Monetary Aggregates and Liquidity in a Neo-Wicksellian Framework

by

Matthew Canzoneri⁺, Robert Cumby⁺, Behzad Diba⁺ and David López-Salido⁺⁺

forthcoming, Journal of Money, Credit and Banking

- ⁺ Georgetown University
- ⁺⁺ Federal Reserve Board

Monetary Policy Rule: $i_{ffr,t} = \overline{i}_{ffr} + \theta_{\pi}(\pi_t - \overline{\pi}) + \theta_y(\log(y_t - \log(\overline{y})))$ $i_{ffr,t} \equiv i_{c,t}$ in the consumption Euler equation

Monetary policy rule: $i_{ffr,t} = \overline{i}_{ffr} + \theta_{\pi}(\pi_t - \overline{\pi}) + \theta_y(\log(y_t - \log(\overline{y})))$ $i_{ffr,t} \equiv i_{c,t}$ in the consumption Euler equation

modeling monetary aggregates and financial institutions viewed as a needless complication

Monetary policy rule: $i_{ffr,t} = \overline{i}_{ffr} + \theta_{\pi}(\pi_t - \overline{\pi}) + \theta_y(\log(y_t - \log(\overline{y})))$ $i_{ffr,t} \equiv i_{c,t}$ in the consumption Euler equation

modeling monetary aggregates and financial institutions viewed as a needless complication

Question: Does the Neo-Wicksellian model give an adequate account of macro behavior for the business cycle analyst & policy analyst? What is lost if we take this modeling shortcut?

Several Reasons for Concern with NW Model –

- 1. Seems to be a disconnect between $i_{ffr,t}$ and $i_{c,t}$
 - Figure from Canzoneri, Cumby and Diba (JME, October, 2007)

2. Concern by some that neo-Wicksellian models "are coherent as far as they go, but that they are incomplete" – Goodfriend and McCallum (2006) and many others: missing markets that are part of transmission mechanism

- 2. Concern by some that neo-Wicksellian models "are coherent as far as they go, but that they are incomplete" Goodfriend and McCallum (2006) and many others: missing markets that are part of transmission mechanism
- 3. The recent financial "meltdown".

Interest rate spreads quite important; recent macro models have them. But, no model has a sizing up of credit.

Risk is priced, interest rate spreads move to clear the markets.

No: lemons problem; serious information and/or agency problems. Should we be developing models of the current meltdown; or putting financial markets into models of "normal" times.

In this paper, we

Start with a simple neo-Wicksellian model (our NW model).

Complete the modeling by adding banks and a role for government bonds in transactions technology (our BB model).

In this paper, we

Start with a simple neo-Wicksellian model (our NW model).

Complete the modeling by adding banks and a role for government bonds in transactions technology (our BB model).

BB model provides a more complete modeling of economy, but NW model has the virtue of simplicity.

Question: Assume BB model represents "truth". Does the NW model give an adequate account of macro behavior for the business cycle analyst & policy analyst?

NW model: $U_{t} = E_{t} \sum_{j=t}^{\infty} \beta^{j-t} \{ \log(c_{t} - \eta c_{t-1}) + \varphi_{m,t} \log(m_{t}) - \varphi_{n} (1 + \chi)^{-1} n_{t}^{1+\chi} \}$

Cons Euler Eqn: $1/(1 + i_{c,t}) = \beta E_t [(\lambda_{t+1}/\lambda_t)/\Pi_{t+1}]$ where $\lambda_t = MU$ of wealth

NW model:

$$U_{t} = E_{t} \sum_{j=t}^{\infty} \beta^{j-t} \{ \log(c_{t} - \eta c_{t-1}) + \varphi_{m,t} \log(m_{t}) - \varphi_{n}(1 + \chi)^{-1} n_{t}^{1+\chi} \}$$

Cons Euler Eqn: $1/(1 + i_{c,t}) = \beta E_t[(\lambda_{t+1}/\lambda_t)/\Pi_{t+1}]$ where $\lambda_t = MU$ of wealth

Monetary and Fiscal Policy Rules: $\mathbf{i}_{c,t} = 0.8\mathbf{i}_{c,t-1} + 0.2[\bar{\mathbf{i}}_c + \theta_{\pi}(\pi_t - \bar{\pi}) + 0.2(\log(y_t - \log(\bar{y}))] + \boldsymbol{\varepsilon}_{i,t}$

 $liab_t = liab_{t-1}/\Pi_t + def_t$ where liab = m + b

 $\ln(g_{t}) = 0.1 \, \ln(\bar{g}) + 0.9 \, \ln(g_{t-1}) + \varepsilon_{g,t}$

 $\tau_{t} = 0.1\bar{\tau} + 0.9\tau_{t-1} + 0.1\varphi_{f}(b_{t-1} - \bar{b}) \text{ where } \varphi_{f} = 0.018 > \bar{r}_{c}$

A Standard NNS framework:

monopolistic firms; c_t is the usual CES bundle of goods. fixed firm specific k, no investment. Calvo-price setting, flexible wages. A Standard NNS framework:

monopolistic firms; c_t is the usual CES bundle of goods.fixed firm specific k, no investment.Calvo-price setting, flexible wages.

BUT:

CASH demand equation: $\varphi_{m,t}/m_t = \lambda_t (I_{c,t} - 1)/I_c$

Two monetary aggregates in NW model: CASH, LIAB m_t plays no independent role in transmission mechanism liab_t and govt debt management policy do not "matter"

BB model: adds banks and liquid government bonds <u>Households</u> – $U_{t} = E_{t} \sum_{j=t}^{\infty} \beta^{j-t} \{ \log(c_{t} - \eta c_{t-1}) + \phi_{m,t} \log(m_{h,t}) + \phi_{d,t} \log(d_{h,t}) + \phi_{b} \log(b_{h,t}) - \phi_{n}(1+\chi)^{-1} [\mu n_{t}^{1+\chi} + (1-\mu)n_{b,t}^{-1+\chi}] \}$

Cash $(m_{h,t})$ and bank deposits $(d_{h,t})$ are used in transactions.

Govt bonds used by banks, money market funds, mutual funds, pension funds & insurance companies to manage liquidity; we only model banks directly, so we put $b_{h,t}$ in utility.

Four monetary aggregates in BB model:

CASH, LIAB, M3 (= M + D), L (= M3 + LIAB)

Competitive Banks -

issue deposits and loans at a cost (the financial frictions)

$$l_{b,t} = Z_l n_{b,t}$$

 $d_{b,t} = Z_d m_{b,t}^{\delta} b_{b,t}^{1-\delta}$

Competitive Banks -

issue deposits and loans at a cost (the financial frictions)

$$l_{b,t} = Z_l n_{b,t}$$

 $d_{b,t} = Z_d m_{b,t}^{\delta} b_{b,t}^{1-\delta}$

Who borrows from banks? Two variants: Households, Firms

We do not model federal funds market directly: substitutability of fed funds and T-bills $\Rightarrow i_{ffr,t} = i_{g,t}$ $i_{g,t} = 0.8i_{g,t-1} + 0.2[\bar{i}_g + \theta_{\pi}(\pi_t - \bar{\pi}) + 0.2(\log(y_t - \log(\bar{y}))] + \varepsilon_{i,t}$

Spread = $I_{c,t} - I_{g,t} > 0$ since bonds have non-pecuniary return

Bank balance sheet:

$$l_{b,t} + m_{b,t} + b_{b,t} = d_{b,t} + a_{b,t}$$

Bank maximizes:

$$\begin{split} E_{t} \sum_{s=t}^{\infty} \beta^{s-t} \lambda_{s} [(I_{1,s} / \Pi_{s+1}) I_{b,s} + (1 / \Pi_{s+1}) m_{b,s} + (I_{g,s} / \Pi_{s+1}) b_{b,s} \\ - (I_{c,s} / \Pi_{s+1}) a_{b,s} - (I_{d,s} / \Pi_{s+1}) d_{b,s} - w_{s} n_{b,s}] \end{split}$$

Bank's FOCs include:

 $I_{d,t} + \kappa_t = I_{c,t}$ where $\kappa_t = (I_{c,t} - 1)^{\delta} (I_{c,t} - I_{g,t})^{1-\delta} / Z_b \delta^s (1-\delta)^{1-\delta}$ = marg cost of "producing" a loan(recall Cobb-Douglas form: $d_{b,t} = Z_d m_{b,t}^{\delta} b_{b,t}^{-1-\delta}$)

Provision of Liquidity in the BB model:

 $m_t \& b_t$ provide liquidity services to households and banks fiscal policy determines total supply of these assets

 $liab_t = liab_{t-1}/\Pi_t + def_t$ where liab = m + b

OMOs (swaps of m for b) determine composition of liab,

or "effective transactions balances" –

$$\begin{split} d_{b,t} &= Z_d m_{b,t}^{\delta} b_{b,t}^{1-\delta} \\ U_t &= E_t \sum_{j=t}^{\infty} \beta^{j-t} \{ \dots + \phi_{m,t} log(m_{h,t}) + \phi_b log(b_{h,t}) + \dots \} \end{split}$$

Provision of Liquidity in the BB model:

 $m_t \& b_t$ provide liquidity services to households and banks fiscal policy determines total supply of these assets $liab_t = liab_{t-1}/\Pi_t + def_t$ where liab = m + b

OMOs (swaps of m for b) determine composition of liab,

or "effective transactions balances" –

$$\begin{split} & d_{b,t} = Z_d m_{b,t}^{\delta} b_{b,t}^{1-\delta} \\ & U_t = E_t \sum_{j=t}^{\infty} \beta^{j-t} \{ \dots + \phi_{m,t} log(m_{h,t}) + \phi_b log(b_{h,t}) + \dots \} \end{split}$$

Both monetary and fiscal policy affect liquidity, and this changes the usual conditions for P-level determinacy: Canzoneri and Diba (*JME*, 2005) Canzoneri, Cumby, Diba & Lopez-Salido (mimeo, 2006)

Theoretical Implications of Completing the Model:

- The "Liquidity Buffering" effect of liquid govt bonds Consider a contractionary OMO: b ↑ & m ↓ The transactions services of bonds buffer the credit crunch In the model, the buffering effect manifests itself in I_{ct} - I_{g,t} ↓
 - $b \uparrow \Rightarrow$ marg value of b in transactions \downarrow

(recall: $d_{b,t} = Z_d m_{b,t}^{\delta} b_{b,t}^{1-\delta}$ and U function)

⇒ smaller non-pecuniary return or liquidity premium

Theoretical Implications of Completing the Model:

b

 The "Liquidity Buffering" effect of liquid govt bonds Consider a contractionary OMO: b ↑ & m ↓ The transactions services of bonds buffer the credit crunch In the model, the buffering effect manifests itself in I_{ct} - I_{g,t} ↓

↑ ⇒ marg value of b in transactions ↓
(recall:
$$d_{b,t} = Z_d m_{b,t}^{\delta} b_{b,t}^{1-\delta}$$
 and U function)
⇒ smaller non-pecuniary return or liquidity premium

This model gives one possible explanation of Figure 7, shown earlier.

Implications for Monetary Policy –

- 1. "Liquidity Buffering" effect of liquid bonds:
 - a. Consider an I_g↑ policy shock: (a contractionary OMO) I_{ct} - I_{g,t}↓ to make households and banks hold higher b/m a given I_{g,t}↑ has less effect on I_c & aggregate demand
 b. Consider systematic component of interest rate rule: i_{g,t} = 0.8i_{g,t-1} + 0.2[i_g + θ_π(π_t - π) + 0.2(log(y_t-log(y))]

less monetary stabilization for all shocks

Implications for Monetary Policy –

- 1. "Liquidity Buffering" effect of liquid bonds:
 - a. Consider an I_g↑ policy shock: (a contractionary OMO) I_{ct} - I_{g,t}↓ to make households and banks hold higher b/m a given I_{g,t}↑ has less effect on I_c & aggregate demand
 b. Consider systematic component of interest rate rule: i_{g,t} = 0.8i_{g,t-1} + 0.2[ī_g + θ_π(π_t - π̄) + 0.2(log(y_t-log(ȳ))] less monetary stabilization for all shocks
- 2. "Liquidity Provision" effect of fiscal deficits: $liab_t = liab_{t-1}/\Pi_t + def_t$ where liab = m + bbond financed g shock has direct effect on π , other shocks

Implications for Monetary Policy –

- 1. "Liquidity Buffering" effect of liquid bonds:
 - a. Consider an I_g↑ policy shock: (a contractionary OMO) I_{ct} - I_{g,t}↓ to make households and banks hold higher b/m a given I_{g,t}↑ has less effect on I_c & aggregate demand b. Consider systematic component of interest rate rule: i_{g,t} = 0.8i_{g,t-1} + 0.2[ī_g + θ_π(π_t - π̄) + 0.2(log(y_t-log(ȳ))] less monetary stabilization for all shocks
- 2. "Liquidity Provision" effect of fiscal deficits: $liab_t = liab_{t-1}/\Pi_t + def_t$ where liab = m + bbond financed g shock has direct effect on π , other shocks
- 3. Bank loans, financial frictions, new ways of transacting, etc.

Figure 1: Interest Rate (Ig) Shockliquidity buffering effect is apparent5 to 20% differences in IRFsNW modelBB model

Figure 2: Productivity Shock

NW model

liquidity buffering effect apparent 5 to 20% differences in IRFs BB model

Figure 3: Government Spending Shock (1% of GDP)liquidity provision effect is apparent; persistence??NW modelBB model

Figure 4: Money Demand Shock

NW model

Pool result:

interest rate rule

keeps monetary

shocks from passing

to real side of the

economy

BB model

In Conclusion:

Model in its current state suggests -

- 1. NW model gives a reasonably accurate account of way Y, Rc, c, w and π respond to Ig shocks and productivity shocks in the more complete BB model.
 - A. Differences in IRFs: 5 to 20%
 - B. Money demand shocks have real effects, but they are very small.

In Conclusion:

Model in its current state suggests -

1. NW model gives a reasonably accurate account of way Y, Rc, c, w and π respond to Ig shocks and productivity shocks in the more complete BB model.

A. Differences in IRFs: 5 to 20%

B. Money demand shocks have real effects, but they are very small.

2. NW model does not give an accurate account of the way Rc and (especially) π respond to government spending shocks in the more complete BB model. Here BB model seems more reasonable.

Future work –

- A. Implications for monetary policy:
 - 1. Many interest rates and spreads: I_c , I_g , I_d , I_l ,
 - 2. Which to take as the policy rate?
 - 3. How to use spreads as indicator variables?

Future work –

- A. Implications for monetary policy:
 - 1. Many interest rates and spreads: I_c, I_g, I_d, I_l,
 - 2. Which to take as the policy rate?
 - 3. How to use spreads as indicator variables?
- B. Current modeling may understate importance of adding monetary financial markets and financial frictions.
 - 1. Add financial accelerator(s).
 - 2. Add long term nominal debt: another channel for monetary policy.
 - 3. Add ff market, elements relevant for the current festivities???