Credit Frictions and Optimal Monetary Policy

Vasco Cúrdia Michael Woodford
FRB of New York¹ Columbia University

National Bank of Belgium, October 2008

¹The views expressed in this paper are those of the author and do not necessarily reflect the position of the Federal Reserve Bank of New York or the Federal Reserve System.
"New Keynesian" monetary models often abstract entirely from financial intermediation and financial frictions.
"New Keynesian" monetary models often abstract entirely from financial intermediation and financial frictions.

- Representative household
- Complete (frictionless) financial markets
- Single interest rate (also the policy rate) relevant for all decisions
"New Keynesian" monetary models often abstract entirely from financial intermediation and financial frictions

- Representative household
- Complete (frictionless) financial markets
- Single interest rate (also the policy rate) relevant for all decisions

But in actual economies (even financially sophisticated)
"New Keynesian" monetary models often abstract entirely from financial intermediation and financial frictions

- Representative household
- Complete (frictionless) financial markets
- Single interest rate (also the policy rate) relevant for all decisions

But in actual economies (even financially sophisticated)

- different interest rates
- rates do not move perfectly together
Spreads change over time

(Sources: FRB, IMF/IFS)

Cúrdia and Woodford

Credit Frictions and Optimal Monetary Policy
How much is monetary policy analysis changed by recognizing existence of spreads between different interest rates?

How should policy respond to "financial shocks" that disrupt financial intermediation, dramatically widening spreads?
John Taylor (Feb. 2008)

Proposed "Taylor rule" adjustment:
FF rate target lowered by amount of increase in LIBOR-OIS spread
Systematic response to spreads?

- John Taylor (Feb. 2008)
 - Proposed "Taylor rule" adjustment: FF rate target lowered by amount of increase in LIBOR-OIS spread
 - Taylor rule would set operating target for LIBOR rate, not the FFR
Systematic response to spreads?

- John Taylor (Feb. 2008)
 - Proposed "Taylor rule" adjustment: FF rate target lowered by amount of increase in LIBOR-OIS spread
 - Taylor rule would set operating target for LIBOR rate, not the FFR
 - Would imply automatic adjustment of FFR in response to spread variations
Systematic response to spreads?

- John Taylor (Feb. 2008)
 - Proposed "Taylor rule" adjustment: FF rate target lowered by amount of increase in LIBOR-OIS spread
 - Taylor rule would set operating target for LIBOR rate, not the FFR
 - Would imply automatic adjustment of FFR in response to spread variations
 - Current Swiss National Bank policy

Cúrdia and Woodford
Credit Frictions and Optimal Monetary Policy
Systematic response to spreads?

SNB Interest rates
(source: SNB)
Systematic response to spreads?

- John Taylor (Feb. 2008)

 - Proposed "Taylor rule" adjustment: FF rate target lowered by amount of increase in LIBOR-OIS spread

 - Taylor rule would set operating target for LIBOR rate, not the FFR

 - Would imply automatic adjustment of FFR in response to spread variations

- Current Swiss National Bank policy

 - **Question**: Is a systematic response of that kind desirable?
Model: A generalization of the NK model

- Generalizes basic (representative household) NK model:
Model: A generalization of the NK model

- Generalizes basic (representative household) NK model:
 - heterogeneity in spending opportunities
 - costly financial intermediation
Model: A generalization of the NK model

- Generalizes basic (representative household) NK model:
 - **heterogeneity** in spending opportunities
 - **costly** financial intermediation

- Each household has type $\tau_t (i) \in \{b, s\}$, determining preferences

$$E_0 \sum_{t=1}^{\infty} \beta^t \left[u^{\tau_t(i)} (c_t (i) ; \xi_t) - \int_0^1 v (h_t (j; i) ; \xi_t) \, dj \right]$$
Generalizes basic (representative household) NK model:

- **heterogeneity** in spending opportunities
- **costly** financial intermediation

Each household has type $\tau_t (i) \in \{b, s\}$, determining preferences

$$E_0 \sum_{t=1}^{\infty} \beta^t \left[u^{\tau_t(i)} (c_t (i) ; \xi_t) - \int_0^1 v (h_t (j ; i) ; \xi_t) \, dj \right]$$

- each period type remains same with probability $\delta < 1$
- when draw new type, always probability π_τ of becoming type τ
Model: Marginal utilities of two types

\[
\begin{align*}
\bar{\lambda}_b &< \bar{\lambda}_s \\
\bar{\lambda}_b &< \bar{\lambda}_s
\end{align*}
\]

\[
\begin{align*}
\bar{c}_b &< \bar{c}_s \\
\bar{c}_b &< \bar{c}_s
\end{align*}
\]
Model: Incomplete markets

- Aggregation simplified by assuming intermittent access to an "insurance agency"

- State-contingent contracts enforceable only on those occasions
- Other times:
 - Households borrow or lend only through intermediaries
 - One-period contracts
 - Riskless nominal rate different for savers and borrowers

Consequence:
- Long-run marginal utility of income same for all households (regardless of history of spending opportunities)
- MUI and expenditure same each period for households of a given type
Model: Incomplete markets

- Aggregation simplified by assuming intermittent access to an "insurance agency"
 - State-contingent contracts enforceable only on those occasions

Consequence:
- Long-run marginal utility of income same for all households (regardless of history of spending opportunities)
- MUI and expenditure same each period for households of a given type
Aggregation simplified by assuming intermittent access to an "insurance agency"

- State-contingent contracts enforceable only on those occasions
- Other times:
 - households borrow or lend only through intermediaries
 - one-period contracts
 - riskless nominal rate different for savers and borrowers

Consequence:
- long-run marginal utility of income same for all households (regardless of history of spending opportunities)
- MUI and expenditure same each period for households of a given type
Model: Incomplete markets

- Aggregation simplified by assuming intermittent access to an "insurance agency"
 - State-contingent contracts enforceable only on those occasions
 - Other times:
 - households borrow or lend only through intermediaries
 - one-period contracts
 - riskless nominal rate different for savers and borrowers

- Consequence:
 long-run marginal utility of income same for all households
 (regardless of history of spending opportunities)
Model: Incomplete markets

- Aggregation simplified by assuming intermittent access to an "insurance agency"
 - State-contingent contracts enforceable only on those occasions
 - Other times:
 - Households borrow or lend only through intermediaries
 - One-period contracts
 - Riskless nominal rate different for savers and borrowers

- Consequence:
 - Long-run marginal utility of income same for all households (regardless of history of spending opportunities)

- MUI and expenditure same each period for households of a given type
Euler equation for each type \(\tau \in \{b, s\} \):

\[
\lambda^\tau_t = \beta E_t \left\{ \frac{1 + i^\tau_t}{\Pi_{t+1}} \left[\delta \lambda^\tau_{t+1} + (1 - \delta) \lambda_{t+1} \right] \right\}
\]

where

\[
\lambda_t \equiv \pi_b \lambda^b_t + \pi_s \lambda^s_t
\]
Euler equation for each type $\tau \in \{b, s\}$:

$$\lambda_{t}^{\tau} = \beta E_{t} \left\{ \frac{1 + i_{t}^{\tau}}{\Pi_{t+1}} \left[\delta \lambda_{t+1}^{\tau} + (1 - \delta) \lambda_{t+1} \right] \right\}$$

where

$$\lambda_{t} \equiv \pi_{b} \lambda_{t}^{b} + \pi_{s} \lambda_{t}^{s}$$

Aggregate demand relation:

$$Y_{t} = \sum_{\tau} c_{t}^{\tau} (\lambda_{t}^{\tau}; \zeta_{t}) + G_{t} + \Xi_{t}$$

where Ξ_{t} denotes resources used in intermediation
Model: Log-linear IS

- Intertemporal IS relation:

\[\hat{Y}_t = E_{t+1} \hat{Y}_{t+1} - \bar{\sigma} [\hat{i}^{avg}_t - \pi_{t+1}] - E_t \Delta g_{t+1} \]
\[- E_t \Delta \hat{\Xi}_{t+1} - \bar{\sigma} s_{\Omega} \hat{\Omega}_t + \bar{\sigma} (s_{\Omega} + \psi_{\Omega}) E_t \hat{\Omega}_{t+1} \]

where

\[\hat{i}^{avg}_t \equiv \pi_b \hat{i}_t^b + \pi_s \hat{i}_t^d \]
\[\hat{\Omega}_t \equiv \hat{\lambda}_t^b - \hat{\lambda}_t^s \]
\[g_t \equiv \text{composite exogenous disturbance to expenditure} \]
\[\bar{\sigma} \equiv \pi_b s_b \sigma_b + \pi_s s_s \sigma_s > 0 \]
\[s_{\Omega} \equiv \pi_b \pi_s \frac{s_b \sigma_b - s_s \sigma_s}{\bar{\sigma}} \]
Determination of the marginal utility gap:

\[\hat{\Omega}_t = \hat{\omega}_t + \delta E_t \hat{\Omega}_{t+1} \]

where

\[\hat{\omega}_t \equiv \hat{i}_t^b - \hat{i}_t^d \]

\[\hat{\delta} < 1 \]
Financial intermediation technology:

\[d_t = b_t + \Xi_t(b_t) \]

where \(\Xi_t(b_t) \) is positive and convex
Model: Financial intermediation

- Financial intermediation technology:
 \[d_t = b_t + \Xi_t (b_t) \]
 where \(\Xi_t (b_t) \) is positive and convex

- Competitive banking sector would imply equilibrium credit spread
 \[\omega_t (b_t) = \Xi_{bt} (b_t) \]
Financial intermediation technology:

\[d_t = b_t + \Xi_t (b_t) \]

where \(\Xi_t (b_t) \) is positive and convex.

Competitive banking sector would imply equilibrium credit spread

\[\omega_t (b_t) = \Xi_{bt} (b_t) \]

More generally,

\[1 + \omega_t (b_t) = \mu_t^b (b_t) (1 + \Xi_{bt} (b_t)) \]

where \(\mu_t^b \) is markup in banking sector.
Monetary policy:

CB can effectively control deposit rate, i^d_t.
Model: Interest rates

- Monetary policy:
 - CB can effectively control deposit rate, i^d_t
 - in model is equivalent to policy rate (interbank funding rate)
Monetary policy:
- CB can effectively control deposit rate, i_t^d
- in model is equivalent to policy rate (interbank funding rate)

Lending rate determined by spread $\omega_t (b_t)$:

$$\hat{i}_t^b = \hat{i}_t^d + \hat{\omega}_t$$
Model: Interest rates

- Monetary policy:
 - CB can effectively control deposit rate, \(i_t^d \)
 - in model is equivalent to policy rate (interbank funding rate)

- Lending rate determined by spread \(\omega_t (b_t) \):
 \[
 \hat{i}_t^b = \hat{i}_t^d + \hat{\omega}_t
 \]

- Rate that matters for the IS relation:
 \[
 \hat{i}_t^{avg} = \hat{i}_t^d + \pi_b \hat{\omega}_t
 \]
Model: Supply side

- Same as in basic NK model
Same as in basic NK model
... but must aggregate labor supply of two types
Model: Supply side

- Same as in basic NK model
 ... but must aggregate labor supply of two types

- Labor only variable factor of production for each differentiated good
Model: Supply side

- Same as in basic NK model
 ... but must aggregate labor supply of two types

 - Labor only variable factor of production for each differentiated good
 - Firms wage-takers in labor market
Model: Supply side

- Same as in basic NK model
 - ... but must aggregate labor supply of two types
 - Labor only variable factor of production for each differentiated good
 - Firms wage-takers in labor market
 - Competitive labor supply
Model: Supply side

- Same as in basic NK model
 ... but must aggregate labor supply of two types

 - Labor only variable factor of production for each differentiated good
 - Firms wage-takers in labor market
 - Competitive labor supply
 ... except for exogenous wage markup process, μ_t^w
Model: Supply side

- Same as in basic NK model
 ... but must aggregate labor supply of two types

- Labor only variable factor of production for each differentiated good

- Firms wage-takers in labor market

- Competitive labor supply
 ... except for exogenous wage markup process, μ^w_t

- Dixit-Stiglitz monopolistic competition
Model: Supply side

- Same as in basic NK model
 ... but must aggregate labor supply of two types

- Labor only variable factor of production for each differentiated good
- Firms wage-takers in labor market
- Competitive labor supply
 ... except for exogenous wage markup process, μ_t^W
- Dixit-Stiglitz monopolistic competition
- Calvo staggering of adjustment of individual prices
Model: Supply side

- Same as in basic NK model
 ... but must aggregate labor supply of two types

- Labor only variable factor of production for each differentiated good

- Firms wage-takers in labor market

- Competitive labor supply
 ... except for exogenous wage markup process, \(\mu^w_t \)

- Dixit-Stiglitz monopolistic competition

- Calvo staggering of adjustment of individual prices

- Only difference: labor supply depends on both MUI: \(\lambda^b_t \) and \(\lambda^s_t \)
Model: AS relation

- Log-linear AS generalizes NK Phillips curve:

\[
\pi_t = \beta E_t \pi_{t+1} + \kappa (\hat{Y}_t - \hat{Y}_t^n) + u_t + \xi (s_\Omega + \pi_b - \gamma_b) \hat{\Omega}_t - \xi \bar{\sigma}^{-1} \hat{\Xi}_t
\]

where

- \(\hat{Y}_t^n, u_t, \kappa, \xi \) defined exactly as in basic NK

- \(\bar{\sigma} \) is average of elasticity of two types

- \(\gamma_b \equiv \pi_b \left(\bar{\lambda}^b / \bar{\lambda} \right)^{1/\nu} \), with \(\bar{\lambda} \) an average of MUI of two types
A simple special case:

- credit spread ω_t evolves exogenously
- intermediation uses no resources (i.e., spread is pure markup)
What difference do frictions make?

- A simple special case:
 - credit spread ω_t evolves exogenously
 - intermediation uses no resources (i.e., spread is pure markup)

- Then
 - $\hat{\Xi}_t$ terms vanish
 - $\hat{\omega}_t$ exogenous $\Rightarrow \hat{\Omega}_t$ exogenous
What difference do frictions make?

- A simple special case:
 - credit spread ω_t evolves exogenously
 - intermediation uses no resources (i.e., spread is pure markup)

- Then
 - $\hat{\Xi}_t$ terms vanish
 - $\hat{\omega}_t$ exogenous \Rightarrow $\hat{\Omega}_t$ exogenous

- Usual 3-equation model suffices to determine paths of $\{\hat{Y}_t, \pi_t, i_{avg}^t\}$
 - AS relation
 - IS relation
 - MP relation (written in terms of i_{avg}^t, given exogenous spread)
What difference do frictions make?

- Difference made by credit frictions:
 - The interest rate in this system is \hat{i}_t^{avg} (not same the policy rate)
 - Additional disturbance terms in each of the 3 equations
What difference do frictions make?

- Difference made by credit frictions:
 - The interest rate in this system is \hat{i}_{t}^{avg} (not same the policy rate)
 - Additional disturbance terms in each of the 3 equations

- Responses of $\{\hat{Y}_t, \pi_t, \hat{i}_{t}^{avg}\}$ to **non-financial shocks**
 (under a given monetary policy rule, e.g. Taylor rule)
 - identical to those predicted by basic NK model
What difference do frictions make?

- Difference made by credit frictions:
 - The interest rate in this system is \hat{i}_{t}^{avg} (not same the policy rate)
 - Additional disturbance terms in each of the 3 equations

- Responses of $\{\hat{Y}_t, \pi_t, \hat{i}_{t}^{avg}\}$ to non-financial shocks
 (under a given monetary policy rule, e.g. Taylor rule)
 - identical to those predicted by basic NK model
 - no change in conclusions about desirability of a given rule, from standpoint of stabilizing in response to those disturbances
What difference do frictions make?

- Difference made by credit frictions:
 - The interest rate in this system is $\hat{\bar{i}}_{t}^{avg}$ (not same the policy rate)
 - Additional disturbance terms in each of the 3 equations

- Responses of $\{\hat{Y}_{t}, \pi_{t}, \hat{\bar{i}}_{t}^{avg}\}$ to **non-financial shocks**
 (under a given monetary policy rule, e.g. Taylor rule)
 - identical to those predicted by basic NK model
 - no change in conclusions about desirability of a given rule,
 from standpoint of stabilizing in response to those disturbances

- Responses to **financial shocks** equivalent to responses to 3 shocks in simultaneous:
 - monetary policy shock
 - "cost-push" shock
 - shift in natural rate of interest
What difference do frictions make?

- General case
 - Ξ_t and/or ω_t depend on volume of lending b_t
What difference do frictions make?

- General case
 - Ξ_t and/or ω_t depend on volume of lending b_t
 - Need to include law of motion for private debt b_t
What difference do frictions make?

- General case
 - Ξ_t and/or ω_t depend on volume of lending b_t
 - Need to include law of motion for private debt b_t

- Resort to numerical solution of calibrated examples
 - see how much difference the credit frictions make
Preferences heterogeneity:

- assume equal probability of two types, \(\pi_b = \pi_s = 0.5 \)
- \(\delta = 0.975 \) (average time that type persists = 10 years)
Preferences heterogeneity:

- assume equal probability of two types, $\pi_b = \pi_s = 0.5$
- $\delta = 0.975$ (average time that type persists = 10 years)

Assume $C^b / C^s = 3.67$ in steady state

- given $s_c = 0.7$, this implies $s_b = 1.1$ and $s_s = 0.3$
- implied steady-state debt: $\bar{b} / \bar{Y} \approx 0.65$
Preferences heterogeneity:
- assume equal probability of two types, $\pi_b = \pi_s = 0.5$
- $\delta = 0.975$ (average time that type persists = 10 years)

Assume $C^b / C^s = 3.67$ in steady state
- given $s_c = 0.7$, this implies $s_b = 1.1$ and $s_s = 0.3$
- implied steady-state debt: $\bar{b} / \bar{Y} \approx 0.65$

Assume $\sigma_b / \sigma_s = 5$
- implies credit contracts in response to monetary policy tightening (consistent with VAR evidence)
Financial frictions:

- Resource costs: $\Xi_t(b) = \tilde{\Xi}_t b_t^n$
- Exogenous markup: μ_t^b (no steady state markup: $\bar{\mu}^b = 1$)
Financial frictions:

- Resource costs: $\Xi_t(b) = \Xi_t b_t^\eta$
- Exogenous markup: μ_t^b (no steady state markup: $\bar{\mu}^b = 1$)

Resource costs imply

- steady-state credit spread $\bar{\omega} = 2.0$ percent per annum (median spread between FRB C&I loan rate and FF rate)
- $\bar{\lambda}^b / \bar{\lambda}^s = 1.22$
Calibration

- Financial frictions:
 - Resource costs: \(\Xi_t(b) = \Xi_t b_t^\eta \)
 - Exogenous markup: \(\mu^b_t \) (no steady state markup: \(\bar{\mu}^b = 1 \))

- Resource costs imply
 - steady-state credit spread \(\bar{\omega} = 2.0 \) percent per annum (median spread between FRB C&I loan rate and FF rate)
 - \(\bar{\lambda}^b / \bar{\lambda}^s = 1.22 \)

- Calibrate \(\eta \)
 - 1% increase in credit raises spread by 0.10% (per annum) (relative VAR responses of credit, spread)
 - requires \(\eta = 6.06 \)
Monetary policy rule:

\[\hat{i}_t^d = \phi_\pi \pi_t + \phi_y \hat{Y}_t + \epsilon_m^t \]

with \(\phi_\pi = 2 \) and \(\phi_y = 0.75/4 \)
Numerical results: Taylor rule

- **Monetary policy rule:**
 \[\hat{i}_t^d = \phi_{\pi} \pi_t + \phi_y \hat{Y}_t + \varepsilon_t^m \]
 with \(\phi_{\pi} = 2 \) and \(\phi_y = 0.75/4 \)

- **Compare 3 model specifications:**
 - **FF model:** model with heterogeneity and credit frictions
 - **No FF model:** same heterogeneity, but \(\omega_t = \Xi_t = 0, \forall t \)
 - **RepHH model:** representative household w/ intertemporal elasticity \(\bar{\sigma} \)
Numerical results: Taylor rule

Responses to monetary policy shock
Numerical results: Taylor rule

Responses to technology shock
Numerical results: Taylor rule

Responses to wage markup shock
Numerical results: Taylor rule

Responses to shock to government purchases
Numerical results: Taylor rule

Responses to shock to government debt
Numerical results: Taylor rule

Responses to shock to demand of savers
Optimal policy

Natural objective for stabilization policy: average expected utility

\[E_0 \sum_{t=0}^{\infty} \beta U \left(Y_t, \lambda^b_t, \lambda^s_t, \Delta_t; \zeta_t \right) \]

where

\[U \left(Y_t, \lambda^b_t, \lambda^s_t, \Delta_t; \zeta_t \right) \equiv \pi_b u^b \left(c^b \left(\lambda^b_t; \zeta_t \right); \zeta_t \right) + \pi_s u^s \left(c^s \left(\lambda^s_t; \zeta_t \right); \zeta_t \right) \]

\[- \frac{1}{1 + \nu} \left(\frac{\lambda_t}{\tilde{\Lambda}_t} \right)^{-\frac{1+\nu}{\nu}} \tilde{H}_t^{-\nu} \left(\frac{Y_t}{A_t} \right)^{1+\omega_y} \Delta_t \]

and

- \(\tilde{\lambda}_t / \tilde{\Lambda}_t \) is decreasing function of \(\lambda^b_t / \lambda^s_t \)
- total disutility of producing is increasing function of MU gap
Optimal policy: LQ approximation

- Compute a quadratic approximation to welfare measure in the case of small fluctuations around optimal steady state.
Optimal policy: LQ approximation

- Compute a quadratic approximation to welfare measure in the case of small fluctuations around optimal steady state

- Results especially simple in special case:
 - No steady-state distortion to level of output
 \(P = MC, \frac{W}{P} = MRS \) (Rotemberg-Woodford, 1997)
 - No steady-state credit frictions: \(\ddot{\omega} = \ddot{\Xi} = \ddot{\Xi}_b = 0 \)
 - Allow for shocks to the size of credit frictions
Approximate objective for the special case:

\[
\begin{align*}
\text{max expected utility} & \iff \min \text{quadratic loss function} \\
& \text{(to 2nd order)}
\end{align*}
\]
Optimal policy: LQ approximation

- Approximate objective for the special case:
 - \max expected utility $\iff \min$ quadratic loss function (to 2^{nd} order)

 $$\sum_{t=0}^{\infty} \beta^t \left[\pi_t^2 + \lambda_y (\hat{Y}_t - \hat{Y}_t^n)^2 + \lambda_\Omega \hat{\Omega}_t^2 + \lambda_\Xi \hat{\Xi}_b \hat{b}_t \right]$$

 - $\lambda_y > 0$ and \hat{Y}_t^n same as in basic NK model
 - New weights: $\lambda_\Omega, \lambda_\Xi > 0$
Optimal policy: LQ approximation

Approximate objective for the special case:

- max expected utility \iff min quadratic loss function (to 2nd order)

$$\sum_{t=0}^{\infty} \beta^t \left[\pi_t^2 + \lambda_y (\hat{Y}_t - \hat{Y}_t^n)^2 + \lambda_\Omega \hat{\Omega}_t^2 + \lambda_\Xi \hat{\Xi}_{bt} \hat{b}_t\right]$$

- $\lambda_y > 0$ and \hat{Y}_t^n same as in basic NK model
- New weights: $\lambda_\Omega, \lambda_\Xi > 0$

LQ problem: minimize loss function subject to log-linear constraints

- AS relation
- IS relation
- law of motion for \hat{b}_t
- relation between $\hat{\Omega}_t$ and expected credit spreads
Consider special case:

- No resources used in intermediation ($\Xi_t (b) = 0$)
- Financial markup μ_t^b exogenous
Optimal policy: LQ approximation

Consider special case:

- No resources used in intermediation \((\Xi_t (b) = 0)\)
- Financial markup \(\mu_t^b\) exogenous

Result:

- Optimal policy characterized by same target criterion as in basic NK model

\[
\pi_t + \frac{\lambda_y}{\kappa} (x_t - x_{t-1}) = 0
\]

"flexible inflation targeting"
Consider special case:

- No resources used in intermediation \((\Xi_t(b) = 0)\)
- Financial markup \(\mu_t^b\) exogenous

Result:

- Optimal policy characterized by same target criterion as in basic NK model

\[
\pi_t + \frac{\lambda_y}{\kappa} (x_t - x_{t-1}) = 0
\]

"Flexible inflation targeting"

But, state-contingent path of policy rate required to implement target criterion not the same
Implementing optimal policy: Interest rate rule

- Instrument rule to implement the above target criterion:
 - Given
 - lagged variables
 - current exogenous shocks
 - observed current expectations of future inflation and output
 - solve AS and IS relations for target i^d_t
 s.t. $\{\pi_t, x_t\}$ satisfy target relation

What Evans-Honkapohja (2003) call “expectations-based” rule for implementation of optimal policy

Desirable properties:
- there are no REE other than those in which target criterion holds
- ensures determinacy of REE in this example, also implies “E-stability” of REE
- convergence of least-squares learning dynamics to REE
Implementing optimal policy: Interest rate rule

- Instrument rule to implement the above target criterion:
 - Given
 - lagged variables
 - current exogenous shocks
 - observed current expectations of future inflation and output
 - solve AS and IS relations for target i_t^d
 s.t. $\{\pi_t, x_t\}$ satisfy target relation

- What Evans-Honkapohja (2003) call "expectations-based" rule for implementation of optimal policy
Implementing optimal policy: Interest rate rule

- Instrument rule to implement the above target criterion:
 - Given
 - lagged variables
 - current exogenous shocks
 - observed current expectations of future inflation and output
 - solve AS and IS relations for target i^d_t
 s.t. $\{\pi_t, x_t\}$ satisfy target relation

- What Evans-Honkapohja (2003) call "expectations-based" rule for implementation of optimal policy

- Desirable properties:
 - there are no REE other than those in which target criterion holds
 \Rightarrow ensures determinacy of REE
Implementing optimal policy: Interest rate rule

- Instrument rule to implement the above target criterion:
 - Given
 - lagged variables
 - current exogenous shocks
 - observed current expectations of future inflation and output
 - solve AS and IS relations for target i_t^d
 s.t. $\{\pi_t, x_t\}$ satisfy target relation

- What Evans-Honkapohja (2003) call "expectations-based" rule for implementation of optimal policy

- Desirable properties:
 - there are no REE other than those in which target criterion holds
 \Rightarrow ensures determinacy of REE
 - in this example, also implies "E-stability" of REE
 \Rightarrow convergence of least-squares learning dynamics to REE
Implementable rule:

\[
\hat{r}_t^d = \hat{r}_t^n + \phi_u u_t + (1 + \beta \phi_u) E_t \pi_{t+1} + \bar{\sigma}^{-1} E_t x_{t+1} - \phi_y x_{t-1}
\]

\[
- (\pi_b + \delta^{-1} s_\Omega) \hat{\omega}_t + ((\delta^{-1} - 1) + \phi_u \xi) s_\Omega \hat{\Omega}_t
\]

where

\[
\phi_u \equiv \frac{\kappa \bar{\sigma}^{-1}}{\lambda_y + \kappa^2}
\]

\[
\phi_y \equiv \frac{\lambda_y \bar{\sigma}^{-1}}{\lambda_y + \kappa^2}
\]
Implementing optimal policy: Interest rate rule

- Implementable rule:

\[
\hat{i}_t^d = \hat{r}_t^n + \phi_u u_t + (1 + \beta \phi_u) E_t \pi_{t+1} + \bar{\sigma}^{-1} E_t x_{t+1} - \phi_y x_{t-1} \\
- (\pi_b + \delta^{-1} s_\Omega) \hat{\omega}_t + ((\delta^{-1} - 1) + \phi_u \xi) s_\Omega \hat{\Omega}_t
\]

where

\[
\phi_u \equiv \frac{\kappa \bar{\sigma}^{-1}}{\lambda_y + \kappa^2}
\]

\[
\phi_y \equiv \frac{\lambda_y \bar{\sigma}^{-1}}{\lambda_y + \kappa^2}
\]

- This is a forward-looking Taylor rule, w/ adjustments proportional to
 - the credit spread
 - the marginal-utility gap
Implementing optimal policy: Interest rate rule

- Note that if
 - \(s_b \sigma_b >> s_s \sigma_s \Rightarrow s_\Omega \approx \pi_s \)
 - \(\delta \approx 1 \)
Implementing optimal policy: Interest rate rule

- Note that if
 - $s_b \sigma_b \gg s_s \sigma_s \Rightarrow s_\Omega \approx \pi_s$
 - $\delta \approx 1$
 - then rule becomes approximately

$$\hat{i}_t^d = ... - \hat{\omega}_t + \phi_\Omega \hat{\Omega}_t$$
Implementing optimal policy: Interest rate rule

- Note that if
 - \(s_b \sigma_b >> s_s \sigma_s \Rightarrow s_\Omega \approx \pi_s \)
 - \(\delta \approx 1 \)
 - then rule becomes approximately

 \[
 \hat{r}_t^d = ... - \hat{\omega}_t + \phi_\Omega \hat{\Omega}_t
 \]

- In calibration \(\phi_\Omega \) is also quite small (0.04)
Implementing optimal policy: Interest rate rule

- Note that if
 - \(s_b \sigma_b \gg s_s \sigma_s \Rightarrow s_\Omega \approx \pi_s \)
 - \(\delta \approx 1 \)
- then rule becomes approximately

\[
\dot{i}_t^d = ... - \hat{\omega}_t + \phi_\Omega \hat{\Omega}_t
\]

- In calibration \(\phi_\Omega \) is also quite small (0.04)
 - 100 percent spread adjustment close to optimal
Implementing optimal policy: Interest rate rule

- Note that if

 - \(s_b \sigma_b >> s_s \sigma_s \Rightarrow s_\Omega \approx \pi_s \)

 - \(\delta \approx 1 \)

 then rule becomes approximately

 \[
 \hat{r}_d^a = ... - \hat{\omega}_t + \phi_\Omega \hat{\Omega}_t
 \]

- In calibration \(\phi_\Omega \) is also quite small (0.04)

 - 100 percent spread adjustment close to optimal

 ... except in case of very persistent fluctuations in credit spread
Implementing optimal policy: Interest rate rule

- Note that if
 - \(s_b \sigma_b \gg s_s \sigma_s \Rightarrow s_\Omega \approx \pi_s \)
 - \(\delta \approx 1 \)
 - then rule becomes approximately
 \[
 \hat{i}_t^d = \ldots - \hat{\omega}_t + \phi_\Omega \hat{\Omega}_t
 \]

- In calibration \(\phi_\Omega \) is also quite small (0.04)
 - 100 percent spread adjustment close to optimal
 ... except in case of very persistent fluctuations in credit spread

- In this scenario
 - it is really only \(i_t^b \) that matters much to economy
 - simple intuition for spread adjustment is reasonably accurate
Implementing optimal policy: Interest rate rule

- For other parameterizations
 - 100 percent spread adjustment not optimal
Implementing optimal policy: Interest rate rule

- For other parameterizations
 - 100 percent spread adjustment not optimal

- For example
 - if $s_b \sigma_b = s_s \sigma_s$, optimal rule is
 \[
 \hat{i}_t^d = \ldots - \pi_b \hat{\omega}_t
 \]
Implementing optimal policy: Interest rate rule

- For other parameterizations
 - 100 percent spread adjustment not optimal

- For example
 - if $s_b \sigma_b = s_s \sigma_s$, optimal rule is

$$\hat{i}_t^d = \ldots - \pi_b \hat{\omega}_t$$

- effectively an instrument rule in terms of \hat{i}_t^{avg}, rather than \hat{i}_t^d or \hat{i}_t^b
Numerical results: Optimal policy

- General case

 - ω_t and/or Ξ_t depend on b_t
Numerical results: Optimal policy

- **General case**

 - ω_t and/or Ξ_t depend on b_t

 - target criterion no longer exact characterization of optimal policy
Numerical results: Optimal policy

- General case
 - \(\omega_t \) and/or \(\Xi_t \) depend on \(b_t \)
 - target criterion no longer exact characterization of optimal policy

- Numerical results suggest
 - target criterion still fairly good approximation to optimal policy
Numerical results: Optimal policy

Responses to technology shock
Numerical results: Optimal policy

Responses to wage markup shock
Numerical results: Optimal policy

Responses to shock to government purchases
Numerical results: Optimal policy

Responses to shock to demand of savers
Numerical results: Optimal policy

Responses to financial shock
Rule of thumb suggested by various authors:
(McCulley and Toloui, 2008; Taylor, 2008)

- adjust intercept of Taylor rule in proportion to changes in spreads

\[\hat{i}_t^d = \phi_\pi \pi_t + \phi_y \hat{Y}_t - \phi_\omega \hat{\omega}_t \]
Rule of thumb suggested by various authors: (McCulley and Toloui, 2008; Taylor, 2008)

- adjust intercept of Taylor rule in proportion to changes in spreads

\[\hat{i}_t^d = \phi_\pi \pi_t + \phi_y \hat{Y}_t - \phi_\omega \hat{\omega}_t \]

- McCulley-Toloui, Taylor suggest 100 percent adjustment, \(\phi_\omega = 1 \)
Spread-adjusted Taylor rule

- Rule of thumb suggested by various authors: (McCulley and Toloui, 2008; Taylor, 2008)
 - adjust intercept of Taylor rule in proportion to changes in spreads

\[\hat{i}_t = \phi_\pi \pi_t + \phi_y \hat{Y}_t - \phi_\omega \hat{\omega}_t \]

- McCulley-Toloui, Taylor suggest 100 percent adjustment, \(\phi_\omega = 1 \)

- Equivalent to having a Taylor rule for the borrowing rate, rather than the interbank funding rate
Rule of thumb suggested by various authors: (McCulley and Toloui, 2008; Taylor, 2008)

- adjust intercept of Taylor rule in proportion to changes in spreads

\[\hat{i}_t^d = \phi_\pi \pi_t + \phi_y \hat{Y}_t - \phi_\omega \hat{\omega}_t \]

- McCulley-Toloui, Taylor suggest 100 percent adjustment, \(\phi_\omega = 1 \)

- Equivalent to having a Taylor rule for the borrowing rate, rather than the interbank funding rate

- We allow for other possible values of \(\phi_\omega \)
Numerical results: Spread-adjusted Taylor rule

Responses to financial shock

Cúrdia and Woodford

Credit Frictions and Optimal Monetary Policy
Numerical results: Spread-adjusted Taylor rule

Responses to a shock to government debt
Numerical results: Spread-adjusted Taylor rule

Responses to a shock to the demand of savers
Numerical results: Spread-adjusted Taylor rule

Responses to a shock to government purchases

Cúrdia and Woodford

Credit Frictions and Optimal Monetary Policy
Numerical results: Spread-adjusted Taylor rule

Responses to a shock to the demand of borrowers

Cúrdia and Woodford
Credit Frictions and Optimal Monetary Policy
Responses to a technology shock
It is often suggested that:

- credit frictions make it desirable for monetary policy to respond to variation in aggregate credit.
Responding to credit

- It is often suggested that:
 - credit frictions make it desirable for monetary policy to respond to variation in aggregate credit

- Christiano et al. (2007) suggest modified Taylor rule

$$\tau^d_t = \phi_\pi \pi_t + \phi_y \hat{Y}_t + \phi_b \hat{b}_t$$

with $\phi_b > 0$
It is often suggested that:

- credit frictions make it desirable for monetary policy to respond to variation in aggregate credit

Christiano et al. (2007) suggest modified Taylor rule

$$\hat{i}^d_t = \phi_\pi \pi_t + \phi_y \dot{Y}_t + \phi_b \hat{b}_t$$

with $\phi_b > 0$

We consider this family of rules, allowing also for $\phi_b < 0$
Numerical results: Responding to credit

Responses to financial shock
Numerical results: Responding to credit

Responses to a shock to government purchases
Numerical results: Responding to credit

Responses to a technology shock

Cúrdia and Woodford

Credit Frictions and Optimal Monetary Policy
Provisional Conclusions

- Time-varying credit spreads do not require fundamental modification of one’s view of monetary transmission mechanism
Provisional Conclusions

Time-varying credit spreads do not require fundamental modification of one's view of monetary transmission mechanism.

- In a special case: same "3-equation model" continues to apply
 - simply with additional disturbance terms
Provisional Conclusions

- Time-varying credit spreads do not require fundamental modification of one’s view of monetary transmission mechanism
 - In a special case: same "3-equation model" continues to apply
 - simply with additional disturbance terms
 - More generally, a generalization of basic NK model
 - that retains many qualitative features of that model of the transmission mechanism
Provisional Conclusions

- Time-varying credit spreads do not require fundamental modification of one’s view of monetary transmission mechanism

 - In a special case: same "3-equation model" continues to apply
 - simply with additional disturbance terms

 - More generally, a generalization of basic NK model
 - that retains many qualitative features of that model of the transmission mechanism

 - Quantitatively, basic NK model remains a good approximation
 - especially if little endogeneity of credit spreads
Recognizing importance of credit frictions does not require reconsideration of de-emphasis of monetary aggregates in NK models
Recognizing importance of credit frictions does not require reconsideration of de-emphasis of monetary aggregates in NK models.

Here: model w/ credit frictions, no reference to money whatsoever.
Recognizing importance of credit frictions does not require reconsideration of de-emphasis of monetary aggregates in NK models

- Here: model w/ credit frictions, no reference to money whatsoever
- Credit more important state variable than money
Recognizing importance of credit frictions does not require reconsideration of de-emphasis of monetary aggregates in NK models.

Here: model w/ credit frictions, no reference to money whatsoever

Credit more important state variable than money

However, interest-rate spreads really what matter

 more than variations in quantity of credit
Provisional Conclusions

- Spread-adjusted Taylor rule can improve upon standard Taylor rule under some circumstances

Guideline for policy:
- Base policy decisions on target criterion relating inflation to output gap (optimal in absence of credit frictions).
- Take account of credit frictions only in model used to determine policy action required to fulfill target criterion.
Provisional Conclusions

- Spread-adjusted Taylor rule can improve upon standard Taylor rule under some circumstances

 - However, optimal degree of adjustment not same for all shocks
Provisional Conclusions

- Spread-adjusted Taylor rule can improve upon standard Taylor rule under some circumstances
 - However, optimal degree of adjustment not same for all shocks
 - Such a rule is inferior to commitment to a target criterion
Provisional Conclusions

- Spread-adjusted Taylor rule can improve upon standard Taylor rule under some circumstances
 - However, optimal degree of adjustment not same for all shocks
 - Such a rule is inferior to commitment to a target criterion

- Guideline for policy:
Provisional Conclusions

- Spread-adjusted Taylor rule can improve upon standard Taylor rule under some circumstances
 - However, optimal degree of adjustment not same for all shocks
 - Such a rule is inferior to commitment to a target criterion

- Guideline for policy:
 - base policy decisions on target criterion relating inflation to output gap (optimal in absence of credit frictions)
Provisional Conclusions

- Spread-adjusted Taylor rule can improve upon standard Taylor rule under some circumstances
 - However, optimal degree of adjustment not same for all shocks
 - Such a rule is inferior to commitment to a target criterion

- Guideline for policy:
 - base policy decisions on target criterion relating inflation to output gap (optimal in absence of credit frictions)
 - Take account of credit frictions only in model used to determine policy action required to fulfill target criterion