Discussion of "Endogenous Forward Guidance" by B. Chafwehé, R. Oikonomu, R. Prifitis and L. Vogel

Davide Debortoli

Univ. Pompeu Fabra, CREI and Barcelona GSE

NBB Conference, October 26th 2018

イロト イポト イヨト イヨ

Overview

Question: Why did central banks implemented unconventional policies?

- Canonical view: stabilize the economy (getting around the ZLB)
- Alternative view: reduce the fiscal burden (inflating away gov't debt)

Overview

Question: Why did central banks implemented unconventional policies?

• Canonical view: stabilize the economy (getting around the ZLB)

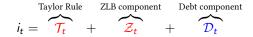
• Alternative view: reduce the fiscal burden (inflating away gov't debt) Methodology:

- DSGE model: standard NK + Fiscal Policy + ZLB constraint
- Optimal (Ramsey) monetary policy \Rightarrow "Endogenous" forward guidance

Overview

Question: Why did central banks implemented unconventional policies?

• Canonical view: stabilize the economy (getting around the ZLB)

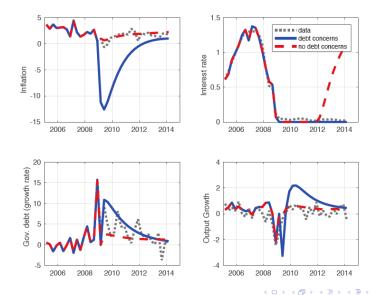

• Alternative view: reduce the fiscal burden (inflating away gov't debt) Methodology:

- DSGE model: standard NK + Fiscal Policy + ZLB constraint
- Optimal (Ramsey) monetary policy \Rightarrow "Endogenous" forward guidance
- Comparison of two alternative models
 - "No debt concerns" model: "independent" Central Bank
 - "Debt concerns" model: "subservient" Central Bank
- Estimation on pre-ZLB, conterfactuals on ZLB period

イロト イポト イヨト イヨト

Main Results

• **Theoretical:** optimal monetary policy ⇒ "augmented" Taylor rule


micro-foundation for earlier studies (e.g. Leeper (1991), Bianchi and Melosi (2018), etc.)

• Quantitative:

- \Rightarrow not much empirical support for "debt concern" model
 - Data: no disinflation despite low growth ("missing disinflation" puzzle)
 - Debt concern model: large deflation!

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Forecasts in the Great Recession

Key Mechanism

Present Value of Primary Surpluses = Market Value of Debt

イロト 人間 トイヨト 不同

Key Mechanism

Present Value of Primary Surpluses = Market Value of Debt

• Preference shock \Rightarrow Lower Interest rate (ZLB) \Rightarrow two effects on Gov't BC

● Market Value of Debt ↑

Present Value of Surpluses ↑

イロト イヨト イヨト イヨ

Key Mechanism

Present Value of Primary Surpluses = Market Value of Debt

- Preference shock \Rightarrow Lower Interest rate (ZLB) \Rightarrow two effects on Gov't BC
 - **1** Market Value of Debt \uparrow
 - Present Value of Surpluses ↑
- Conventional wisdom: effect (1) dominates
 ⇒ debt concerned central bank →inflation (e.g. Bianchi and Melosi (2017))
- HERE: effect (2) dominates
 ⇒ debt concerned central bank → deflation

Comment #1: What drives the result?

• Let's look at the gov't budget constraint

$$\mathbb{E}_t \sum_{j=0}^{\infty} q_t^j \left(S_{t+j} - B_t^j \right) = 0$$

where $S_t \equiv$ primary surplus, $B_t^j \equiv$ debt of maturity j, $q_t^j \equiv$ bond price

Comment #1: What drives the result?

• Let's look at the gov't budget constraint

$$\mathbb{E}_t \sum_{j=0}^{\infty} q_t^j \left(S_{t+j} - B_t^j \right) = 0$$

where $S_t \equiv$ primary surplus, $B_t^j \equiv$ debt of maturity j, $q_t^j \equiv$ bond price

- Crucial aspect: timing of surpluses vs. maturity of debt
- Example: constant surpluses, decaying maturity at rate δ
 ⇒ cash-flows (S − δ^jB) negative at short horizons, positive at long horizons
 ⇒ gov't budget improves when interest rates fall (q ↑)

Comment #1: What drives the result?

• Let's look at the gov't budget constraint

$$\mathbb{E}_t \sum_{j=0}^{\infty} q_t^j \left(S_{t+j} - B_t^j \right) = 0$$

where $S_t \equiv$ primary surplus, $B_t^j \equiv$ debt of maturity j, $q_t^j \equiv$ bond price

- Crucial aspect: timing of surpluses vs. maturity of debt
- Example: constant surpluses, decaying maturity at rate δ
 ⇒ cash-flows (S − δ^jB) negative at short horizons, positive at long horizons
 ⇒ gov't budget improves when interest rates fall (q ↑)
- Results likely overturned (and more plausible) if
 - Primary surpluses deteriorates (e.g. large automatic stabilizers)
 - deterioration is persistent, relatively to maturity decay rate

Comment #2: Comparison with Bianchi-Melosi (2017)

- BM17: deflation at the ZLB if monetary regime is "active"
- Here: deflation at the ZLB if monetary regime is "passive (debt concerns)"
 - Author's explanation: difference due to lack of commitment in BM17

• • • • • • • • • • • • •

Comment #2: Comparison with Bianchi-Melosi (2017)

- BM17: deflation at the ZLB if monetary regime is "active"
- Here: deflation at the ZLB if monetary regime is "passive (debt concerns)"
 - Author's explanation: difference due to lack of commitment in BM17
 - ... but are interest rate rules so different?

• BM17

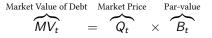
"Active": $i_t = 0.87i_{t-1} + (1 - 0.87)(1.60\pi_t + 0.5\hat{y}_t)$ "Passive": $i_t = 0.66i_{t-1} + (1 - 0.66)(0.63\pi_t + 0.27\hat{y}_t)$

• This paper (implied) "No debt concerns": $i_t \simeq 0.98i_{t-1} + (1 - 0.98)(2.70\pi_t + 0.001\hat{y}_t + 0.763\Delta y_t)$ "Debt concerns": $i_t \simeq 0.81i_{t-1} + (1 - 0.81)(0.833\pi_t + 0.12\hat{y}_t + 0.0053\Delta y_t)$

イロン イロン イヨン イヨン

Comment #2: Comparison with Bianchi-Melosi (2017)

- BM17: deflation at the ZLB if monetary regime is "active"
- Here: deflation at the ZLB if monetary regime is "passive (debt concerns)"
 - Author's explanation: difference due to lack of commitment in BM17
 - ... but are interest rate rules so different?

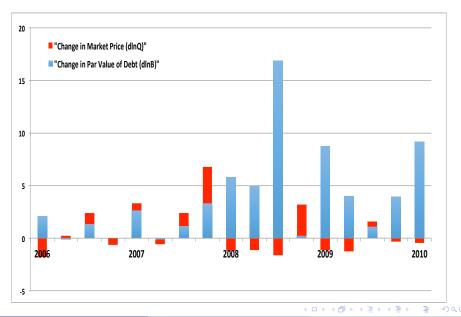

• BM17

"Active": $i_t = 0.87i_{t-1} + (1 - 0.87)(1.60\pi_t + 0.5\hat{y}_t)$ "Passive": $i_t = 0.66i_{t-1} + (1 - 0.66)(0.63\pi_t + 0.27\hat{y}_t)$

- This paper (implied) "No debt concerns": $i_t \simeq 0.98i_{t-1} + (1 - 0.98)(2.70\pi_t + 0.001\hat{y}_t + 0.763\Delta y_t)$ "Debt concerns": $i_t \simeq 0.81i_{t-1} + (1 - 0.81)(0.833\pi_t + 0.12\hat{y}_t + 0.0053\Delta y_t)$
- **Conjecture:** what about public expenditure? (in BM17 responds to \hat{y}_t)

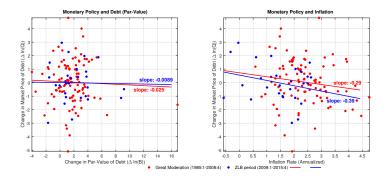
Comment #3: Was the FED concerned about debt?

• A simple decomposition:



or in log-differences

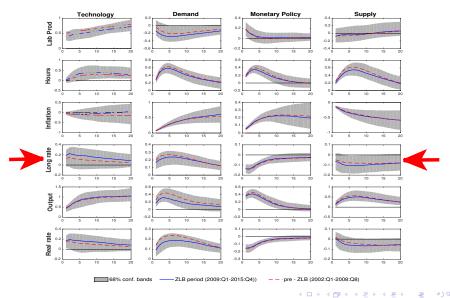
$$d \ln MV_t = d \ln Q_t + d \ln B_t$$


- Since MV_t and B_t are observables, we can infer Q_t
- Common assumption: the central bank controls Q_t
- Question: did we see any change in the relationships between
 - $d \ln Q_t$ and $d \ln B_t$?
 - $d \ln Q_t$ and inflation?

Market Value of Debt: Decomposition

Behaviour of Market Price of Debt

Great Moderation (1985:Q1 - 2008:Q3) vs ZLB (2008:Q4-2015:Q4)



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Comment #4: Was there a structural break at the ZLB?

- If so, we should see that macro variables respond differently to macro shocks
- Approach in Debortoli-Galí-Gambetti (2018):
 - time-varying coefficient VAR (TVC-SVAR)
 - shocks identified with combination of long-run and sign restrictions
 - compare impulse responses for pre-ZLB and ZLB period

Similar responses at ZLB and pre-ZLB

D. Debortoli (UPF, CREI and BGSE)

Discussion

NBB Oct. 26, 2018 12 / 13

Other Comments/Suggestions

- In the quantitative model, central bank internalizes effects on debt, but not on taxes. Why?
- The "no debt concern" model seems to fit the data quite well
 - better than with simple rule?
 - what about forward guidance puzzle?
- At the moment, no formal empirical test of "debt concerns" model
 - Regime-Switches estimation per-ZLB? Likelihood ratio test after ZLB?

イロト イヨト イヨト イヨト