Can inflation expectations in business or consumer surveys improve inflation forecasts?

Raïsa Basselier^{1,*} David de Antonio Liedo^{2,*} Jana Jonckheere^{1,*} Geert Langenus^{1,*}

¹ Economics and Research Department, NBB

²Research and Development (Statistics), NBB

*Prepared for the NBB Colloquium 2018: Understanding inflation dynamics: the role of costs, mark-ups and expectations

The views expressed in this presentation do not necessarily reflect those of the NBB

October 25, 2018

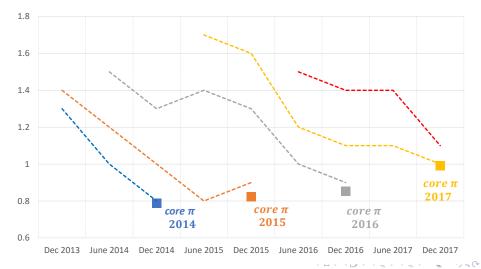
向下 イヨト イヨト

1. Motivation

- 2. Data
- 3. Model
- 4. X-models at work
- 5. Out-of-sample validation
- 6. Conclusion

Section 1

Motivation


æ

590

→ Ξ →

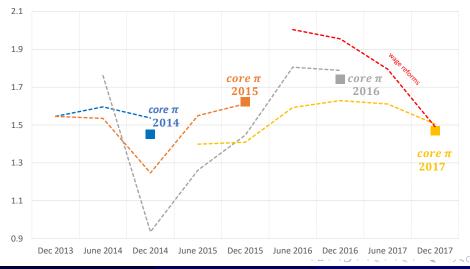

Inflation in the euro area is consistently overestimated

Figure: ECB core inflation forecasts updates over time

In Belgium, we have the opposite case

Figure: NBB core inflation forecasts updates over time

Section 2

æ

590

イロト イヨト イヨト イヨト

Name	Description	Source
Total inflation (π_t) Core inflation (π_t^{core}) Import deflator (π_t^M) Oil (in euros) (P_t^{Oil})	HICP, all items, SA, quarterly growth HICP, all items excluding energy and food Quarterly growth rate of the import deflator Brent oil in dollars divided by the euro/dollar exchange rate, average of the quarter	Eurostat Eurostat Eurostat ECB
Real GDP (y_t) Unemployment (u_t) Mark-up (μ_t)	Gross Domestic Product at market prices Unemployment rate as a % of the labour force (quarterly) YoY growth of GDP deflator minus YoY growth of unit	Eurostat Eurostat Eurostat
BS Global for BE and ESI for EA (S_t^y)	labour costs (quarterly) Overall business sentiment indicator, last month of the quarter	NBB
Inflation Survey data (S^B_t, S^C_t)	Businesses' and consumers' medium and short-term as- sessment of future price developments. Balance of re- sponses, seasonally adjusted, first month of each quarter	DG ECFIN

æ

900

< □ > < □ > < □ > < □ >

Name	Description	Source
Total inflation (π_t) Core inflation (π_t^{core}) Import deflator (π_t^M) Oil (in euros) (P_t^{Oil})	HICP, all items, SA, quarterly growth HICP, all items excluding energy and food Quarterly growth rate of the import deflator Brent oil in dollars divided by the euro/dollar exchange rate, average of the quarter	Eurostat Eurostat ECB
Real GDP (y_t) Unemployment (u_t) Mark-up (μ_t)	Gross Domestic Product at market prices Unemployment rate as a % of the labour force (quarterly) YoY growth of GDP deflator minus YoY growth of unit labour costs (quarterly)	Eurostat Eurostat Eurostat
BS Global for BE and ESI for EA (S_t^y)	Overall business sentiment indicator, last month of the quarter	NBB
Inflation Survey data (S_t^B, S_t^C)	Businesses' and consumers' medium and short-term as- sessment of future price developments. Balance of re- sponses, seasonally adjusted, first month of each quarter	DG ECFIN

æ

900

< □ > < □ > < □ > < □ >

Name	Description	Source
Total inflation (π_t) Core inflation (π_t^{core}) Import deflator (π_t^M) Oil (in euros) (P_t^{Oil})	HICP, all items, SA, quarterly growth HICP, all items excluding energy and food Quarterly growth rate of the import deflator Brent oil in dollars divided by the euro/dollar exchange rate, average of the quarter	Eurostat Eurostat Eurostat ECB
Real GDP (y_t) Unemployment (u_t) Mark-up (μ_t) BS Global for BE and ESI for EA (S_t^y)	Gross Domestic Product at market prices Unemployment rate as a % of the labour force (quarterly) YoY growth of GDP deflator minus YoY growth of unit labour costs (quarterly) Overall business sentiment indicator, last month of the quarter	Eurostat Eurostat Eurostat NBB
Inflation Survey data (S_t^B, S_t^C)	Businesses' and consumers' medium and short-term as- sessment of future price developments. Balance of re- sponses, seasonally adjusted, first month of each quarter	DG ECFIN

æ

900

< □ > < □ > < □ > < □ >

Section 3

Model

æ

590

- Trend component $\pi_t = \tau_t^{\pi} + \lambda_{\pi} \delta_t + \zeta_{\pi} \vartheta_t + \eta_t^{\pi}$
- Cyclical component

Oil effects

$$u_t = \tau_t^u + \kappa_u \delta_t + \eta_t^u$$
$$P_t^{oil} = \tau_t^{oil} + \lambda_{oil} \delta_t + \zeta_{oil} \vartheta_t + \eta_t^{oil}$$

A ...

590

• Trend component $\pi_t = \tau_t^{\pi} + \lambda_{\pi}\delta_t + \zeta_{\pi}\vartheta_t + \eta_t^{\pi}$ • Cyclical component

$$u_t = \tau_t^u + \kappa_u \delta_t + \eta_t^u$$
$$P_t^{oil} = \tau_t^{oil} + \lambda_{oil} \delta_t + \zeta_{oil} \eta_t^{j} + \eta_t^{j}$$

4 A N

nac

• Trend component $\pi_t = \frac{\tau_t^{\pi}}{\tau_t} + \frac{\lambda_{\pi}\delta_t}{\lambda_{\pi}\delta_t} + \frac{\zeta_{\pi}\vartheta_t}{\zeta_{\pi}\vartheta_t} + \eta_t^{\pi}$ • Cyclical component

$$u_t = \tau_t^u + \kappa_u \delta_t + \eta_t^u$$

$$P_t^{oil} = \tau_t^{oil} + \lambda_{oil}\delta_t + \zeta_{oil}\vartheta_t + \eta_t^{oil}$$

nac

• Trend component $\pi_t = \frac{\tau_t^{\pi}}{\tau_t} + \frac{\lambda_{\pi}\delta_t}{\lambda_{\pi}\delta_t} + \frac{\zeta_{\pi}\vartheta_t}{\zeta_{\pi}\vartheta_t} + \eta_t^{\pi}$ • Cyclical component

$$u_t = \tau_t^u + \kappa_u \delta_t + \eta_t^u$$

$$P_t^{oil} = \tau_t^{oil} + \lambda_{oil}\delta_t + \zeta_{oil}\vartheta_t + \eta_t^{oil}$$

• Trend component $\pi_t = \tau_t^{\pi} + \lambda_{\pi}\delta_t + \zeta_{\pi}\vartheta_t + \eta_t^{\pi}$ • Cyclical component

 $u_t = \tau_t^u + \kappa_u \delta_t + \eta_t^u$

 $P_t^{oil} = \tau_t^{oil} + \lambda_{oil}\delta_t + \zeta_{oil}\vartheta_t + \eta_t^{oil}$

- Trend component $\pi_t = \tau_t^{\pi} + \lambda_{\pi} \delta_t + \zeta_{\pi} \vartheta_t + \eta_t^{\pi}$ • Cyclical component
- Oil effects

$$u_t = \tau_t^u + \kappa_u \delta_t + \eta_t^u$$
$$P_t^{oil} = \tau_t^{oil} + \lambda_{oil} \delta_t + \zeta_{oil} \vartheta_t + \eta_t^{oil}$$

Unobserved Components Model (UCM)

$$\pi_t = \tau_t^{\pi} + \lambda_{\pi} \delta_t + \zeta_{\pi} \vartheta_t + \eta_t^{\pi} \tag{1}$$

$$\pi_t^{core} = \tau_t^{\pi} + \lambda_{core} \delta_{t-4} + \eta_t^{core}$$
(2)

$$\pi_t^m = \tau_t^m + \lambda_m \delta_t + \zeta_m \vartheta_t + \eta_t^M$$

$$P_t^{oil} = \tau_t^{oil} + \lambda_{oil} \delta_t + \zeta_{oil} \vartheta_t + \eta_t^{oil}$$
(3)
(3)

$$u_t = \tau_t^u + \kappa_u \delta_t + \eta_t^u$$

$$y_t = \tau_t^y + \kappa_y \delta_t + \eta_t^y$$

$$S_t^Y = m_S + \kappa_S(\delta_t - \delta_{t-4}) + \eta_t^S$$

$$\mu_t = m_\mu + \kappa_\mu(\delta_t - \delta_{t-4}) + \eta_t^\mu$$

Forecasts for inflation can be expressed as:

 $\mathbb{E}\left[\pi_{t+h}|\Omega_{t}\right] = \mathbb{E}\left[\tau_{t+h}^{\pi}|\Omega_{t}\right] + \lambda_{\pi} \mathbb{E}\left[\delta_{t+h}|\Omega_{t}\right] + \zeta_{\pi} \mathbb{E}\left[\vartheta_{t+h}|\Omega_{t}\right]$

< 4 ₽ >

nac

Unobserved Components Model (UCM)

$$\pi_t = \tau_t^{\pi} + \lambda_{\pi} \delta_t + \zeta_{\pi} \vartheta_t + \eta_t^{\pi} \tag{1}$$

$$\pi_t^{core} = \tau_t^{\pi} + \lambda_{core} \delta_{t-4} + \eta_t^{core}$$
(2)

$$\pi_t^m = \tau_t^m + \lambda_m \delta_t + \zeta_m \vartheta_t + \eta_t^M \tag{3}$$

$$P_t^{ou} = \tau_t^{ou} + \lambda_{oil}\delta_t + \zeta_{oil}\vartheta_t + \eta_t^{ou} \tag{4}$$

$$u_t = \tau_t^u + \kappa_u \delta_t + \eta_t^u \tag{5}$$

$$y_t = \tau_t^y + \kappa_y \delta_t + \eta_t^y \tag{6}$$

$$S_{t}^{Y} = m_{S} + \kappa_{S}(\delta_{t} - \delta_{t-4}) + \eta_{t}^{S}$$

$$\mu_{t} = m_{\mu} + \kappa_{\mu}(\delta_{t} - \delta_{t-4}) + \eta_{t}^{\mu}$$
(8)

Forecasts for inflation can be expressed as:

 $\left|\mathbb{E}\left[\pi_{t+h}|\Omega_{t}\right] = \mathbb{E}\left[\tau_{t+h}^{\pi}|\Omega_{t}\right] + \lambda_{\pi}\mathbb{E}\left[\delta_{t+h}|\Omega_{t}\right] + \zeta_{\pi}\mathbb{E}\left[\vartheta_{t+h}|\Omega_{t}\right]$

Unobserved Components Model (UCM)

$$\pi_t = \tau_t^{\pi} + \lambda_{\pi} \delta_t + \zeta_{\pi} \vartheta_t + \eta_t^{\pi} \tag{1}$$

$$\pi_t^{core} = \tau_t^{\pi} + \lambda_{core} \delta_{t-4} + \eta_t^{core}$$
(2)

$$\pi_t^m = \tau_t^m + \lambda_m \delta_t + \zeta_m \vartheta_t + \eta_t^M \tag{3}$$

$$P_t^{out} = \tau_t^{out} + \lambda_{oil}\delta_t + \zeta_{oil}\vartheta_t + \eta_t^{out}$$
(4)

$$u_t = \tau_t^u + \kappa_u \delta_t + \eta_t^u \tag{5}$$

$$y_t = \tau_t^y + \kappa_y \delta_t + \eta_t^y \tag{6}$$

$$S_t^Y = m_S + \kappa_S(\delta_t - \delta_{t-4}) + \eta_t^S$$

$$(7)$$

$$\mu_t = m_\mu + \kappa_\mu (\delta_t - \delta_{t-4}) + \eta_t^\mu \tag{8}$$

Forecasts for inflation can be expressed as:

$$\mathbb{E}\left[\pi_{t+h}|\Omega_{t}\right] = \mathbb{E}\left[\tau_{t+h}^{\pi}|\Omega_{t}\right] + \lambda_{\pi} \mathbb{E}\left[\delta_{t+h}|\Omega_{t}\right] + \zeta_{\pi} \mathbb{E}\left[\vartheta_{t+h}|\Omega_{t}\right]$$

Linking surveys to expected factors: X-model

Key contribution: our framework connects the surveys (and any variable reflecting expectations) with the factors derived from the model. Remember, forecasts for inflation can be expressed as:

$$\mathbb{E}\left[\pi_{t+h}|\Omega_{t}\right] = \mathbb{E}\left[\tau_{t+h}^{\pi}|\Omega_{t}\right] + \lambda_{\pi} \mathbb{E}\left[\delta_{t+h}|\Omega_{t}\right] + \zeta_{\pi} \mathbb{E}\left[\vartheta_{t+h}|\Omega_{t}\right]$$

• If S_t^B is proportional to a measure of $\mathbb{E}\left[\pi_{t+1}|\Omega_t\right]$:

$$S_t^B \propto \mathbb{E}\left[\tau_{t+1}^{\pi} | \Omega_t\right] + \lambda_{\pi} \mathbb{E}\left[\delta_{t+1} | \Omega_t\right] + \zeta_{\pi} \mathbb{E}\left[\vartheta_{t+1} | \Omega_t\right] + \eta_t^B$$
(9)

• If S_t^C is proportional to a measure of $\mathbb{E}\left[\pi_{t+1} + \ldots + \pi_{t+4} | \Omega_t\right]$:

$$S_t^C \propto \sum_{h=1}^4 \left\{ \mathbb{E} \left[\tau_{t+h}^{\pi} | \Omega_t \right] + \lambda_{\pi} \mathbb{E} \left[\delta_{t+h} | \Omega_t \right] + \zeta_{\pi} \mathbb{E} \left[\vartheta_{t+h} | \Omega_t \right] \right\} + \eta_t^C (10)$$

• η_t^C and η_t^C are idiosyncratic terms

Linking surveys to expected factors: X-model

• Cyclical components follow a stationary AR(2) process:

$$\begin{aligned} \delta_t &= \alpha_1 \delta_{t-1} + \alpha_2 \delta_{t-2} + \zeta_t^{\delta} \\ \vartheta_t &= \rho_1 \delta_{t-1} + \rho_2 \delta_{t-2} + \zeta_t^{\vartheta} \end{aligned}$$

- The trends related to inflation follow a random walk.
- Output and unemployment have *smoother I*(2) trends:

$$\begin{aligned} \tau^u_t (1-L)^2 &= \epsilon^u_t \\ \tau^y_t (1-L)^2 &= \epsilon^y_t \end{aligned}$$

• This implies:

$$S_{t}^{B} = \mathbb{E}\left[\tau_{t+1}^{\pi}|\Omega_{t}\right] + \lambda_{\pi} \mathbb{E}\left[\delta_{t+1}|\Omega_{t}\right] + \zeta_{\pi} \mathbb{E}\left[\vartheta_{t+1}|\Omega_{t}\right] + \eta_{t}^{B}$$

$$S_{t}^{B} = \tau_{t}^{\pi} + \underbrace{\lambda_{\pi}\alpha_{1}}_{\alpha_{1}^{*}} \delta_{t} + \underbrace{\lambda_{\pi}\alpha_{2}}_{\alpha_{2}^{*}} \delta_{t-1} + \underbrace{\zeta_{\pi}\rho_{1}}_{\rho_{1}^{*}} \vartheta_{t} + \underbrace{\zeta_{\pi}\rho_{2}}_{\rho_{2}^{*}} \vartheta_{t-1} + \eta_{t}^{B}$$

• Hasenzagl et al. (2018) estimate α_i^*, ρ_i^* freely, so do not incorporate the implied cross-equation restrictions

Linking surveys to expected factors: X-model

- Surveys may not be fully rational expectations forecasts
- Coibion et al. (2018)'s rational inattention proposal for survey respondents could result in:

$$S_t^{inat} = \mathbb{E} \begin{bmatrix} \pi_{t+h} | \Omega_t \end{bmatrix} + \begin{array}{c} \eta_t^{inat} \\ \eta_t^{inat} \end{bmatrix} = \rho \eta_{t-1}^{inat} + \epsilon_t^{inat}$$

• Since $S_t^C \propto \sum_{h=1}^4 S_{t+h}^{inat}$ the discrepancy (η_t^C) term may be very persistent:

$$\Rightarrow S_t^C = \sum_{h=1}^4 \left\{ \mathbb{E} \left[\pi_{t+h} | \Omega_t \right] \right\} + \underbrace{\mathbb{E} \left[\sum_{h=1}^4 \left\{ \eta_{t+h}^{inat} \right\} \right]}_{\eta_t^C}$$

 This approach may lead to more systematic discrepancy than in the set-up of Mertens and Nason (2018)

Set of models described in the paper

Variables included	Small	X-Small	Large	X-Large
Total inflation (π_t) Core inflation (π_t^{core}) Import deflator (π_t^M) Oil (in euros) (P_t^{Oil})	x x	x x	X X X X	X X X X
Real GDP (y_t) Unemployment (u_t) Mark-up (μ_t) Activity surveys $(S_{\underline{t}}^y)$	× ×	x x	× × ×	× × ×
Business surveys (S^B_t) Consumer surveys (S^C_t)		x x		x x

• Stella and Stock (2013) or Chan et al. (2016) consider π_t and u_t alone for US data

Today, focus on the large systems, with model consistent expectations

We consider fixed parameters, as opposed to Mertens and Nason (2018)

Sar

不同 医不良 医不良

Set of models described in the paper

Variables included	Small	X-Small	Large	X-Large
Total inflation (π_t) Core inflation (π_t^{core})	x x	x x	x x	x x
Import deflator (π_t^M)			х	x
Oil (in euros) (P_t^{Oil})			X	X
Real GDP (y_t)	х	х	х	x
Unemployment (u_t)	х	х	x	X
Mark-up (μ_t) Activity surveys (S_{\star}^y)			x x	X X
			^	^
Business surveys (S_t^B)		х		x
Consumer surveys (S_t^C)		х		x

• Stella and Stock (2013) or Chan et al. (2016) consider π_t and u_t alone for US data

- Today, focus on the large systems, with model consistent expectations
- We consider fixed parameters, as opposed to Mertens and Nason (2018)

12 N 4 12

< 6 b

Section 4

X-models at work

э

æ

DQC

∃ ⊳

X-model does not reproduce the *missing inflation puzzle* for the euro area

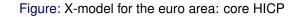


Figure: X-model for Belgium: core HICP

Figure: X-model for Belgium: core HICP

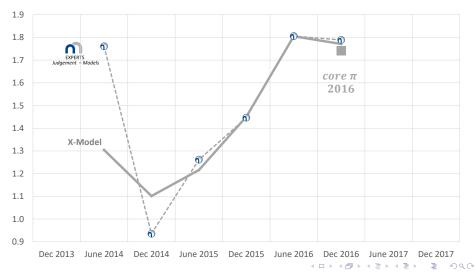
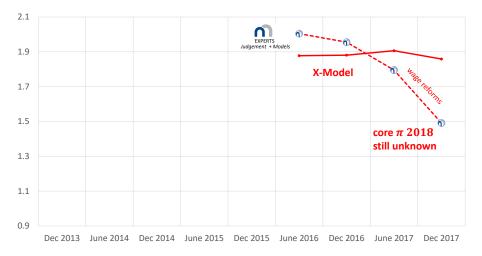



Figure: X-model for Belgium: core HICP

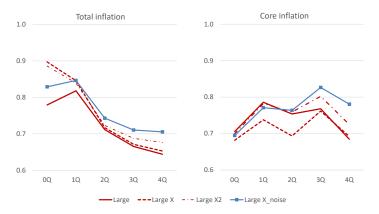
Figure: X-model for Belgium: core HICP

October 25, 2018 20 / 32

Sar

Section 5

Out-of-sample validation

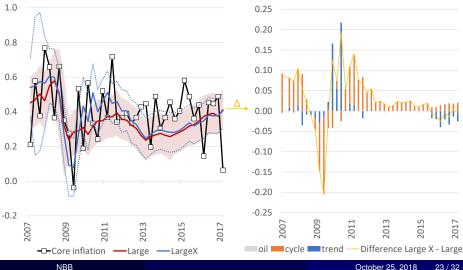

A.

æ

Sac

Value added of surveys for Belgium is mostly clear for core inflation

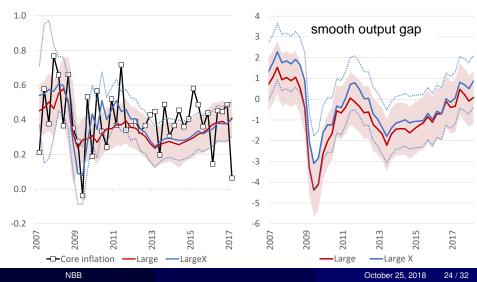
Figure: Belgium: relative RMSE for six models for total and core inflation


Source: NBB.

Note: the forecast evaluation period runs from 2007Q4 to 2017Q4.

• • • • • • • • • • • •

X-model has a more positive contribution from the business cycle


Figure: Belgium: one-step ahead forecasts for core inflation

23/32

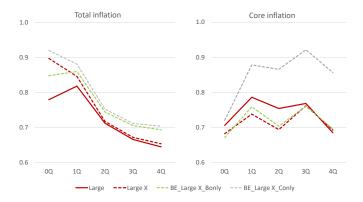
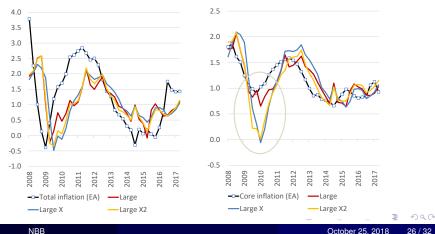

X-model's forecasts are more connected with the business cycle

Figure: Belgium: one-step ahead forecasts for core inflation

Information from price-setters contributes most to these forecast improvements

Figure: Belgium: relative RMSE of business versus consumer survey-augmented models

Source: NBB


Note: the forecast evaluation period runs from 2007Q4 to 2017Q4.

4 A N October 25, 2018

25/32

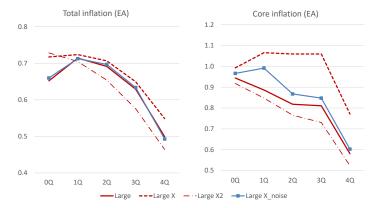
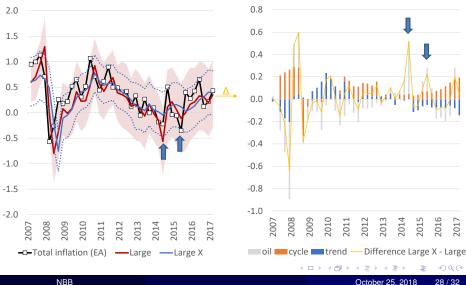

Using surveys deteriorates the forecasts only during one year over the Great Recession, but the X2-model is the best over the recent sample

Figure: Euro area: 4-steps ahead inflation forecasts

Relaxing the rationality assumption (X2 model and persistent noise) seems to help in recent period


Figure: Euro area: relative RMSE for six models for total and core inflation

Source: NBB. Note: the forecast evaluation period runs from 2012Q1 to 2017Q4.

Surveys reduce the short-term impact of oil

Figure: Euro area: one-step ahead forecasts for total inflation

According to the X-model, the gap closes earlier (but the trend inflation is lower)

Figure: Euro area: one-step ahead forecasts for total inflation

Section 6

Conclusion

æ

DQC

A = > 4

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- This paper explores the potential of consumer and business (price setters) surveys for forecasting inflation.
- Assuming surveys are model consistent is a strong assumption, but we show that business surveys do help to improve the forecasts for Belgian core inflation
- For the euro area, model-consistent surveys under-perform over the recession period
- For the recent sample, all models produce very similar forecasts even though the output gap is very different in the models with surveys

- The proposed methodology provides a parsimonious way to incorporate variables reflecting inflation expectations (cummulative or not) for any forecasting horizon
- R codes needed to specify and estimate this kind of models with the state-space methods of JDemetra+ have been made publicly available
- Examples: quantitative surveys for both real activity and inflation (e.g. Survey of Professional Forecasters), interest rate derivative products, official forecasts from different institutions
- One possible application: revisit the results by Ang, Bekaert and Wei (2007), who claim that inflation surveys in the US are more useful than expectations generated by the financial markets

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト