Potential output, the digital economy, and inflation

October 26, 2018

John G. Fernald

INSEAD

Some broad macroeconomic trends since 2000

- Output growth disappointing since Great Recession
- Digital disruption everywhere...except in productivity statistics
 - O U.S. slowed 2004 or 2005 (e.g., Fernald, 2014)
 - Europe prod. growth slower than U.S. since mid-1990s (e.g., Cette et al, 2016)
- U.S. "prime age" participation rates falling since 1990s
- Downward trend in real interest rates
- Persistently low inflation in aftermath of Great Recession

Question: Why has output grown so slowly since 2009?

Answer: Deep recession superimposed upon slowing trend

Source: Fernald, Hall, Stock, and Watson 2017

Growing mismeasurement of IT isn't the answer (Byrne, Fernald, and Reinsdorf, 2016)

Recent work points to IT price mismeasurement

Cellular networks

- Innovations missed in communications equipment prices. (Byrne and Corrado, 2015, 2016)

Computers

 Slowdown exaggerated by offshoring and methodological problems. (Byrne and Pinto, 2015)

• Microprocessors

- price trends distorted by use of list prices. (Byrne, Oliner and Sichel, 2015)
- Specialized electronics (e.g., military and medical)
 - Little measurement research. (Byrne, 2015)

Software

Only 1/3 has directly observed prices

...but shrinking domestic production of computers/communicat.

Specialized equipment/software more speculative/judgmental

Non-NIPA intangibles growing fast in 1980s, 1990s (Organizational capital, training, branding, and design)

Adjustments to growth in output per hour

Intangibles (Corrado and Jager, 2015)

Globalization, fracking, Internet access contribute to slowdown

What about overall low inflation?

$$P = \mu \cdot MC$$

In growth rates

$$\pi = \Delta ln\mu + \Delta lnMC$$

What about overall low inflation?

$$P = \mu \cdot MC$$

In growth rates

$$\pi = \Delta ln\mu + \Delta lnMC$$
[Low] [Rising?] [Low?]

What about overall low inflation?

$$P = \mu \cdot MC$$

In growth rates

$$\pi = \Delta ln\mu + \Delta lnMC$$
[Low] [Rising?] [Low?]

• Are rising markups a competing story?

Rising markups can potentially explain many macro trends

- Trends I started with
 - Weak output growth (from reduced factor demand)
 - Falling participation (wages for low-skilled pushed down)
 - Low real interest rates (from weak capital demand)
 - Maybe weak measured TFP growth
- Plus some others
 - Falling labor share
 - Rising concentration

Do rising markups contribute to weak measured TFP growth?

- Competition may boost innovation
- Measured TFP isn't technology with markups
 - O Back-of-the-envelope calculations with aggregate data suggest it's *not* the reason for slow growth in Solow residual
 - O With "average" estimates of markups and RTS from De Loecker-Eeckhout (2017), true technology growth is (a bit) lower than measured, not higher

Have anti-competitive markups really risen sharply?

- Alternative interpretation: Superstar firms
- Markups as high as Jan and Jan estimate have strong implications
 - O Susanto Basu (forthcoming) calculates that they imply that 70% (!) of GDP is paid as economic profits

Takeaways

- Potential growth is slow
- I am skeptical that it is rising mismeasurement of prices or sharply rising markups
- My guess: Phillips Curve will reassert itself, and inflation will pick up