Central Bank Misperceptions and the Role of Money in Interest Rate Rules by G. Beck and V. Wieland

F. Collard

Toulouse School of Economics
Prepared for NBB Conference, 16-17 October 2008

Motivation

- Basic Observation: The recent research program on monetary policy has essentially abstracted from ... Money!

Motivation

- Basic Observation: The recent research program on monetary policy has essentially abstracted from ... Money!
- Why?
- Money does not seem to matter (Ireland ...

Motivation

- Basic Observation: The recent research program on monetary policy has essentially abstracted from ... Money!
- Why?
- Money does not seem to matter (Ireland ...)
- Once an interest rate is chosen, so is money

Motivation

- Basic Observation: The recent research program on monetary policy has essentially abstracted from ... Money!
- Why?
- Money does not seem to matter (Ireland ...)
- Once an interest rate is chosen, so is money

Motivation

- Lack of discipline, as it does not formally tight the model to the long-run behavior of nominal variables
- Otherwise stated, separation between low and business cycle frequencies in these models;
- This remains an unresolved issue on the frontier of macroeconomic theory. Until it is resolved, monetary information should continue to be used as a kind of add-on or cross-check.(Lucas, 2007)

Motivation

- Lack of discipline, as it does not formally tight the model to the long-run behavior of nominal variables
- Otherwise stated, separation between low and business cycle frequencies in these models;
- This remains an unresolved issue on the frontier of macroeconomic theory. Until it is resolved, monetary information should continue to be used as a kind of add-on or cross-check.(Lucas, 2007)

Motivation

- Lack of discipline, as it does not formally tight the model to the long-run behavior of nominal variables
- Otherwise stated, separation between low and business cycle frequencies in these models;
- This remains an unresolved issue on the frontier of macroeconomic theory. Until it is resolved, monetary information should continue to be used as a kind of add-on or cross-check.(Lucas, 2007)

This paper

- Assigns a role for money in monetary policy in K/NK models
- Why? Information imperfections
- Use monetary information as a cross-check to avoid inflation bias induced by imperfect information.

This paper

- Assigns a role for money in monetary policy in K/NK models
- Why? Information imperfections
- Use monetary information as a cross-check to avoid inflation bias induced by imperfect information.

This paper

- Assigns a role for money in monetary policy in K/NK models
- Why? Information imperfections
- Use monetary information as a cross-check to avoid inflation bias induced by imperfect information.

Simple Model

- Focus on the Keynesian model (simplicity)

$$
\begin{aligned}
\pi_{t} & =\lambda\left(y_{t}-z_{t}\right)+\pi_{t-1}+u_{t} \\
y_{t} & =y_{t-1}-\varphi\left(i_{t}-\pi_{t-1}\right)+g_{t} \\
m_{t}-p_{t} & =\gamma_{y} y_{t}-\gamma_{i} i_{t}+s_{t}
\end{aligned}
$$

- Monetary authorities aim at

Q: Ad hoc criterion: valid as long as there is no trade-off btw output stabilization and inflation (and money).

Simple Model

- Focus on the Keynesian model (simplicity)

$$
\begin{aligned}
\pi_{t} & =\lambda\left(y_{t}-z_{t}\right)+\pi_{t-1}+u_{t} \\
y_{t} & =y_{t-1}-\varphi\left(i_{t}-\pi_{t-1}\right)+g_{t} \\
m_{t}-p_{t} & =\gamma_{y} y_{t}-\gamma_{i} i_{t}+s_{t}
\end{aligned}
$$

- Monetary authorities aim at

$$
\min \frac{1}{2} \mathbb{E}\left[\sum_{i=0}^{\infty} \beta^{i}\left(\pi_{t+i}-\pi^{\star}\right)^{2} \mid \Omega_{t}\right]
$$

Q: Ad hoc criterion: valid as long as there is no trade-off btw output stabilization and inflation (and money).

Simple Model

- Focus on the Keynesian model (simplicity)

$$
\begin{aligned}
\pi_{t} & =\lambda\left(y_{t}-z_{t}\right)+\pi_{t-1}+u_{t} \\
y_{t} & =y_{t-1}-\varphi\left(i_{t}-\pi_{t-1}\right)+g_{t} \\
m_{t}-p_{t} & =\gamma_{y} y_{t}-\gamma_{i} i_{t}+s_{t}
\end{aligned}
$$

- Monetary authorities aim at

$$
\min \frac{1}{2} \mathbb{E}\left[\sum_{i=0}^{\infty} \beta^{i}\left(\pi_{t+i}-\pi^{\star}\right)^{2} \mid \Omega_{t}\right]
$$

Q: Ad hoc criterion: valid as long as there is no trade-off btw output stabilization and inflation (and money).

Simple Model

- Optimal behavior:

$$
\mathbb{E}\left[\pi_{t+i} \mid \Omega_{t}\right]=\pi_{t \mid t}^{e}=\pi^{\star}=0
$$

- No information on g_{t} and $u_{t}: g_{t \mid t}^{e}=u_{t \mid t}^{e}=0$.
- Such that

$$
\begin{aligned}
y_{t} & =z_{t}-\lambda^{-1}\left(\pi_{t-1}+u_{t}\right) \\
y_{t \mid t}^{e} & =z_{t \mid t}^{e}-\lambda^{-1}\left(\pi_{t-1}+u_{t \mid t}^{e}\right)=z_{t \mid t}^{e}-\lambda^{-1} \pi_{t-1}
\end{aligned}
$$

- Optimal rule

$$
i_{t}^{\star}=\left(1+(\varphi \lambda)^{-1}\right) \pi_{t-1}+\varphi^{-1}\left(y_{t-1}-z_{t \mid t}^{e}\right)
$$

Simple Model

- Optimal behavior:

$$
\mathbb{E}\left[\pi_{t+i} \mid \Omega_{t}\right]=\pi_{t \mid t}^{e}=\pi^{\star}=0
$$

- No information on g_{t} and $u_{t}: g_{t \mid t}^{e}=u_{t \mid t}^{e}=0$.
- Such that

- Optimal rule

$$
i_{t}^{*}=\left(1+(\varphi \lambda)^{-1}\right) \pi_{t-1}+\varphi^{-1}\left(y_{t-1}-z_{t \mid t}^{e}\right)
$$

Simple Model

- Optimal behavior:

$$
\mathbb{E}\left[\pi_{t+i} \mid \Omega_{t}\right]=\pi_{t \mid t}^{e}=\pi^{\star}=0
$$

- No information on g_{t} and $u_{t}: g_{t \mid t}^{e}=u_{t \mid t}^{e}=0$.
- Such that

$$
\begin{aligned}
y_{t} & =z_{t}-\lambda^{-1}\left(\pi_{t-1}+u_{t}\right) \\
y_{t \mid t}^{e} & =z_{t \mid t}^{e}-\lambda^{-1}\left(\pi_{t-1}+u_{t \mid t}^{e}\right)=z_{t \mid t}^{e}-\lambda^{-1} \pi_{t-1}
\end{aligned}
$$

- Optimal rule

Simple Model

- Optimal behavior:

$$
\mathbb{E}\left[\pi_{t+i} \mid \Omega_{t}\right]=\pi_{t \mid t}^{e}=\pi^{\star}=0
$$

- No information on g_{t} and $u_{t}: g_{t \mid t}^{e}=u_{t \mid t}^{e}=0$.
- Such that

$$
\begin{aligned}
y_{t} & =z_{t}-\lambda^{-1}\left(\pi_{t-1}+u_{t}\right) \\
y_{t \mid t}^{e} & =z_{t \mid t}^{e}-\lambda^{-1}\left(\pi_{t-1}+u_{t \mid t}^{e}\right)=z_{t \mid t}^{e}-\lambda^{-1} \pi_{t-1}
\end{aligned}
$$

- Optimal rule

$$
i_{t}^{\star}=\left(1+(\varphi \lambda)^{-1}\right) \pi_{t-1}+\varphi^{-1}\left(y_{t-1}-z_{t \mid t}^{e}\right)
$$

Toward Cross Checking

- Show that $\pi_{t}=\lambda e_{t}+\lambda g_{t}+u_{t}$ where $e_{t}=\mathbb{E}\left[y_{t}-z_{t} \mid \Omega_{t}\right]-\left(y_{t}-z_{t}\right)$
- Mean across 1000 draws:

Toward Cross Checking

- Show that $\pi_{t}=\lambda e_{t}+\lambda g_{t}+u_{t}$ where $e_{t}=\mathbb{E}\left[y_{t}-z_{t} \mid \Omega_{t}\right]-\left(y_{t}-z_{t}\right)$
- Mean across 1000 draws:

Inflation Rate

Filtered Money Growth

Toward Cross Checking

- Show that $\pi_{t}=\lambda e_{t}+\lambda g_{t}+u_{t}$ where $e_{t}=\mathbb{E}\left[y_{t}-z_{t} \mid \Omega_{t}\right]-\left(y_{t}-z_{t}\right)$
- Mean across 1000 draws:

Inflation Rate

Filtered Money Growth

Toward Cross Checking

- Show that $\pi_{t}=\lambda e_{t}+\lambda g_{t}+u_{t}$ where $e_{t}=\mathbb{E}\left[y_{t}-z_{t} \mid \Omega_{t}\right]-\left(y_{t}-z_{t}\right)$
- Mean across 1000 draws:

Inflation Rate

Filtered Money Growth

Toward Cross Checking

Q: Assumes bad information throughout. Is it the case?

- Volatility $(65: 4-82: 3)=3.33$, Volatility $(82: 4-93: 4)=2.09$
- Improvements in collection of info. \Longrightarrow may vanish!

Toward Cross Checking

Q: Assumes bad information throughout. Is it the case?

- Volatility $(65: 4-82: 3)=3.33$, Volatility $(82: 4-93: 4)=2.09$

- Improvements in collection of info. \Longrightarrow may vanish!

Toward Cross Checking

Q: Assumes bad information throughout. Is it the case?

- Volatility $(65: 4-82: 3)=3.33$, Volatility $(82: 4-93: 4)=2.09$

- Improvements in collection of info. \Longrightarrow may vanish!

Cross Checking

- Aim: Use money as a cross check to really stabilize prices - Idea:

Cross Checking

- Aim: Use money as a cross check to really stabilize prices
- Idea:
- Define a standardized measure of nominal growth

Cross Checking

- Aim: Use money as a cross check to really stabilize prices
- Idea:
- Define a standardized measure of nominal growth

$$
\kappa_{t}=\frac{\mu_{t}^{f}-\pi^{\star}}{\sigma_{\mu^{f}}}
$$

- If κ_{t} is above a given threshold for N successive periods, then adjust monetary policy

Cross Checking

- Aim: Use money as a cross check to really stabilize prices
- Idea:
- Define a standardized measure of nominal growth

$$
\kappa_{t}=\frac{\mu_{t}^{f}-\pi^{\star}}{\sigma_{\mu^{f}}}
$$

- If κ_{t} is above a given threshold for N successive periods, then adjust monetary policy

$$
i_{t}=i_{t}^{\star}+(\varphi \lambda)^{-1} \mu_{t}^{f}
$$

Cross Checking

Inflation Rate

Filtered Money Growth

Interest Rate Policy

Cross-Checking

- Go back to cross checking: The CB shifts its Taylor rule if

$$
\bigwedge_{i=1}^{N}\left(\left|\kappa_{t-i}\right|>\bar{\kappa}\right)
$$

- Sounds reasonable
- Convenient (simple enough to be implemented)
- Seems to work well

Cross-Checking

- Can the Central Banker really track a perfect measure of money growth?
- Measurement errors \Longrightarrow Need to revise the criterion?
- Need money demand to back out equilibrium path of money growth (needed for cross check)
- Problem: fundamentally unstable econometric estimates

Efficiency

- Is it an efficient rule? (Third or fourth best analysis)
- In the paper: derives the optimal behavior of the CB imposing cross-checking
- In other words: Cross checking is not necessarily an optimal behavior (in particular in a micro-founded model)

Efficiency

- Can it be derived from first principles?
- Can imagine that this reflects a kind of commitment from the CB
- Commit not to let nominal growth go out of the way

$$
\min \mathbb{E}[\left.\sum_{i=0}^{\infty} \beta^{i} \frac{1}{2}\left(\pi_{t+i}-\pi^{\star}\right)^{2}(+\underbrace{\mathscr{C}\left(\mu_{t+i}\right)}_{\text {Management Cost }}) \right\rvert\, \Omega_{t}]
$$

subject to the model and

$$
\sum_{i=1}^{N} \Phi\left(\mu_{t-i}\right) \leqslant \widetilde{\kappa}_{N}
$$

Efficiency

- No commitment: A rule in the same vain as the one exhibited in the paper
- Full commitment: A rule that involves expectations about future money growth \Longrightarrow may be more smoothing.

Efficiency

- What is important?

$$
\bigwedge_{i=1}^{N}\left(\left|\kappa_{t-i}\right|>\bar{\kappa}\right) \text { or } \bigwedge_{i=0}^{N-1}\left(\left|E_{t} \kappa_{t+i}\right|>\bar{\kappa}\right) ?
$$

- Is there an optimal N ?
- Criterion to select the threshold κ ?

