Financial Factors in Economic Fluctuations

Discussion by Wouter den Haan

Lawrence Christiano, Robert Motto, Massimo Rostagno

October 17, 2008

Shocks vs Model

Overview

- Model at the frontier of Bayesian DSGE estimation/modelling
 - many shocks (15 or 16)
 - several frictions
 - many things to learn from this paper

Financial friction

- Costly state verification CSV
 - One period (nominal) debt
 - Idiosyncratic shocks
 - Unavoidable bankruptcy cost:
 - current-period resources $< debt + interest \implies bankruptcy$
 - · debt and lending rate chosen under constraint that lender breaks even

Problems of CSV

- Aggregate productivity (return) $\uparrow \Longrightarrow$ default rate \uparrow
 - Firms face trade off between expansion and default
 - Aggregate productivity $\uparrow \Longrightarrow$ firms expand at the cost of increased default
- CMR find:
 - Aggregate productivity (return) $\uparrow \Longrightarrow$ lending rate \downarrow
- Result for lending rate does indeed seem ambiguous

$$\bar{\omega}\tilde{Q}K' = (1+r^l)(K'-N)$$

• But easy to come with an example in which: $Z ilde{Q}\uparrow \Longrightarrow r^l\downarrow$

Procyclical lending rate

- $\omega ~ U(0, 1.4)$
- bankruptcy costs 10%
- \tilde{Q} increases from 1.09 to 1.091
- default rate increases from 18% to 19%
- lending rate increases from 4.8% to 5.7%

Problems of CSV

- Existence of friction dampens the impact of shocks
 - Suppose \tilde{Q} plunges
 - This entrepreneur faces linear revenue function
 - Problem is not simply scaled down because net worth is fixed

$$\bullet \implies$$

- + $\tilde{Q} \downarrow \Longrightarrow$ net worth is large relative to $\tilde{Q} \downarrow$
- It's popularity is due to effects of net-worth channel
 - profits $\uparrow \Longrightarrow$ net worth increases
 - price of capital $\uparrow \Longrightarrow$ market value net worth increases

Problems of CSV

- Easy implementation requires linearity
- Stability requires decreasing returns
- Solution:
 - Put financial friction in linear part of the model
 - Typically this is production of investment goods
 - Problem: effects are quantitatively small

Nice aspects of CMR's implementation

- Friction applies to complete capital stock not just investment
 - entrepreneurs buy and sell capital stock at end of period
 - In between buying and selling there is a "depreciation" shock
- CMR add a shock that makes default/risk premium countercyclical
 - time-varying variance of idiosyncratic shock, σ_t
- Nominal contracts: uncertainty about real cost of debt can magnify or dampen net worth channel

• History of business cycles: What shocks mattered when and how much

- History of business cycles: What shocks mattered when and how much
 - new result is that σ_t is very important for business cycle fluctuations

- History of business cycles: What shocks mattered when and how much
 - new result is that σ_t is very important for business cycle fluctuations
- Model building:

- History of business cycles: What shocks mattered when and how much
 - new result is that σ_t is very important for business cycle fluctuations
- Model building:
 - alternative way to implement CSV

- History of business cycles: What shocks mattered when and how much
 - new result is that σ_t is very important for business cycle fluctuations
- Model building:
 - alternative way to implement CSV
 - interaction nominal contracts and net worth channel

- History of business cycles: What shocks mattered when and how much
 - new result is that σ_t is very important for business cycle fluctuations
- Model building:
 - alternative way to implement CSV
 - interaction nominal contracts and net worth channel
- Technical: Showing what is feasible, a Herculean effort

Larry taming the 16-shock monster

Larry taming the 16-shock monster

• What do we know about these techniques?

- What do we know about these techniques?
- Small sample bias?

- What do we know about these techniques?
- Small sample bias?
- Speed of convergence?

- What do we know about these techniques?
- Small sample bias?
- Speed of convergence?
- Behavior in presence of model specification?

- What do we know about these techniques?
- Small sample bias?
- Speed of convergence?
- Behavior in presence of model specification?
- For what implementation of MH are these problems least severe?

• Introduction

- Introduction
- Chapters 1 through 12: Model building blocks

- Introduction
- Chapters 1 through 12: Model building blocks
- Chapters 13 though 16: Empirical methodology

- Introduction
- Chapters 1 through 12: Model building blocks
- Chapters 13 though 16: Empirical methodology
- No more conferences with 7 papers per day

• Chapter 17: accuracy of numerical solution

- Chapter 17: accuracy of numerical solution
 - just because a third-order perturbation solution is just sufficient to generate time-varying risk premia doesn't mean it is accurate

- Chapter 17: accuracy of numerical solution
 - just because a third-order perturbation solution is just sufficient to generate time-varying risk premia doesn't mean it is accurate
 - a dynamic Euler-equation test is easy to implement

- Chapter 17: accuracy of numerical solution
 - just because a third-order perturbation solution is just sufficient to generate time-varying risk premia doesn't mean it is accurate
 - a dynamic Euler-equation test is easy to implement
- Chapter 18: key business cycle facts / common sense

- Chapter 17: accuracy of numerical solution
 - just because a third-order perturbation solution is just sufficient to generate time-varying risk premia doesn't mean it is accurate
 - a dynamic Euler-equation test is easy to implement
- Chapter 18: key business cycle facts / common sense
 - cyclical behavior of unobservables, e.g., default rate

- Chapter 17: accuracy of numerical solution
 - just because a third-order perturbation solution is just sufficient to generate time-varying risk premia doesn't mean it is accurate
 - a dynamic Euler-equation test is easy to implement
- Chapter 18: key business cycle facts / common sense
 - cyclical behavior of unobservables, e.g., default rate
 - IRFs

- Chapter 17: accuracy of numerical solution
 - just because a third-order perturbation solution is just sufficient to generate time-varying risk premia doesn't mean it is accurate
 - a dynamic Euler-equation test is easy to implement
- Chapter 18: key business cycle facts / common sense
 - cyclical behavior of unobservables, e.g., default rate
 - IRFs
- Chapter 19: shocks versus model (propagation)

- Chapter 17: accuracy of numerical solution
 - just because a third-order perturbation solution is just sufficient to generate time-varying risk premia doesn't mean it is accurate
 - a dynamic Euler-equation test is easy to implement
- Chapter 18: key business cycle facts / common sense
 - cyclical behavior of unobservables, e.g., default rate
 - IRFs
- Chapter 19: shocks versus model (propagation)
 - What does the model add to the shocks?

- Chapter 17: accuracy of numerical solution
 - just because a third-order perturbation solution is just sufficient to generate time-varying risk premia doesn't mean it is accurate
 - a dynamic Euler-equation test is easy to implement
- Chapter 18: key business cycle facts / common sense
 - cyclical behavior of unobservables, e.g., default rate
 - IRFs
- Chapter 19: shocks versus model (propagation)
 - What does the model add to the shocks?
- Chapter 20: understanding the shocks

- Chapter 17: accuracy of numerical solution
 - just because a third-order perturbation solution is just sufficient to generate time-varying risk premia doesn't mean it is accurate
 - a dynamic Euler-equation test is easy to implement
- Chapter 18: key business cycle facts / common sense
 - cyclical behavior of unobservables, e.g., default rate
 - IRFs
- Chapter 19: shocks versus model (propagation)
 - What does the model add to the shocks?
- Chapter 20: understanding the shocks
 - What is the σ_t shock?

Shocks versus the model

Policy rule in DSGE model:

$$z_{t+1} = a_0 + A_1 z_t + A_2 shocks_t$$

- How much can the contemporaneous values of the shocks explain by themselves?
- That is, how bad is this SGE model:

$$z_{t+1} = \tilde{a}_0 + \tilde{A}_1 z_t + \tilde{A}_2 shocks_t$$

Output & current productivity shock

Hours & current productivity shock

Consumption & current productivity shock

Investment & current productivity shock

Actual & fitted investment

Capital & current productivity shock

Adding 20 lagged values of the shock

Adding 40 lagged values of shock

R2

	Only current	+20 lags	+40 lags
Output	0.958	0.993	0.999
Hours	0.825	0.971	0.994
Consumption	0.947	0.991	0.998
Investment	0.966	0.994	0.999
Capital	0.288	0.880	0.976
Hours Consumption Investment Capital	0.825 0.947 0.966 0.288	0.971 0.991 0.994 0.880	0.994 0.998 0.999 0.976

R2

	Only current	+1 lags	+2 lags
Consumption	0.87	0.95	0.97
Credit	0.95	0.97	0.98
Inflation	0.51	0.81	0.90
Inflation inv	0.63	1.0	1.0
Oil price	0.21	1.0	1.0
Investment	0.89	0.96	0.99
risk premium	0.86	0.93	0.98
hours in RBC	0.825		

R2

	Only current	+1 lags	+2 lags
M1	0.98	1.00	1.00
M3	0.96	0.99	0.99
reserves	0.99	1.0	1.0
stock market	0.93	0.97	0.98
wage rate	0.94	0.98	0.99
GDP	0.83	0.92	0.97
hours	0.94	0.98	0.99
term premium	0.80	0.94	0.98
hours in RBC	0.825		

Shocks versus the model

- Is this bad?
- Maybe not, but perceived wisdom—and the language in the paper—suggests that *propagation* is very important

Shocks versus the model Explaining US vs EA

DSGE model:

$$z_{t+1}^{us} - z_{t+1}^{ea} = \tilde{a}_0 + \tilde{A}_2(shocks_t^{us} - shocks_t^{ea})$$

- !!! Use the same model for US and EA
- Only differences are the shocks?

R2

	Only current	+1 lags	+2 lags
Consumption	0.72	0.88	0.94
Credit	0.83	0.90	0.94
Inflation	0.53	0.66	0.76
Inflation_inv	0.31	1.0	1.0
Oil price	0.23	1.0	1.0
Investment	0.88	0.94	0.96
risk premium	0.86	0.92	0.95
hours in RBC	0.825		

R2

	Only current	+1 lags	+2 lags
M1	0.96	0.98	0.99
M3	0.75	0.87	0.92
stock market	0.75	0.87	0.92
wage rate	0.80	0.87	0.92
GDP	0.83	0.93	0.96
term premium	0.93	0.96	0.98
hours in RBC	0.825		

What is this time-varying risk shock?

- Does the identified shock match, for example,
 - increased cross-sectional variance in stock returns
 - firm profits
- Is this really a structural shock?
 - US: highly correlated with financial wealth shock (0.77 after HP filtering)
 - EA: highly correlated with financial wealth and investment technology shock

Shocks vs Model

Understanding Shocks

Concluding comments

• Frontier paper

Concluding comments

- Frontier paper
- Real frontier paper

Concluding comments

- Frontier paper
- Real frontier paper
 - You see science advancing even though things also sometimes get ugly