Imperfect Information, Macroeconomic Dynamics and the Term Structure of Interest Rates: An Encompassing Macro-Finance Model

Hans Dewachter

KULeuven and RSM, EUR

October 2008

1/29

Actual Law of Motion: Summary

Actual Law of Motion of observed macroeconomic dynamics follows the Evans and Honkapohja (2001) Euler approach to learning and is consistent with:

- A (semi) structural New-Keynesian model containing:
 - Long-run dynamics: the actual inflation target π_t^* and the actual equilibrium real interest rate, ρ_t .
 - Actual and perceived stochastic trends can differ due to learning: $\pi_t^* \neq \pi_t^{*P}$ and $\rho_t \neq \rho_t^P$.
 - Short-run dynamics: according to a (consumption-based) standard New-Keynesian model.
- Subjective expectations w.r.t. macroeconomic dynamics according to the Perceived Law of Motion.
- A learning rule, modeling the dynamics of the inferred stochastic endpoints, π_t^{*P} and ρ_t^P .

イロト イポト イラト イラト

Actual Law of Motion: Macroeconomic dynamics

Actual Law of Motion of observed macroeconomic dynamics is a VAR(I):

$$X_{t} = C^{A} + \Phi^{A} X_{t-1} + \Gamma^{A} S^{A} \varepsilon_{t}^{A}, \qquad X_{t}' = [\pi_{t}, y_{t}, i_{t}, \pi_{t}^{*P}, \rho_{t}^{P}, \pi_{t}^{*}, \rho_{t}]$$

New-Keynesian model with stoch. trends π_t^* and ρ_t :

$$\pi_{t} = \mu_{\pi} E_{t}^{P} \pi_{t+1} + (1 - \mu_{\pi}) \pi_{t-1} + \kappa y_{t} + \sigma_{\pi} \varepsilon_{\pi,t}$$

$$y_{t} = \mu_{y} E_{t}^{P} y_{t+1} + (1 - \mu_{y}) y_{t-1} - \phi(i_{t} - E_{t}^{P} \pi_{t+1} - \rho_{t}) + \sigma_{y} \varepsilon_{y,t}$$

$$i_{t} = (1 - \gamma_{i}) i_{t}^{T} + \gamma_{i} i_{t-1} + \sigma_{i} \varepsilon_{i,t}$$

$$i_{t}^{T} = \rho_{t} + E_{t}^{P} \pi_{t+1} + \gamma_{\pi} (\pi_{t} - \pi_{t}^{*}) + \gamma_{y} y_{t}$$

$$\rho_{t} = \rho_{t-1} + \sigma_{\rho} \varepsilon_{\rho,t}$$

$$\pi_{t}^{*} = \pi_{t-1}^{*} + \sigma_{\pi}^{*} \varepsilon_{\pi^{*},t}$$

Actual Law of Motion: Macroeconomic dynamics

Actual Law of Motion of observed macroeconomic dynamics is a VAR(I):

$$X_{t} = C^{A} + \Phi^{A} X_{t-1} + \Gamma^{A} S^{A} \varepsilon_{t}^{A}, \qquad X_{t}' = [\pi_{t}, y_{t}, i_{t}, \pi_{t}^{*P}, \rho_{t}^{P}, \pi_{t}^{*}, \rho_{t}]$$

New-Keynesian model with stoch. trends π_t^* and ρ_t :

$$\pi_{t} = \mu_{\pi} E_{t}^{P} \pi_{t+1} + (1 - \mu_{\pi}) \pi_{t-1} + \kappa y_{t} + \sigma_{\pi} \varepsilon_{\pi,t}$$

$$y_{t} = \mu_{y} E_{t}^{P} y_{t+1} + (1 - \mu_{y}) y_{t-1} - \phi(i_{t} - E_{t}^{P} \pi_{t+1} - \rho_{t}) + \sigma_{y} \varepsilon_{y,t}$$

$$i_{t} = (1 - \gamma_{i}) i_{t}^{T} + \gamma_{i} i_{t-1} + \sigma_{i} \varepsilon_{i,t}$$

$$i_{t}^{T} = \rho_{t} + E_{t}^{P} \pi_{t+1} + \gamma_{\pi} (\pi_{t} - \pi_{t}^{*}) + \gamma_{y} y_{t}$$

$$\rho_{t} = \rho_{t-1} + \sigma_{\rho} \varepsilon_{\rho,t}$$

$$\pi_{t}^{*} = \pi_{t-1}^{*} + \sigma_{\pi^{*}} \varepsilon_{\pi^{*},t}$$

Private expectations based on PLM:

$$E_t^P X_{t+1} = C^P + \Phi^P X_t^P.$$

Actual Law of Motion: Macroeconomic dynamics

Actual Law of Motion of observed macroeconomic dynamics is a VAR(I):

$$X_{t} = C^{A} + \Phi^{A} X_{t-1} + \Gamma^{A} S^{A} \varepsilon_{t}^{A}, \qquad X_{t}' = [\pi_{t}, y_{t}, i_{t}, \pi_{t}^{*P}, \rho_{t}^{P}, \pi_{t}^{*}, \rho_{t}]$$

New-Keynesian model with stoch. trends π_t^* and ρ_t :

$$\pi_{t} = \mu_{\pi} E_{t}^{P} \pi_{t+1} + (1 - \mu_{\pi}) \pi_{t-1} + \kappa y_{t} + \sigma_{\pi} \varepsilon_{\pi,t}$$

$$y_{t} = \mu_{y} E_{t}^{P} y_{t+1} + (1 - \mu_{y}) y_{t-1} - \phi(i_{t} - E_{t}^{P} \pi_{t+1} - \rho_{t}) + \sigma_{y} \varepsilon_{y,t}$$

$$i_{t} = (1 - \gamma_{i}) i_{t}^{T} + \gamma_{i} i_{t-1} + \sigma_{i} \varepsilon_{i,t}$$

$$i_{t}^{T} = \rho_{t} + E_{t}^{P} \pi_{t+1} + \gamma_{\pi} (\pi_{t} - \pi_{t}^{*}) + \gamma_{y} y_{t}$$

$$\rho_{t} = \rho_{t-1} + \sigma_{\rho} \varepsilon_{\rho,t}$$

$$\pi_{t}^{*} = \pi_{t-1}^{*} + \sigma_{\pi} * \varepsilon_{\pi} *_{t}$$

Private expectations based on PLM:

$$E_t^P X_{t+1} = C^P + \Phi^P X_t^P.$$

Updating rule for perceived stochastic trends:

$$\pi_t^{*P} = \pi_{t-1}^{*P} + f(X_t, ..., X_{t-n})$$

$$\rho_t^{*P} = \rho_{t-1}^{*P} + f(X_t, ..., X_{t-n})$$

Actual Law of Motion: Learning dynamics

 Learning dynamics (imperfect information models) are modeled along the lines of Kozicki and Tinsley (2005):

$$\pi_t^{*P} = \pi_{t-1}^{*P} + w_{\pi} \sigma_{\pi^*} \varepsilon_{\pi^*,t} + (1 - w_{\pi}) \left[\sigma_{\pi^b} \eta_{\pi,t} + g_{\pi} (\pi_t - E_{t-1}^P \pi_t) \right]$$

$$\rho_t^{*P} = \rho_{t-1}^{*P} + w_{\rho} \sigma_{\rho} \varepsilon_{\rho,t} + (1 - w_{\rho}) \left[\sigma_{\rho^b} \eta_{\rho,t} + g_{\rho} (i_t - \pi_t - E_{t-1}^P (i_t - \pi_t)) \right]$$

- The learning rule updates inferred values in function of three types of information (the weight of each source determined by *w* and *g*):
 - <u>Actual shocks</u> to the 'true' inflation target and/or equilibrium real rate (e.g. inflation target announcements, release of productivity data, risk perceptions..).
 - Private and exogenous <u>belief shocks</u> $\eta_{\pi^b,t}$, $\eta_{\rho^b,t}$ (e.g. changes in credibility,...).
 - Private and endogenous <u>forecast errors</u> of inflation and real interest rates, $(\pi_t E_{t-1}^P \pi_t)$ and $(i_t \pi_t E_{t-1}^P (i_t \pi_t))$.
- The full information RE models are embedded as limiting cases ($w_{\pi} = w_{\rho} = 1$):
 - The Macro-Finance version with constant eq. real rate and time-varying inflation target: $\sigma_{\pi^*} \geq 0, \ \sigma_{\varrho} = 0.$

Actual Law of Motion: Learning dynamics

The encompassing model, although ad hoc, embeds standard expectations formation processes as limiting cases:

$$\begin{split} \pi_t^{*P} &= \pi_{t-1}^{*P} + w_\pi \sigma_{\pi^*} \varepsilon_{\pi^*,t} + (1 - w_\pi) \left[\sigma_{\pi^b} \eta_{\pi,t} + g_\pi (\pi_t - E_{t-1}^P \pi_t) \right] \\ \rho_t^{*P} &= \rho_{t-1}^{*P} + w_\rho \sigma_\rho \varepsilon_{\rho,t} + (1 - w_\rho) \left[\sigma_{\rho^b} \eta_{\rho,t} + g_\rho (i_t - \pi_t - E_{t-1}^P (i_t - \pi_t)) \right] \end{split}$$

- Full-information rational expectations versions of the model are obtained by imposing full information, i.e. $w_{\pi} = w_{\rho} = 1$:
 - The standard New-Keynesian model with constant inflation target and eq. real rate: $\sigma_{\pi^*} = \sigma_{\varrho} = 0$.
 - The standard Macro-Finance version with constant eq. real rate and time-varying inflation target: $\sigma_{\pi^*} \geq 0$, $\sigma_{\rho} = 0$.
 - The structural Macro-Finance version with consistent prices of risk, constant eq. real rate and time-varying inflation target: $\Lambda_0 = \Lambda_0^{IS}$, $\Lambda_1 = 0$, $\sigma_{\pi^*} \ge 0$, $\sigma_{\rho} = 0$.
- Models with pure constant gain learning rules: $w_{\pi^*} = w_{\rho} = 0$, $\sigma_{\rho^b} = \sigma_{\pi^{*b}} = 0$.

Summary: Bayesian estimation framework

• Identification of the posterior density $p(\theta_i \mid Z^T)$ of the parameter vector θ_i :

$$p(\theta_i \mid Z^T) = L(Z^T \mid \theta_i)p(\theta_i)/p(Z^T)$$

with:

- $L(Z^T \mid \theta_i)$: the likelihood of the data, Z^T , given θ_i .
- $p(\theta_i)$: the prior density of the parameter vector, θ_i .
- $p(Z^T)$: the marginal likelihood of the data.
- Model evaluation is based on marginal likelihood and the BIC:
 - Marginal likelihood is obtained by integrating out θ_i :

$$p(Z^T) = \int_{\theta_i} L(Z^T \mid \theta_i) p(\theta_i) d\theta_i$$

• Schwartz BIC criterion (independent from priors):

$$BIC = -2\ln(L(Z^T \mid \theta_i)) + p\ln(T)$$

with p the number of parameters and T the number of observations.

Summary: sets of estimated parameters

We estimate jointly six sets of parameters included in θ_i :

- Deep parameters related to the structural equations:
 - Phillips curve: inflation indexation, δ_{π} , inflation sensitivity to output, κ .
 - IS curve: risk aversion σ , habit persistence, h.
 - Taylor rule: inflation and output sensitivity, γ_{π} , γ_{ν} and interest rate smoothing γ_{i} .
- Sizes (standard deviations) of the structural shocks($\sigma_{\pi}, \sigma_{y}, \sigma_{i}, \sigma_{\pi^{*}}, \sigma_{\rho}$).
- Learning parameters (weights ω_{ρ} , ω_{π^*} , gains g_{ρ} , g_{π^*} belief shocks σ_{π^b} , σ_{ρ^b} init. beliefs π_0^{*P} , ρ_0^P).
- Prices of risk used in bond pricing (Λ_0, Λ_1) .
- Liquidity effects (mispricing $\phi(m_j), ..m_j = 1, ..n_y$).
- Measurement errors in the yields and inflation expectations $(\sigma_n(m))$.

Summary: Prior distributions

- Structural parameters (Distr, (mean, std. dev)):
 - Phillips curve: Inflation indexation, δ_{π} ,: Beta (0.7, 0.05); Output sensitivity of inflation, κ : Normal (0.12, 0.03).
 - IS curve: Risk aversion σ : Gamma (1.5, 0.34); Habit persistence, h: Beta (0.7, 0.05).
 - Taylor rule parameters. Inflation sensitivity γ_i: Normal (0.5, 0.25); Output sensitivity, γ_v: Normal (0.5, 0.5); Interest rate smoothing γ_i: Normal (0.8, 0.2).
- Learning parameters (Distr, (mean, std. dev)):
 - Bias towards full-information rational expectations. Weight public signal, w_{π^*}, w_{ρ} : Beta (0.85, 0.1).
 - Constant gain parameters, g_{π} , g_{ρ} : Uniform (0.125, 0.075).
 - Sizes of belief shocks, σ_{π^*} , σ_{ρ} : Uniform (0.01, 0.006).
- Mispricing (Distr, (mean, std. dev)):
 - Average mispricing, $\phi(m)$: Normal (0.00, 0.005).

8/29

Summary: Likelihood

Likelihood based on the prediction error decomposition:

- Transition equation is based on the ALM dynamics, consistent with the learning dynamics and the structural model.
- Measurement equation includes macroeconomic variables, the yield curve and the surveys of subjective inflation expectations.
- In case of Macro-Finance models, latent variables, ρ_t and π_t^* and ρ_t^P and π_t^{*P} are filtered by means of a Kalman filter.
- For Rational Expectations and Macro-Finance models determinacy was imposed through the prior distributions on κ_{π} , γ_{π} and γ_{ν} .
- For Learning we imposed (local) stability (in mean) of the parameters: eigenvalues ALM smaller than 1.

Summary: Bayesian estimation

Parameters are estimated by simulation-based Bayesian techniques (Metropolis-Hastings):

- A first round optimization based on simulated annealing techniques.
- Metropolis-Hastings based on normal random walk dynamics.
- Acceptance ratio target 40%.
- Number of simulations 200000.
- Checks for convergence (Geweke).
- Marginal likelihood based on both Laplace transform and modified harmonic mean.

Summary: Likelihood

Transition equation (ALM) models observed macroeconomic dynamics:

$$X_{t} = C^{A} + \Phi^{A} X_{t-1} + \Gamma^{A} S^{A} \varepsilon_{t}^{A}, \quad X'_{t} = [\pi_{t}, y_{t}, i_{t}, \pi_{t}^{*P}, \rho_{t}^{P}, \pi_{t}^{*}, \rho_{t}]$$

• Structural model (conditioned on true stochastic endpoints, π_t^* and ρ_t):

$$\pi_{t} = \mu_{\pi} E_{t}^{P} \pi_{t+1} + (1 - \mu_{\pi}) \pi_{t-1} + \kappa y_{t} + \sigma_{\pi} \varepsilon_{\pi,t}$$

$$y_{t} = \mu_{y} E_{t}^{P} y_{t+1} + (1 - \mu_{y}) y_{t-1} - \phi (i_{t} - E_{t}^{P} \pi_{t+1} - \rho_{t}) + \sigma_{y} \varepsilon_{y,t}$$

$$i_{t} = (1 - \gamma_{i}) (\rho_{t} + E_{t}^{P} \pi_{t+1} + \gamma_{\pi} (\pi_{t} - \pi_{t}^{*}) + \gamma_{y} y_{t}) + \gamma_{i} i_{t-1} + \sigma_{i} \varepsilon_{i,t}$$

$$\rho_{t} = \rho_{t-1} + \sigma_{\rho} \varepsilon_{\rho,t}$$

$$\pi_{t}^{*} = \pi_{t-1}^{*} + \sigma_{\pi^{*}} \varepsilon_{\pi^{*},t}$$

• The subjective beliefs of agents summarized in the PLM and the learning rule:

 $E_t^P X_{t+1}^P = C^P + \Phi^P X_{t+1}^P + \Phi^P$

Summary: Likelihood

• The measurement equation incorporates three types of information: macroeconomic variables, X_t^o , the yield curve, Y_t , and survey data on inflation expectations, S_t :

$$\begin{bmatrix} X_t^o \\ Y_t \\ S_t \end{bmatrix} = \begin{bmatrix} 0 \\ A_y \\ A_S \end{bmatrix} + \begin{bmatrix} I_o \\ B_y \\ B_S \end{bmatrix} X_t + \begin{bmatrix} 0 \\ \phi_y \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \eta_{y,t} \\ \eta_{S,t} \end{bmatrix}$$

- This measurement equation summarizes three relations:
 - Observable macroeconomic variables are included in X_t : $X_t^o = I_o X_t$.
 - No-arbitrage and liquidity terms link the yields to the (perceived) macroeconomic state: $Y_t = A_y + B_y X_t + \phi_v + \eta_{v,t}$.
 - The PLM determines subjective beliefs: $S_t = A_S + B_S X_t$.

Versions of the model

Table: Properties of alternative versions of the model

Model	Macro (# stoch.trends)	Prices of Risk	Expectations	Mispricing	
NK0	NK model (0)	Consistent Λ_0^{IS}	Full-info RE	Yes	← Stand. NK mod
MF1	NK model (1)	Consistent Λ_0^{IS}	Full-info RE	Yes	← Stand. MF mod
MFS	NK model (2)	Consistent: Λ_0^{IS}	Full-info RE	No	← Struct. MF mod
MFM	NK model (2)	Consistent: Λ_0^{IS}	Full-info RE	Yes	
MFF	NK model (2)	Free: Λ_0, Λ_1	Full-info RE	No	
MFE	NK model (2)	Free: $\Lambda_0, \ \Lambda_1$	Learning	Yes	← Encompass.mod
					J

13 / 29

Data

Model is estimated on US data: 1960Q2 till 2006Q4.

- Quarter-by-quarter inflation (GDP deflator) rate (p.a. terms) are used. Source: Federal Reserve Economic Data archive (FRED).
- CBO output gap measure is used (no- real time data). Source: Congressional Budget Office.
- Fed fund rate is used as policy rate. Source: FRED.
- Yield curve: 1/4, 1/2, 1, 3, 5, 10 yr. maturities. Sources: Gürkaynak et al. (2006) and FRED.
- Inflation expectations: Average inflation expectations over 1 and 10 year horizon. Source: Survey of Professional Forecasters, FED Philadelphia.

14 / 29

Results

Results for the encompassing model

Yield curve fit: posterior moments

Table: POSTERIOR DENSITY ESTIMATES I: ENCOMPASSING MODEL MFLA

Param.	Mean	Std. Dev	Mode	Crit.val. 5%	Crit. val. 95%			
		Average mispricing yields						
$\phi(1/2)$	-0.0034	0.0016	-0.0032	-0.0054	-0.0001			
$\phi(1)$	-0.0001	0.0019	0.0003	-0.0023	0.0038			
$\phi(3)$	0.0010	0.0021	0.0017	-0.0010	0.0058			
$\phi(5)$	0.0011	0.0022	0.0018	-0.0008	0.0063			
$\phi(10)$	0.0010	0.0038	0.0013	-0.0023	0.0095			
		0: 1 11	. ,.					
	Standard deviation measurement errors yield curve							
$\sigma_{\eta,\nu}(1/4)$	0.0103	0.0005	0.0101	0.0094	0.0111			
$\sigma_{\eta,\nu}(1/2)$	0.0044	0.0003	0.0044	0.0040	0.0049			
$\sigma_{\eta,\nu}(1)$	0.0040	0.0002	0.0040	0.0037	0.0043			
$\sigma_{\eta,\nu}(3)$	0.0020	0.0001	0.0019	0.0018	0.0022			
$\sigma_{\eta,\nu}(5)$	0.0008	0.0001	0.0008	0.0006	0.0010			
$\sigma_{\eta,y}(10)$	0.0035	0.0002	0.0034	0.0032	0.0039			
	Standard deviation measurement errors inflation expectations							
	Standard deviation measurement errors inflation expectations							
$\sigma_{\eta,\pi}(1)$	0.0052	0.0004	0.0051	0.0046	0.0058			
$\sigma_{\eta,\pi}(10)$	0.0010	0.0001	0.0010	0.0008	0.0012			

NBB Colloquium

Risk premiums: expected excess holding returns

<u>Conclusion 6</u>: The encompassing model implies significant and time-varying risk premiums, covarying with the output and interest rate gaps.

- The encompassing Macro-Finance model explains unconditional risk premiums relatively well.
- The encompassing model implies significant and countercyclical time variation in the risk premiums. Risk premiums tend to be high/increase during recessions and be low/decrease during booms.
- This feature of the model derives from the time variation in the risk premiums for supply and policy rate shocks:
 - Supply shock risk premium: correlates positively with interest rate gap and negatively with output (gap).
 - Policy rate shock risk premium: correlates negatively with the interest rate gap.

Results

Macro factors and the yield curve

Risk premiums: expected excess holding returns

Risk premiums: expected excess holding returns

Table: POSTERIOR DENSITY ESTIMATES III: ENCOMPASSING MODEL MFL

Param	Mean	Std. Dev	Mode	Crit.val. 5%	Crit. val. 95%			
	Price of risk: $\Lambda_0(\times 10^{-2})$							
$egin{array}{c} \Lambda_{0,\pi} & & & & & \\ \Lambda_{0,y} & & & & & \\ \Lambda_{0,i} & & & & & \\ \Lambda_{0,\pi} * & & & & \\ \Lambda_{0, ho} & & & & & \end{array}$	-0.0700 -0.0675 -0.0844 -0.0576 -0.1026	0.1379 0.1359 0.1456 0.1680 0.0796	-0.1257 0.0432 -0.0193 -0.0559 -0.1144	-0.3218 -0.2558 -0.3322 -0.2970 -0.2128	0.1365 0.1843 0.1576 0.2323 0.0385			
	Price of risk: $\Lambda_1(\times 10^{-4})$							
$\Lambda_{1,\pi\pi}$ $\Lambda_{1,\pi\nu}$	0.0728 0.3139	0.0779 0.0944	-0.0030 0.2782	-0.0456 0.1737	0.1973 0.4842			
$\Lambda_{1,\pi_{i}}$	-1.1067	0.2303	-0.9401	-1.5123	-0.7743			
$\Lambda_{1,y\pi}$	-0.1302	0.3327	-0.0016	-0.8500	0.2734			
$\Lambda_{1,yy}$	0.1051	0.1363	0.0575	-0.1463	0.3112			
$\Lambda_{1,yi}$	-0.4329	0.4250	-0.5493	-1.0148	0.3596			
$\Lambda_{1,i\pi}$	-0.0445	0.0469	-0.0382	-0.1268	0.0337			
$\Lambda_{1,iy}$	-0.0274	0.0363	-0.0198	-0.0887	0.0326			
$\Lambda_{1,ii}$	0.5592	0.0718	0.5353	0.4471	0.6808			

18 / 29

Variance decomposition: Interpretation of the yield curve: level, slope and curvature factors

<u>Conclusion 7</u>: A variance decomposition of the level, slope and curvature factor identifies the following interpretations:

- <u>Level factor.</u> Unlike standard Mac-Fin models, this model identifies three main factors impacting on the level:
 - Target real rate shocks (68% at 1yr hor.).
 - Belief shock for inflation (5% at 1yr hor.).
 - Supply, demand and policy rate shocks due to the adaptive learning component (respectively 8%, 7% and 12% at 1yr hor.).
- Slope factor. Standard findings are recovered:
 - Most important is the independent policy rate factor (65% at 1yr hor.)
 - Supply and demand factors play a role on the intermediate frequencies, due to interest rate smoothing (5% and 24% at 1yr hor).
- Curvature factor. In line with Bekaert et al. (2005):
 - Curvature primarily related to the policy rate factor (62% at 1yr hor.).
 - Curvature with supply and demand shocks (13% and 23% at 1yr hor.).

Variance decomposition: Interpretation of the yield curve: level, slope and curvature factors

Table: VARIANCE DECOMPOSTION: ENCOMPASSING MODEL MFL

Results

Type of shock	Fed fund rate	Level	Slope	Curvature	Infl exp 1y	Infl exp 10y
			Enomone	au 1 avantan		
	Frequency: 1 quarter					
Supply (ε_{π})	0.04	0.08	0.01	0.13	0.90	0.35
Demand (ε_v)	0.04	0.04	0.03	0.22	0.02	0.00
Policy rate(ε_i)	0.81	0.33	0.88	0.63	0.00	0.00
Belief inflat. (η_{π})	0.00	0.03	0.01	0.00	0.08	0.64
Belief real rate (η_{o})	0.00	0.00	0.00	0.00	0.00	0.00
Infl. target $(\varepsilon_{\pi}*)$	0.00	0.00	0.00	0.00	0.00	0.00
Neutral real rate(ε_{ρ})	0.11	0.52	0.06	0.02	0.00	0.00
	Frequency: 20 quarters					
Supply (ε_{π})	0.06	0.04	0.06	0.13	0.42	0.21
Demand (ε_v)	0.07	0.02	0.32	0.24	0.03	0.00
Policy rate(ε_i)	0.12	0.03	0.55	0.60	0.00	0.00
Belief inflat. (η_{π})	0.09	0.09	0.03	0.01	0.57	0.79
Belief real rate (η_{o})	0.00	0.00	0.00	0.00	0.00	0.00
Infl. target $(\varepsilon_{\pi} *)$	0.00	0.00	0.00	0.00	0.00	0.00
Neutral real rate(ε_{ρ})	0.66	0.82	0.04	0.02	0.00	0.00

Results

Macro factors and the yield curve

Variance decomposition: Instantaneous impulse-response analysis (deviation from baseline)

Figure: Instantaneous impulse response functions of the yield curve MFL model

Inflation scares

Historical decomposition of the 'Great Inflation and Disinflation' episodes

<u>Conclusion 8</u>: The estimation results establish the empirical relevance of the "Inflation Scares" argument for both inflation expectations and the yield curve.

- Inflation Scares: " ... Significant and persistent deviations of inflation expectations from those implied by rational expectations [by the inflation target], even at long horizons...." (Orphanides and Williams, 2005)
- Inflation Scares arise as a consequence learning dynamics amplifying and lengthening the impact of correlated supply shocks (Orphanides and williams, 2005) or inflation belief shocks (Kozicki and Tinsley, 2005).
- A historical decomposition of the 'Great Inflation and Disinflation' episodes:
 - The 'Great Inflation' episode (1972-1980): the un-anchoring of inflation expectations and long-term yields is primarily attributed to (correlated) supply shocks.
 - The 'Great Disinflation' episode (1980-1988): both correlated supply shocks and belief shocks contribute to the re-anchoring of inflation expectations and long-term yields.

Historical decomposition of the 'Great Inflation' episode

Figure: HISTORICAL DECOMPOSITION BASED ON THE MFL-MODEL OF THE GREAT INFLATION PERIOD

Historical decomposition of the 'Great Disinflation' episode

Figure: HISTORICAL DECOMPOSITION BASED ON THE MFL-MODEL OF THE GREAT DISINFLATION PERIOD

25 / 29

Trehan Wu (JME, 2007)

Table 1 Model parameter estimates

Parameter	Baseline specifications	Stationary $z_t \sim AR(1)$	d = 0	
a_{v1}	1.16 (9.42)	1.13 (7.74)	1.12 (8.47)	
a_{v2}	-0.24(-2.03)	-0.26 (-1.87)	-0.27 (-1.79)	
a_r	-0.13 (-5.37)	-0.13 (-2.99)	-0.08 (-4.08)	
$b_{\pi 1}$	0.49 (8.25)	0.47 (7.00)	0.47 (8.62)	
$b_{\pi 2}$	0.37 (4.94)	0.35 (4.93)	0.35 (5.53)	
b_{v}	0.26 (4.31)	0.17 (3.22)	0.13 (2.18)	
b_{x1}	0.004 (3.91)	0.005 (5.05)	0.004 (4.04)	
b_{x2}	0.05 (4.16)	0.02 (0.99)	0.05 (4.20)	
c	0.80 (2.28)	0.81 (2.52)	0.81 (2.14)	
d	-0.05(-0.84)	-0.05(-0.06)	0	
ρ_z	1.00	0.97 (3.40)	1.00	
$\sigma_1(y)$	0.57 (6.10)	0.73 (5.96)	0.70 (3.21)	
$\sigma_2(\pi)$	0.80 (16.74)	0.81 (16.77)	0.81 (10.02)	
$\sigma_3(z)$	0.22 (5.48)	0.25 (2.20)	0.17 (2.74)	
$\sigma_4(y^*)$	0.46 (4.23)	0.43 (2.38)	0.53 (2.15)	
$\sigma_5(g)$	0.20 (4.23)	0.19 (2.38)	0.24 (2.15)	
Log likelihood	-415.56	-414.16	-415.83	

Note: MLE estimation results. t-statistics are reported in parenthesis.

NBB Colloquium

Bjorland et al (2006)

Figure 2: The natural real interest rate

27 / 29

An Encompassing Macro-Finance Model

Bekaert et al (2005)

The top Panel shows the average output gap across the 7 models we estimate (thick line) and the model CR,EI,N output gap (thin line) for our sample period: 1961:1Q-2003:4Q. The bottom Panel shows the average natural rate across the 7 models we estimate (thick line) and the model CR,EI,N natural rate (thin line). Both panels also graph confidence bands in dashed lines. The confidence bands were constructed adding and subtracting 2 cross-sectional standard deviations to the average values.

Edge et al (FED Working Paper)

Notes:

- 1. The real interest rate and natural real rate are shown relative to their steady-state level.
- The solid lines are the median estimates of the output gap and natural real rate.
- 3. The dotted lines are the 90 percent credible set around the output gap and natural real rate.