Discussion of "IS EURO AREA LOWFLATION HERE TO STAY?" by Stevens and Wauters

Elmar Mertens

Deutsche Bundesbank

The discussion and analysis presented here does not necessarily reflect the views of the Deutsche Bundesbank or the Eurosystem

NBB conference, Brussels, October 2018

Key question

Should recent persistence of low inflation translate into permanently lower inflation expectations?

Key question

Should recent persistence of low inflation translate into permanently lower inflation expectations?

Approach

 Trend-cycle decomposition for inflation (w/time-varying parameters)

Key question

Should recent persistence of low inflation translate into permanently lower inflation expectations?

Approach

- Trend-cycle decomposition for inflation (w/time-varying parameters)
- Surveys added to model's measurement equation

Key question

Should recent persistence of low inflation translate into permanently lower inflation expectations?

Approach

- Trend-cycle decomposition for inflation (w/time-varying parameters)
- Surveys added to model's measurement equation

Findings

- With survey data: inflation trend below but close to 2%
- 2 Without survey data: trend estimates falling to 1.5%
- 3 High degrees of information rigidity embedded in surveys

PAUL VOLCKER'S PERSPECTIVE

Washington Post, October 24 2018

On the FOMC's inflation objective

They made up the 2 percent number . . .

I get upset when I hear them fighting over whether 1.75 percent is enough inflation.

On the importance of remaining vigilant:

Two percent inflation isn't going to kill us ...

But be careful of 2.3 percent being ok and then they say let's let it go to 3 percent.

AGENDA

- Survey-based inflation trend estimates
- 2 Sticky information state space
- 3 State dependent stickiness

TREND INFLATION

Beveridge-Nelson trend in inflation

$$au_t \equiv \lim_{k o\infty} E_t \pi_{t+k}$$

- univariate: Stock & Watson "UCSV" (2007, JMCB)
- multivariate, common trend: Mertens (2016, REStat)

SURVEYS AND TREND INFLATION

Beveridge-Nelson trend in inflation

$$au_t \equiv \lim_{k o \infty} E_t \pi_{t+k}$$

- univariate: Stock & Watson "UCSV" (2007, JMCB)
- multivariate, common trend: Mertens (2016, REStat)

Survey data

- $F_t\pi_{t+h} = E_t\pi_{t+h} + z_{t+h}$ where z_t measures deviations from RE
- ullet Weak rationality: $E_t z_{t+\infty} = 0$ (Grant & Thomas, 1999)

SURVEYS AND TREND INFLATION

Beveridge-Nelson trend in inflation

$$oldsymbol{ au_t} \equiv \lim_{k o\infty} E_t \pi_{t+k}$$

- univariate: Stock & Watson "UCSV" (2007, JMCB)
- multivariate, common trend: Mertens (2016, REStat)

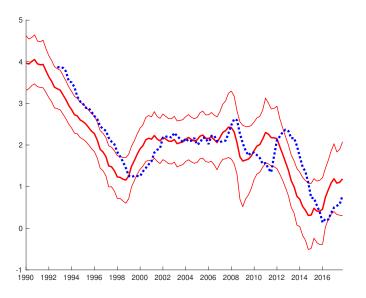
Survey trend

- $ullet F_t \pi_{t+h} = E_t \pi_{t+h} + z_{t+h} \ ext{where } z_t ext{ measures deviations from RE}$
- ullet Weak rationality: $E_t z_{t+\infty} = 0$ (Grant & Thomas, 1999)
- $ullet \; au_t = \lim_{k o \infty} E_t \left(F_{t+k} \pi_{t+k+h}
 ight) = \lim_{k o \infty} E_t \pi_{t+k+h}$
- au_t is common trend of inflation and surveys

SURVEYS AND TREND INFLATION

Beveridge-Nelson trend in inflation

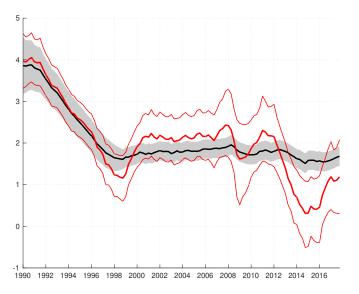
$$au_t \equiv \lim_{k o \infty} E_t \pi_{t+k}$$


- univariate: Stock & Watson "UCSV" (2007, JMCB)
- multivariate, common trend: Mertens (2016, REStat)

Survey trend

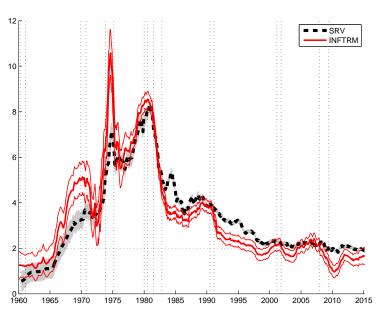
- $ullet F_t \pi_{t+h} = E_t \pi_{t+h} + z_{t+h} \ ext{where } z_t ext{ measures deviations from RE}$
- ullet Weak rationality: $E_t z_{t+\infty} = 0$ (Grant & Thomas, 1999)
- $ullet \ au_t = \lim_{k o \infty} E_t \left(F_{t+k} \pi_{t+k+h}
 ight) = \lim_{k o \infty} E_t \pi_{t+k+h}$
- au_t is common trend of inflation and surveys

Holds in Stevens-Wauters model


EURO-AREA INFLATION TREND Univariate UCSV Trend (red), 12m inflation data (blue)

EURO-AREA INFLATION TREND Univariate UCSV Trend (red)

EURO-AREA INFLATION TREND Univariate UCSV Trend (red), Common Trend (black) w/surveys


As in Mertens (2016): Deviations from trend as VAR

COMMON TREND PERSPECTIVE: TAKE AWAYS

Cointegration between surveys and realized inflation useful to exploit

How much to gain from the specific Phillips-curve model for gap inflation used here?

INFTRM (red): inflation-data-based, SRV (black): survey-based

COMMON TREND PERSPECTIVE: TAKE AWAYS

Cointegration between surveys and realized inflation useful to exploit

How much to gain from the specific Phillips-curve model for gap inflation used here?

- U.S.: Survey-based trend estimates lagged inflation-based estimates in 1980s/90s
- Forecasts centered around inflation-based trend estimates during 1980s/90s in the U.S. would have worked better

AGENDA

- 1 Survey-based inflation trend estimates
- 2 Sticky information state space
- State dependent stickiness

INFORMATION RIGIDITIES AND FORECASTING

a.k.a. Stevens-Wauters "forecast smoothing"

Coibion & Gorodnichenko (2012 JPE, 2015 AER)

$$F_t \pi_{t+h} = (1-\xi) E_t \pi_{t+h} + \xi F_{t-1} \pi_{t+h}$$

Encompassing Mankiw-Reis stickiness, noisy information, Sims-Mackowiak-Wiederholt rational inattention

INFORMATION RIGIDITIES AND FORECASTING a.k.a. Stevens-Wauters "forecast smoothing"

Coibion & Gorodnichenko (2012 JPE, 2015 AER)

$$F_t \pi_{t+h} = (1-\xi) E_t \pi_{t+h} + \xi F_{t-1} \pi_{t+h}$$

Encompassing Mankiw-Reis stickiness, noisy information, Sims-Mackowiak-Wiederholt rational inattention

Stevens & Wauters (2018)

$$F_t\pi_{t+h} = (1-\xi_t)E_t\pi_{t+h} + \xi_tF_{t-1}\pi_{t+h-1}$$

citing use of rolling-event forecasts

INFORMATION RIGIDITIES AND FORECASTING

a.k.a. Stevens-Wauters "forecast smoothing"

Coibion & Gorodnichenko (2012 JPE, 2015 AER)

$$F_t \pi_{t+h} = (1-\xi) E_t \pi_{t+h} + \xi F_{t-1} \pi_{t+h}$$

Encompassing Mankiw-Reis stickiness, noisy information, Sims-Mackowiak-Wiederholt rational inattention

Stevens & Wauters (2018)

$$F_t\pi_{t+h} = (1-\xi_t)E_t\pi_{t+h} + \xi_tF_{t-1}\pi_{t+h-1}$$

citing use of rolling-event forecasts

Mertens & Nason (2018)

$$F_t\pi_{t+h}=(1-oldsymbol{\xi_t})E_t\pi_{t+h}+oldsymbol{\xi_t}F_{t-1}\pi_{t+h}$$

State space generates RE and SI forecasts for any horizons and events (see appendix)

STATE SPACE MODEL FOR INFLATION

Mertens & Nason (2018); applicable also to Stevens & Wauters

Inflation dynamics

$$egin{aligned} \pi_t = CX_t & X_t = ig[au_t^\pi, \pi_t - au_t^\pi \ldotsig] \ X_t = AX_{t-1} + Bw_t & E_t\pi_{t+h} = C\,A^h\,X_t \end{aligned}$$

STATE SPACE MODEL FOR INFLATION

Mertens & Nason (2018); applicable also to Stevens & Wauters

Inflation dynamics

$$egin{aligned} \pi_t = CX_t & X_t = ig[au_t^\pi, \pi_t - au_t^\pi \ldotsig] \ X_t = AX_{t-1} + Bw_t & E_t\pi_{t+h} = C\,A^h\,X_t \end{aligned}$$

Stevens-Wauters vs Mertens-Nason:

- Similar: Reduced form, independent from survey dynamics
- New: Phillips curve with unemployment-rate gap

STATE SPACE MODEL FOR INFLATION

Mertens & Nason (2018); applicable also to Stevens & Wauters

Inflation dynamics

$$egin{aligned} \pi_t = CX_t & X_t = \left[au_t^\pi, \pi_t - au_t^\pi \ldots
ight] \ X_t = AX_{t-1} + Bw_t & E_t\pi_{t+h} = C\,A^h\,X_t \end{aligned}$$

Stevens-Wauters vs Mertens-Nason:

- Similar: Reduced form, independent from survey dynamics
- New: Phillips curve with unemployment-rate gap

Mertens-Nason not a univariate inflation process

- Inflation driven by multiple state variables whose estimates are informed by SPF
- Given information from SPF, how much to be gained from reduced-form PC?

Not a model of forward-looking inflation

- No effects from surveys onto inflation
- Cannot speak to effects of information rigidities on inflation

(e.g. Coibion & Gorodnichenko 2015, AEJM)

Not a model of forward-looking inflation

- No effects from surveys onto inflation
- Cannot speak to effects of information rigidities on inflation (e.g. Coibion & Gorodnichenko 2015, AEJM)
- Surveys affect trend (and gap) estimates

Not a model of forward-looking inflation

- No effects from surveys onto inflation
- Cannot speak to effects of information rigidities on inflation (e.g. Coibion & Gorodnichenko 2015, AEJM)
- Surveys affect trend (and gap) estimates
- But: allows to derive recursive state space. Use it!

Not a model of forward-looking inflation

- No effects from surveys onto inflation
- Cannot speak to effects of information rigidities on inflation (e.g. Coibion & Gorodnichenko 2015, AEJM)
- Surveys affect trend (and gap) estimates
- But: allows to derive recursive state space. Use it!

Other comments

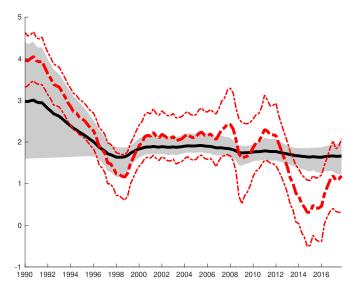
Embed ECB inflation target (Chan et al bounds)?

Not a model of forward-looking inflation

- No effects from surveys onto inflation
- Cannot speak to effects of information rigidities on inflation (e.g. Coibion & Gorodnichenko 2015, AEJM)
- Surveys affect trend (and gap) estimates
- But: allows to derive recursive state space. Use it!

Other comments

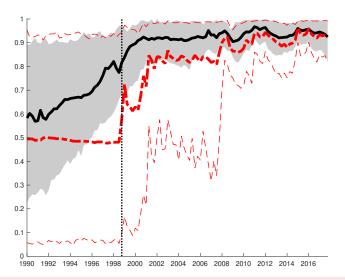
- Embed ECB inflation target (Chan et al bounds)?
- Import prices not relevant for trend identification, only for variance decomposition


Not a model of forward-looking inflation

- No effects from surveys onto inflation
- Cannot speak to effects of information rigidities on inflation (e.g. Coibion & Gorodnichenko 2015, AEJM)
- Surveys affect trend (and gap) estimates
- But: allows to derive recursive state space. Use it!

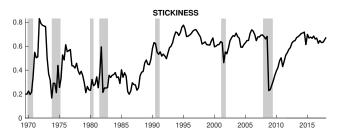
Other comments

- Embed ECB inflation target (Chan et al bounds)?
- Import prices not relevant for trend identification, only for variance decomposition
- Specification choices: no trend SV, $\rho_{\star}^{\pi} > 0$, etc . . .


EURO-AREA INFLATION TREND Smoothed trend estimates: Univariate UCSV (red), Mertens-Nason (black)

AGENDA

- 1 Survey-based inflation trend estimates
- 2 Sticky information state space
- 3 State dependent stickiness


SI WEIGHT ξ_t EURO AREA Mertens-Nason w/Stevens-Wauters data, smoothed (black), filtered (red)



No significant movements since 2001 (see appendix)
Survey data available since 1998:Q4

INFLATION PERSISTENCE AND SI WEIGHT

Filtered estimates from Mertens & Nason (2018), U.S. data.

Link between inflation persistence and attention?

The question was ...

Should recent persistence of low inflation translate into permanently lower inflation expectations?

The answer is ...

No, at least not when trends estimates are generated from surveys

The question was ...

Should recent persistence of low inflation translate into permanently lower inflation expectations?

The answer is ...

No, at least not when trends estimates are generated from surveys

Thoughts

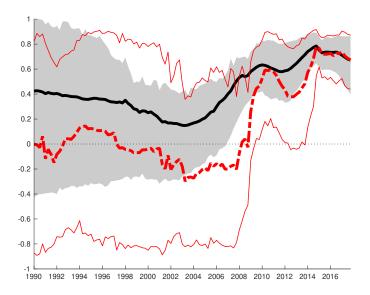
- Could better motivate some model choices
- Causes of survey stickiness?
- Relative constancy of euro-area stickiness indicative of succesful anchoring?

The question was ...

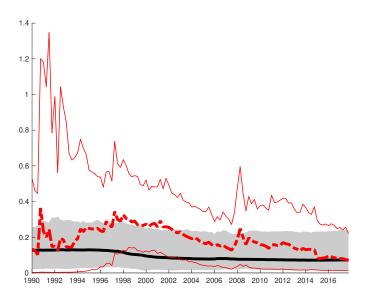
Should recent persistence of low inflation translate into permanently lower inflation expectations?

The answer is ...

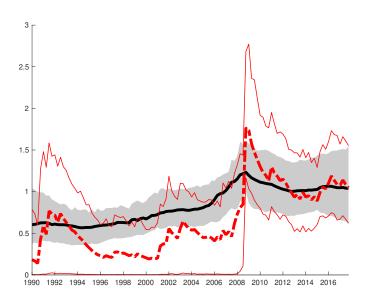
No, at least not when trends estimates are generated from surveys


Thoughts

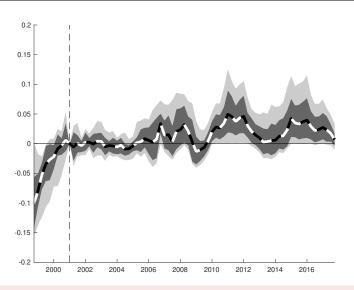
- Could better motivate some model choices
- Causes of survey stickiness?
- Relative constancy of euro-area stickiness indicative of succesful anchoring?


Very nice paper!

 $Mertens-Nason\ w/Stevens-Wauters\ data,\ smoothed\ (black),\ filtered\ (red)$



Mertens-Nason w/Stevens-Wauters data, smoothed (black), filtered (red)



GAP SHOCK VOL

Mertens-Nason w/Stevens-Wauters data, smoothed (black), filtered (red)

 $\xi_{t|T} - \xi_{2001|T}$

Inference based on joint uncertainty between ξ_t and ξ_{2001}

Mertens & Nason (2018); applicable also to Stevens & Wauters

Inflation dynamics

$$egin{aligned} \pi_t = CX_t & X_t = ig[au_t^\pi, \pi_t - au_t^\pi \ldotsig] \ X_t = AX_{t-1} + Bw_t & E_t\pi_{t+h} = C\,A^h\,X_t \end{aligned}$$

Sticky-information survey states

$$egin{aligned} F_t \pi_{t+h} &= C \ F_t X_{t+h} \ F_t X_{t+h} &= A^h \ F_t X_t \ F_t X_t &= (1 - \xi_{t-1}) X_t + \xi_{t-1} F_{t-1} X_t \end{aligned}$$

Mertens & Nason (2018); applicable also to Stevens & Wauters

Inflation dynamics

$$egin{aligned} \pi_t = CX_t & X_t = egin{bmatrix} au_t^\pi, \pi_t - au_t^\pi \ldots \end{bmatrix} \ X_t = AX_{t-1} + Bw_t & E_t \pi_{t+h} = C\,A^h\,X_t \end{aligned}$$

Sticky-information survey states

$$egin{aligned} F_t \pi_{t+h} &= C \ F_t X_{t+h} \ F_t X_{t+h} &= A^h \ F_t X_t \ F_t X_t &= (1 - \xi_{t-1}) X_t + \xi_{t-1} A \ F_{t-1} X_{t-1} \end{aligned}$$

Mertens & Nason (2018); applicable also to Stevens & Wauters

Inflation dynamics

$$egin{aligned} \pi_t = CX_t & X_t = \left[au_t^\pi, \pi_t - au_t^\pi \ldots
ight] \ X_t = A_t X_{t-1} + Bw_t & E_t \pi_{t+h} = C\,A^h\,X_t \end{aligned}$$

Sticky-information survey states

$$egin{aligned} F_t \pi_{t+h} &= C \ F_t X_{t+h} \ F_t X_{t+h} &= A_t^h \ F_t X_t \ F_t X_t &= (1 - \xi_{t-1}) X_t + \xi_{t-1} A \ F_{t-1} X_{t-1} \end{aligned}$$

Can construct survey forecasts for every event and horizon

Mertens & Nason (2018); applicable also to Stevens & Wauters

Inflation dynamics

$$egin{aligned} \pi_t = CX_t & X_t = \left[au_t^\pi, \pi_t - au_t^\pi \ldots
ight] \ X_t = A_t X_{t-1} + Bw_t & E_t \pi_{t+h} = C\,A^h\,X_t \end{aligned}$$

Sticky-information survey states

$$egin{aligned} F_t \pi_{t+h} &= C \ F_t X_{t+h} \ F_t X_{t+h} &= A^h_t \ F_t X_t \ F_t X_t &= (1 - \xi_{t-1}) X_t + \xi_{t-1} A_{t-1} \ F_{t-1} X_{t-1} \end{aligned}$$

Can construct survey forecasts for every event and horizon (w/AUM forecasts of time-varying parameters)

The question was ...

Should recent persistence of low inflation translate into permanently lower inflation expectations?

The answer is ...

No, at least not when trends estimates are generated from surveys

Thoughts

- Could better motivate some model choices
- Causes of forecast smoothing?
- Is relative constancy of euro-area stickiness indicative of succesful anchoring?

Very nice paper!