Quantile-based Inflation Risk Models

Eric Ghysels1 Leonardo Iania2 Jonas Striaukas2

1UNC \hspace{1cm} 2UC Louvain

National Bank of Belgiums biennial conference
Outline

1. Introduction

2. Modeling inflation quantiles
 - Quantiles
 - Summary of the analysis
 - In- and out-of-sample analysis

3. Inflation risk measures
 - Inflation risk measures: definitions
 - The reaction of short-term interest rates to inflation risk

4. Conclusions
Motivation

"In assessing the path for the federal funds rate [...] FOMC participants take account of the range of possible economic outcomes, the likelihood of those outcomes, and the potential benefits and costs should they occur."

Source: Minutes of the Federal Open Market Committee. March 20-21, 2018

Figure: Fan chart of PCE Inflation

Note: Median projection and confidence interval based on historical forecast errors. Source: Minutes of the Federal Open Market Committee. March 20-21, 2018
Motivation

"Because the fan charts are constructed to be symmetric around the median projections, they do not reflect any asymmetries in the balance of risks that participants may see in their economic projections."

Minutes of the Federal Open Market Committee. March 20-21, 2018

Figure: Risks to PCE inflation

Note: FOMC participants assessments of risks around their economic projections. Source: Minutes of the Federal Open Market Committee. March 20-21, 2018
Motivation

- **Zarnowitz and Lambros (1987)** propose uncertainty measure using the inter-quantile range of survey data.
- **Kilian and Manganelli (2008)** develop structural model in which monetary authorities can have non-quadratic valuation of inflation costs.
- **Kilian and Manganelli (2007)** estimate several inflation risk measures using GARCH model.
- **Andrade et al. (2015)** use survey data to extract the *expected* inflation asymmetry and document its impact on realized inflation and changes in monetary policy.
In this (ongoing) project...

- We focus on quantile forecasting...

- ... in a mixed-frequency setting...

- ... and we construct quantile-based inflation risk measures...
In this (ongoing) project...

- We focus on quantile forecasting...
 \[\pi_t^{(h)} = \log(P_t/P_{t-h}) \rightarrow q_{\pi_t^{(h)}}^{(t+h \mid t)} \]

- ... in a mixed-frequency setting...

- ... and we construct quantile-based inflation risk measures

...and we construct quantile-based inflation risk measures

- Inflation-at-risk
 \[\text{I@R} \]

- Interquantile range
 \[\text{IQR} \]

- Robust asymmetry
 \[\text{ASY} \]
In this (ongoing) project...

- We focus on quantile forecasting...
 \[\pi_t^{(h)} = \log(P_t/P_{t-h}) \rightarrow q^{\pi}_h(t+h | t) \]

- ... in a mixed-frequency setting...
 \[q^{\pi}_h(t+h | t) = \mu_{\pi} + \rho_{\pi} \pi_t + \beta_{\pi} Z_t(\theta) \]

- ...and we construct quantile-based inflation risk measures
In this (ongoing) project...

- We focus on quantile forecasting...
 \[\pi_t^{(h)} = \log(P_t/P_{t-h}) \rightarrow q_{\pi_t}^{\tau} \]
- ... in a mixed-frequency setting...
 \[q_{\pi_t}^{\tau} = \mu_\tau + \rho_\tau \pi_t + \beta_\tau Z_t(\theta) \]
- ... and we construct quantile-based inflation risk measures
 - IQR_{t|h} = Inflation-at-risk
 - IQR_{t|h} = Interquantile range
 - ASY_{t|h} = Robust asymmetry
Outline

1 Introduction

2 Modeling inflation quantiles
 - Quantiles
 - Summary of the analysis
 - In- and out-of-sample analysis

3 Inflation risk measures
 - Inflation risk measures: definitions
 - The reaction of short-term interest rates to inflation risk

4 Conclusions
Regression quantiles: intuition

Linear regression (Blue line)

\[E(r_t | \pi_{t-1}) = \mu + \rho \pi_{t-1} \]

Quantile regression (Red lines)

\[q_{\tau}(r_t | \pi_{t-1}) = \mu(\tau) + \rho(\tau) \pi_{t-1} \]
Models

Quantile autoregressive model (QAR)

\[
q_{\pi_{t+h|t}}^{\tau} = \mu_{\tau} + \sum_{j=0}^{p-1} \alpha_{\tau,j} \pi_{t-j} \equiv \mu_{\tau} + \rho_{\tau} \pi_t + \sum_{j=0}^{q-1} \beta_{\tau,j} \Delta \pi_{t-j}
\]

QAR distributed lag model with MIDAS component (QADL-MIDAS)

\[
q_{\pi_{t+h|t}}^{\tau} = \mu_{\tau} + \rho_{\tau} \pi_t + \beta_{\tau} Z_t(\theta)
\]

where

\[
Z_t(\theta_{\tau}) = \sum_{m=0}^{h} \omega_m(\theta_{\tau}) |\Delta \pi_{t-m}|
\]
Modeling inflation quantiles: analysis

Setting

1. Based on monthly US CPI inflation (Headlines and CORE)
2. Period: 1960-01 to 2018-05
3. We focus on modeling/forecasting year-on-year inflation
4. Number of lags: 12.

Model comparison

1. In-sample
 - Are the regression coefficients quantile-dependent?
 - Is the MIDAS component informative about inflation quantiles?
2. Out-of-sample
 - Which model forecast quantiles better?
 - At which horizon?
In-sample analysis

\[q_{\tau_{t+h}|F_t}(\tau | F_t) = \mu_\tau + \rho_\tau \Pi_t + \sum_{j=0}^{q-1} \beta_{\tau,j} \Delta \Pi_{t-j} \]

<table>
<thead>
<tr>
<th>Quantile</th>
<th>0.05</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>-0.454</td>
<td>0.569</td>
<td>0.952</td>
<td>1.471</td>
<td>2.597</td>
</tr>
<tr>
<td></td>
<td>(0.047)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.502</td>
<td>0.593</td>
<td>0.713</td>
<td>0.866</td>
<td>1.101</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

\[q_{\tau_{t+h}|F_t}(\tau | F_t) = \mu_\tau + \rho_\tau \Pi_t + \beta_\tau Z_t(\theta) \]

<table>
<thead>
<tr>
<th>Quantile</th>
<th>0.05</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>0.062</td>
<td>0.723</td>
<td>0.581</td>
<td>0.658</td>
<td>1.891</td>
</tr>
<tr>
<td></td>
<td>(0.371)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.002)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>-1.522</td>
<td>-0.446</td>
<td>2.738</td>
<td>3.507</td>
<td>2.335</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.219)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>(\theta)</td>
<td>43.668</td>
<td>35.510</td>
<td>1.124</td>
<td>1.716</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>(0.112)</td>
<td>(0.180)</td>
<td>(0.465)</td>
<td>(0.439)</td>
<td>(0.482)</td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.459</td>
<td>0.564</td>
<td>0.678</td>
<td>0.928</td>
<td>1.168</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>
Out-of-sample analysis

CPI

<table>
<thead>
<tr>
<th>CW statistic</th>
<th>12-months</th>
<th>3-months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05 0.25 0.50 0.75 0.95</td>
<td>0.05 0.25 0.50 0.75 0.95</td>
</tr>
<tr>
<td>p-Value</td>
<td>(0.015) (0.259) (0.014) (0.002) (0.001)</td>
<td>(0.995) (0.109) (0.999) (0.000) (0.000)</td>
</tr>
<tr>
<td>ratio</td>
<td>0.796 0.951 0.959 0.886 0.657</td>
<td>1.122 0.958 1.034 0.903 0.829</td>
</tr>
</tbody>
</table>

CPI CORE

<table>
<thead>
<tr>
<th>CW statistic</th>
<th>12-months</th>
<th>3-months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05 0.25 0.50 0.75 0.95</td>
<td>0.05 0.25 0.50 0.75 0.95</td>
</tr>
<tr>
<td>p-value</td>
<td>(0.986) (0.967) (0.370) (0.009) (0.004)</td>
<td>(0.572) (0.001) (0.000) (0.000) (0.000)</td>
</tr>
<tr>
<td>ratio</td>
<td>1.168 1.081 0.922 0.743 0.730</td>
<td>1.012 0.898 0.964 0.862 0.754</td>
</tr>
</tbody>
</table>
Outline

1. Introduction

2. Modeling inflation quantiles
 - Quantiles
 - Summary of the analysis
 - In- and out-of-sample analysis

3. Inflation risk measures
 - Inflation risk measures: definitions
 - The reaction of short-term interest rates to inflation risk

4. Conclusions
Inflation risk measures (based on Andrade et al. (2015))

Inflation-at-risk

\[I@R^\tau = \hat{q}_\tau \]

Interquantile range

\[IQR^\tau = \hat{q}_{1-\tau} - \hat{q}_\tau \]

Conditional (robust) asymmetry

\[ASY^\tau = \frac{(\hat{q}_{1-\tau} - \hat{q}_{0.5}) - (\hat{q}_{0.5} - \hat{q}_\tau)}{IQR^\tau} \]
Conditional asymmetry comparison

QAR(12) conditional asymmetry

QADL-MIDAS conditional asymmetry
Conditional asymmetry regimes

CPI one year ahead cond. asymmetry (75%)

Note: 12 months ahead conditional asymmetry (75%) for CPI data
We study the relationship between federal fund rates and inflation risk via a two-step procedure:

1. Construct real-time risk measures
2. Regress federal fund rates changes on real-time risk measures and a set of control variables
Step 2: Federal fund rates changes and real-time risk measures

Following Andrade, Ghysels, and Idier (2015), our augmented Taylor Rule-type regression equation is:

\[\Delta i_{t+1} = \beta_0 + \beta_1 IQR_{t|t-h} + \beta_2 ASY_{t|t-h} + \rho' C_t + \epsilon_{t+1} \]

where:

- \(\Delta i_{t+1} \) is the change in the effective federal funds rate (EFFR)
- \(C_t \) contains
 - Lagged value of the EFFR, \(\Delta i_t \)
 - Headline inflation, \(\pi^h_t \)
 - Commodity inflation, \(\pi^h_{t,\text{com}} \)
 - A measure of output gap compute using industrial production, \(u_t \).
Table: Parameter estimates and model fit

01-Mar-1963 to 01-Apr-2018

<table>
<thead>
<tr>
<th></th>
<th>IQR 5%</th>
<th>ASY 5%</th>
<th>IQR 25%</th>
<th>ASY 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>coeff.</td>
<td>-0.014</td>
<td>0.192 **</td>
<td>-0.033</td>
<td>0.120 **</td>
</tr>
<tr>
<td>p-Value</td>
<td>(0.403)</td>
<td>(0.012)</td>
<td>(0.237)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>R_{adj}^2</td>
<td>0.184</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependent variable is real time change in effective federal funds rate. ****, ** and * refer to 1, 5 and 10 percent significance levels.

\[
\Delta i_{t+1} = \beta_0 + \beta_1 IQR^\tau_{t|t-h} + \beta_2 ASY^\tau_{t|t-h} + \rho' C_t + \epsilon_{t+1}
\]
<table>
<thead>
<tr>
<th>Parameter estimates and model fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-Jan-1980 to 01-Apr-2018</td>
</tr>
<tr>
<td>coeff.</td>
</tr>
<tr>
<td>0.004</td>
</tr>
<tr>
<td>p-Value</td>
</tr>
<tr>
<td>R^2_{adj}</td>
</tr>
<tr>
<td>01-Mar-1963 to 01-Dec-1978</td>
</tr>
<tr>
<td>coeff.</td>
</tr>
<tr>
<td>-0.054***</td>
</tr>
<tr>
<td>p-Value</td>
</tr>
<tr>
<td>R^2_{adj}</td>
</tr>
<tr>
<td>01-Mar-1963 to 01-Nov-2008</td>
</tr>
<tr>
<td>coeff.</td>
</tr>
<tr>
<td>-0.007</td>
</tr>
<tr>
<td>p-Value</td>
</tr>
<tr>
<td>R^2_{adj}</td>
</tr>
</tbody>
</table>
Outline

1. Introduction

2. Modeling inflation quantiles
 - Quantiles
 - Summary of the analysis
 - In- and out-of-sample analysis

3. Inflation risk measures
 - Inflation risk measures: definitions
 - The reaction of short-term interest rates to inflation risk

4. Conclusions
Summary of results

1. We propose a new approach to extract quantile-based inflation risk measures.
2. Our model accounts for absolute past inflation changes in quantile modeling and can handle mixed-frequency data sampling.
3. Our model performs favorably with respect to a standard QAR model in terms of prediction of conditional quantiles.
4. We use our model-based quantiles to construct inflation-risk measures.
5. We show that there is a positive and significant relationship of changes in Effective Federal Funds rate and conditional asymmetry.
6. Results are in line with survey data based inflation conditional asymmetry, Andrade et al. (2015).

