set

θ = {µ, σ2,m0, γk̄, b}. For estimating MSM model with any number of state vector k̄, we

augment the posterior distribution with the k̄ Markov chain processes M̄1:t = {Mi,1:t}k̄i=1. The

MCMC scheme exhibits as invariant distribution the posterior distribution πn(θ, M̄1:t|y1:t) =

f(y1:t|θ,M̄1:t)φ(n)f(M̄1:t|θ)f(θ)
Zn

where Zn is the normalizing constant.

Given a set of parameters {θ, M̄1:t}, one MCMC iteration operates as follows :
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1. For i = 1, ..., k̄, sample Mi,1:t ∼ πn(Mi,1:t|y1:t, θ, M̄1:t\Mi,1:t) by forward-backward algo-

rithm (see Rabiner (1989)).

2. Randomly set the block size r of θ : r ∼ U [1, 5]

3. Sample θ by blocks of size r using the DREAM algorithm.

C Appendix : estimation of CP-GARCH using SMC sampler

We detail here the CP-GARCH estimation carried out by SMC sampler. An efficient Metropolis-

Hastings algorithm resting on the DREAM proposal as well as its discrete version has been

proposed in Bauwens, Dufays, and De Backer (2011). This technique constitutes the re-

juvenate step of the SMC sampler. To understand the MCMC moves, observe that it

exists a one-to-one mapping between the state vector s1:T and discrete break parameters

T = {τ0, τ1, ..., τK} where τ0 = 1 and τi ∀i ∈ [1,K] denotes the very observation where the

process jumps from state i to state i+ 1.

Let denote θ = {µ, ω1, α1, β1, ..., ωK+1, αK+1, βK+1}, the set of GARCH parameters. We

now provide the MCMC scheme to estimate a CP-GARCH model relying on DREAM and

D-DREAM proposals :

1. Sample τ1, ..., τK by blocks of random size using D-DREAM algorithm (see equation

(19)).

2. ∀i ∈ [1,K], sample pii ∼ Beta(ap + τi − τi−1, bp + 1).

3. Sample θ by blocks of random size using the DREAM algorithm (see equation (18)).
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