A Macroeconomic Model with a Financial Sector

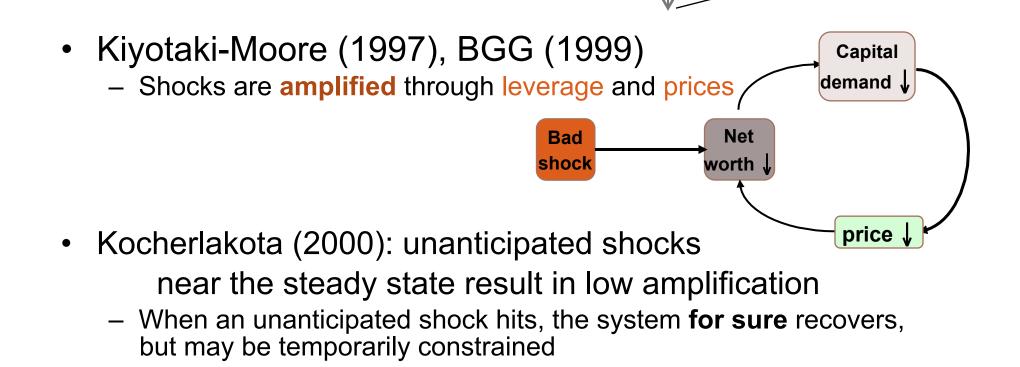
Markus K. Brunnermeier and Yuliy Sannikov

Goals

- Build a model capable of generating crises
 - a regime different from normal, with high endogenous risk, asset missallocation
- Understanding the resilience of the financial system
 - frequency of crises, level of endogenous risk, speed of recovery
 - role of asset liquidity (market, technological), leverage, asset price level, financial innovations
- How does the system respond to various policies? How do policies affect spillovers/welfare?
 - policies often have unintended consequences, the model finds some of those

Financial Accelerator Models

- Bernanke-Gertler (1989)
 - Temporary shocks can have persistent effect on the economy
 - Constrained borrowers (experts) need time to rebuild net worth



Full dynamics

- Agents anticipate shocks
 - map out the path to the worst states, and use backward induction
- Uncertainty (recovery vs. getting trapped in a depressed regime)
 - \rightarrow huge amplification
 - \rightarrow endogenous risk
 - → precautionary behavior
- Agents maintain net worth buffers away from this uncertainty
 - low endogenous risk in the normal regime
 - but an unusually large shock can puts the system in crisis.
- Semi-stable stochastic steady state, but volatile crisis regime

Results

- Dynamics
 - nonlinearity (small vs. large shocks)
 - stationary distribution \cup shaped (system gets trapped in bad states)
 - asset prices: correlation in crises, fat tails
- Comparative Statics
 - lower exogenous risk _____ "volatility paradox"
 - better hedging/risk management higher endogenous risk
 - technological / market / funding liquidity and endogenous risk
- Regulation
 - effect on entire dynamics, not just after crisis happens
 - unintended consequences

	asset price level	amplification in crisis	leverage	asset allocation	crisis probability
bounds on leverage	-	-	-	-	-
dividend restrictions	+	+	-	0	-
price floor/recapitalization	+	-	+	+	-

Literature

- Capital structure/financial frictions
 - Towsend (1979), Bolton-Scharfstein (1990), Sannikov (2012) (survey)
 - Diamond (1984), Holmstrom-Tirole (1997), Diamond-Dybvig (1983)
- Prices/collateral values
 - Shleifer-Vishny (1992), Geanakoplos (1997), Brunnermeier-Pedersen
- Infinite-horizon, log-linearization
 - KM, BGG, Carlstrom-Fuerst (1997), Christiano-Eichenbaum-Evans, Gertler-Kiyotaki, Brunnermeier-Eisenbach-Sannikov (survey)
- No log-linearization
 - Basak-Cuoco (1998), Mendoza (2010), He-Krishnamurthy (2012a,b)

Basic Model: Technology

experts

Output (a – It) kt

Investment \mathbf{I}_t creates new capital at rate $\Phi(\mathbf{I}_t) \mathbf{k}_t$

$$dk_t = (\Phi(I_t) - \delta) k_t dt + \sigma k_t dZ_t$$

less productive households

Output $(\underline{a} - \mathbf{I}_t) \mathbf{k}_t$

Investment \mathbf{I}_t creates new capital at rate $\Phi(\mathbf{I}_t) \mathbf{k}_t$

 $dk_t = (\Phi(I_t) - \underline{\delta}) k_t dt + \sigma k_t dZ_t$

Basic Model: Preferences

experts $\underline{\delta} \ge \delta$, \underline{a}	≤a	less productive households
Output (a – ı_t) k t		Output (<u>a</u> – ı_t) k_t
Investment I_t creates new capital at rate $\Phi(I_t) k_t$		Investment I_t creates new capital at rate $\Phi(I_t) k_t$
$dk_t = (\Phi(I_t) - \delta) k_t dt + \sigma k_t dZ_t$		$dk_t = (\Phi(I_t) - \underline{\delta}) k_t dt + \sigma k_t dZ_t$
risk-neutral, discount rate ρ consumption must be ≥ 0	ρ > r	risk-neutral, discount rate r may consume negatively

Basic Model: Financial Frictions

experts	experts $\underline{\delta} \ge \delta, \underline{a}$		less productive households
Output (a – ı_t) k t			Output (<u>a</u> – ı_t) k_t
Investment I_t creates new capital at rate $\Phi(I_t) k_t$			Investment I_t creates new capital at rate $\Phi(I_t) k_t$
$dk_t = (\Phi(I_t) - \delta) k_t dt$	+ $\sigma \mathbf{k}_{t} \mathbf{dZ}_{t}$		$dk_t = (\Phi(I_t) - \underline{\delta}) k_t dt + \sigma k_t dZ_t$
risk-neutral, discoun consumption must be	-	ρ > r	risk-neutral, discount rate r may consume negatively
may issue only risk-fi + solvency constrain			financially unconstrained

Basic Model: Asset Markets

experts $\underline{\delta} \ge \delta, \underline{a}$	y less productive households	
Output (a – ı _t) k _t		Output (<u>a</u> – ı_t) k_t
Investment I_t creates new capital at rate $\Phi(I_t) k_t$ $dk_t = (\Phi(I_t) - \delta) k_t dt + \sigma k_t dZ_t$		Investment I_t creates new capital at rate $\Phi(I_t) k_t$ dk _t = ($\Phi(I_t) - \underline{\delta}$) k _t dt + σ k _t dZ _t
risk-neutral, discount rate ρ consumption must be ≥ 0	ρ > r	risk-neutral, discount rate r may consume negatively
may issue only risk-free debt + solvency constraint		financially unconstrained

Liquid markets for capital k_t with endogenous price per unit q_t $\frac{dq_t}{q_t} = \mu_t^q dt + \sigma_t^q dZ_t$

10

First Best and Autarky

• First-best:

- experts manage capital forever
- consume entire net worth at t = 0
- issue equity to less productive households

$$\bar{q} = \max_{\iota} \frac{a-\iota}{r-\Phi(\iota)+\delta}$$

- Autarky:
 - households manage capital forever

difference is market illiquidity

funding liquidity

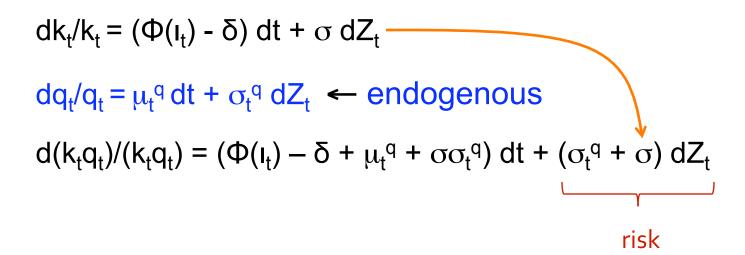
- price of capital

$$\underline{q} = \max_{\underline{\iota}} \frac{\underline{a} - \underline{\iota}}{r - \Phi(\underline{\iota}) + \underline{\delta}}$$

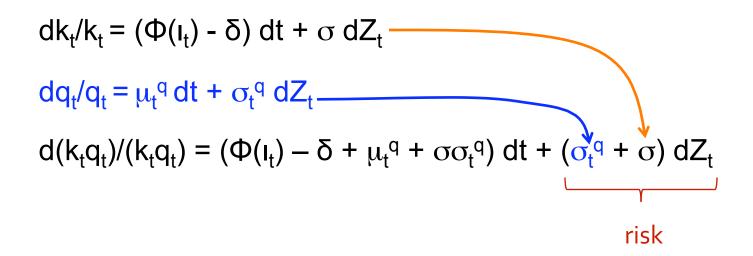
Capital gains/risk

 $dk_t/k_t = (\Phi(I_t) - \delta) dt + \sigma dZ_t$ $dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t \leftarrow endogenous$ $d(k_tq_t)/(k_tq_t) = (\Phi(I_t) - \delta + \mu_t^q + \sigma\sigma_t^q) dt + (\sigma_t^q + \sigma) dZ_t$

Capital gains/risk



Capital gains/risk

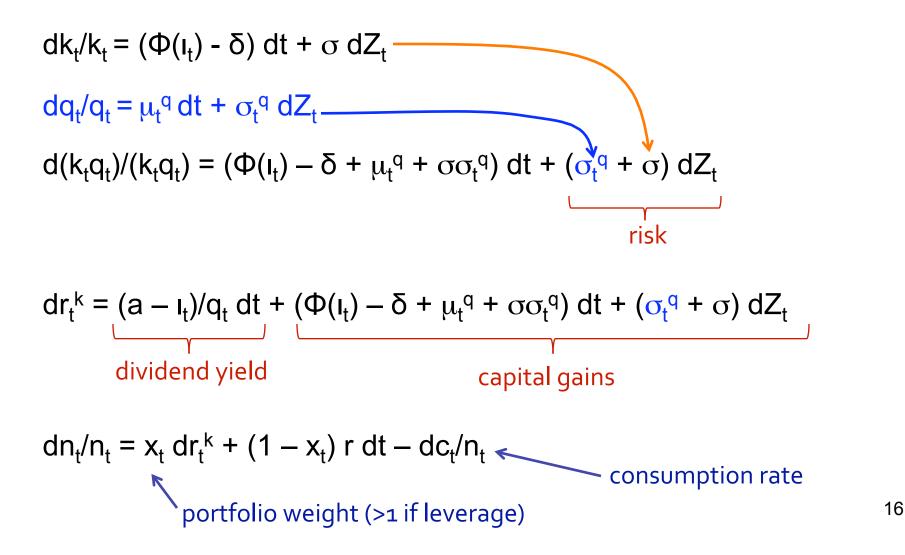


Return from investing in capital

 $dk_t/k_t = (\Phi(i_t) - \delta) dt + \sigma dZ_t$ $dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$ $d(k_tq_t)/(k_tq_t) = (\Phi(i_t) - \delta + \mu_t^q + \sigma\sigma_t^q) dt + (\sigma_t^q + \sigma) dZ_t$ risk $dr_t^k = (a - i_t)/q_t dt + (\Phi(i_t) - \delta + \mu_t^q + \sigma\sigma_t^q) dt + (\sigma_t^q + \sigma) dZ_t$ dividend yield capital gains

 $\max_{I} \Phi(I) - I/q_{t}$

Return from expert portfolio



Equilibrium Definition

• Equilibrium is a map

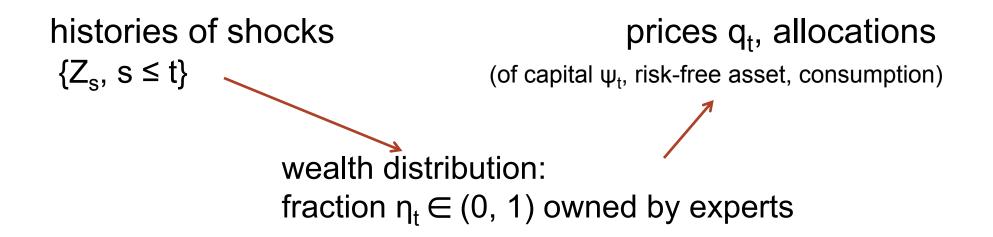
 $\begin{array}{ll} \text{histories of shocks} & \longrightarrow \text{prices } q_t, \text{ allocations} \\ \{Z_s, \ s \leq t\} & \quad (\text{of capital } \psi_t, \ \text{risk-free asset, consumption}) \end{array}$

s.t.

- experts, HH solve optimal consumption/portfolio choice (capital vs. risk-free asset) problems (Merton problem)
- markets clear

Equilibrium Characterization

Equilibrium is a map



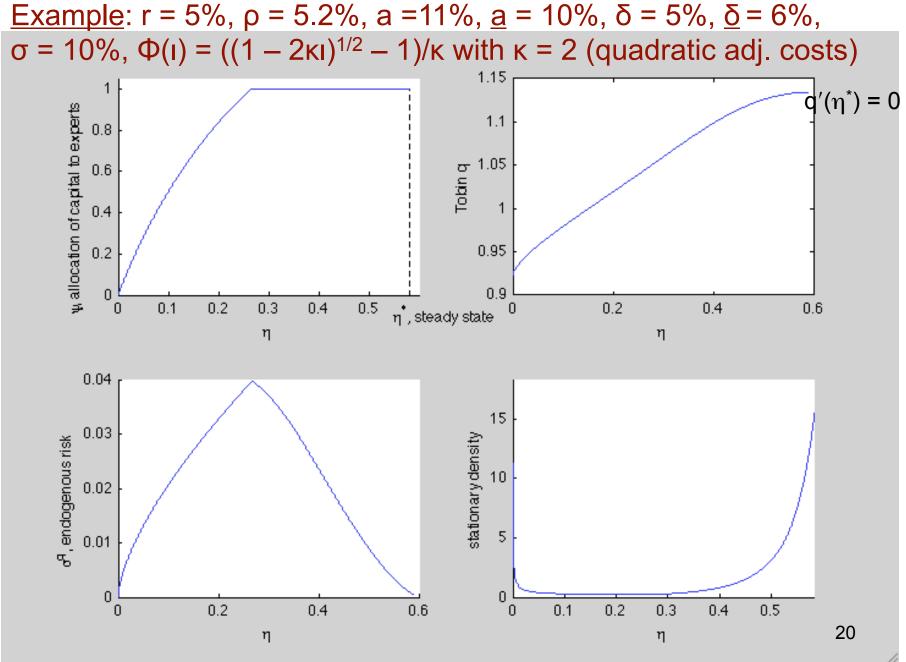
- since experts are impatient, they consume all net worth when η_t > η^{*} ← endogenous, stochastic steady state
- experts hold all capital when η_t is near η^*

Results

- Dynamics
 - nonlinearity (small vs. large shocks)
 - stationary distribution \cup shaped (system gets trapped in bad states)
 - asset prices: correlation in crises, fat tails
- Comparative Statics
 - lower exogenous risk _____ "volatility paradox"

 - technological / market / funding liquidity and endogenous risk
- Regulation
 - effect on entire dynamics, not just after crisis happens
 - unintended consequences

	asset price level	amplification in crisis	leverage	asset allocation	crisis probability
bounds on leverage	-	-	_	_	-
dividend restrictions	+	+	_	0	
price floor/recapitalization	+	_	+	+	_

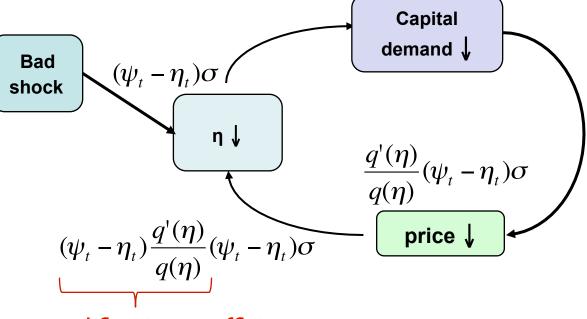


Properties of Equilibrium

Inefficiencies: (1) capital misallocation, (2) underinvestment, (3) consumption distortion

Amplification: depends on $q'(\eta)$

- absent near η^{*},
 q'(η^{*}) = 0
- high below η^*

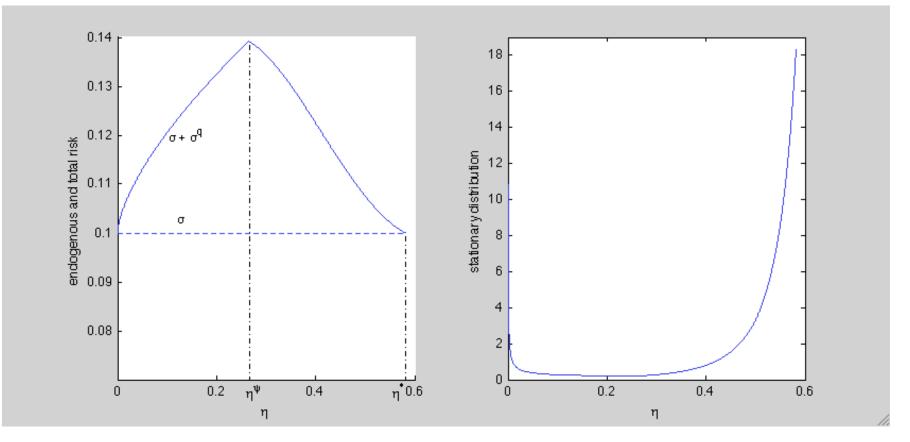


amplification coefficient

$$\sigma_t^q = \frac{q'(\eta)}{q(\eta)} \frac{(\psi_t - \eta_t)\sigma}{1 - (\psi_t - \eta_t)\frac{q'(\eta)}{q(\eta)}}$$

Endogenous risk

Endogenous Risk and Stationary Density



Proposition. Let $\kappa = (a - \underline{a})/\underline{q} + \underline{\delta} - \delta$ (market illiquidity). If $2(\rho - r)\sigma^2 < \kappa^2$, stationary density exists, converges to ∞ as η → 0. If not, the system gets stuck near η = 0 in the long run (no stationary density).

Results

- Dynamics
 - nonlinearity (small vs. large shocks)
 - stationary distribution \cup shaped (system gets trapped in bad states)
 - asset prices: correlation in crises, fat tails
- Comparative Statics
 - lower exogenous risk _____ "volatility paradox"
 - better hedging/risk management higher endogenous risk
 - technological / market / funding liquidity and endogenous risk
- Regulation
 - effect on entire dynamics, not just after crisis happens
 - unintended consequences

asset price level amplification in crisis leverage asset allocation crisis probab	ility
---	-------

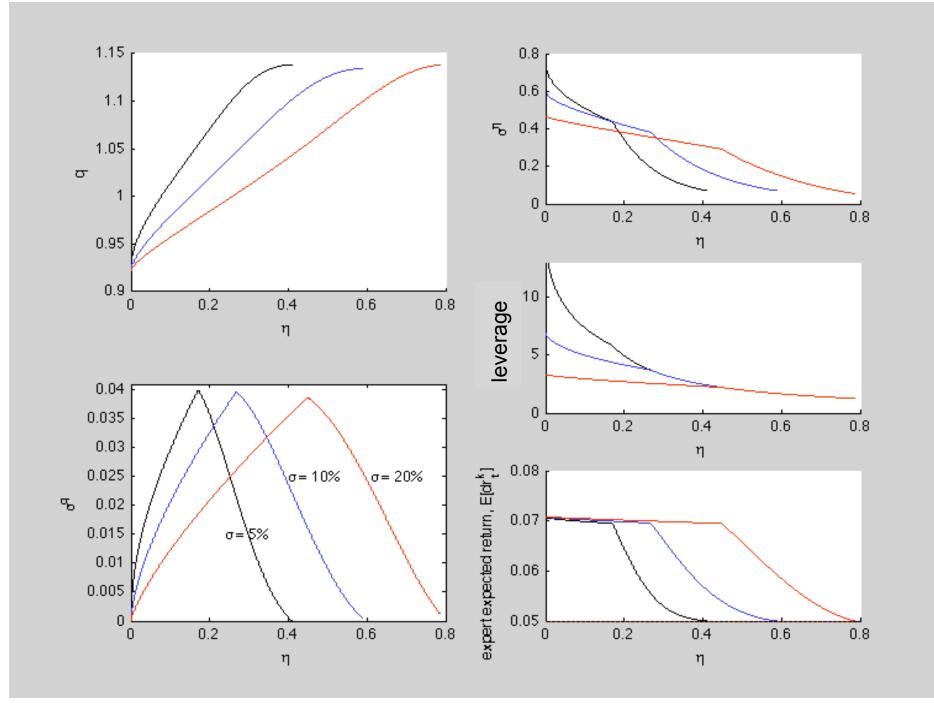
bounds on leverage	_	_	-	-	-
dividend restrictions	+	+	_	0	-
price floor/recapitalization	+	-	+	+	_

Comparative Statics: σ

• As exogenous risk σ falls, does endogenous risk σ^q also fall?

Comparative Statics: σ

- As exogenous risk σ falls, does endogenous risk σ^q also fall?
- No. max σ^q can actually rise as σ falls the volatility paradox
- Endogenous risk does not go away because as σ falls, leverage increases (significantly) and price q in boom rises
- **Proposition.** As $\eta \rightarrow 0$, $\sigma^{\eta} \rightarrow \kappa/\sigma + O(\sigma)$
- Generally, σ^q and risk premia in crisis are not sensitive to σ



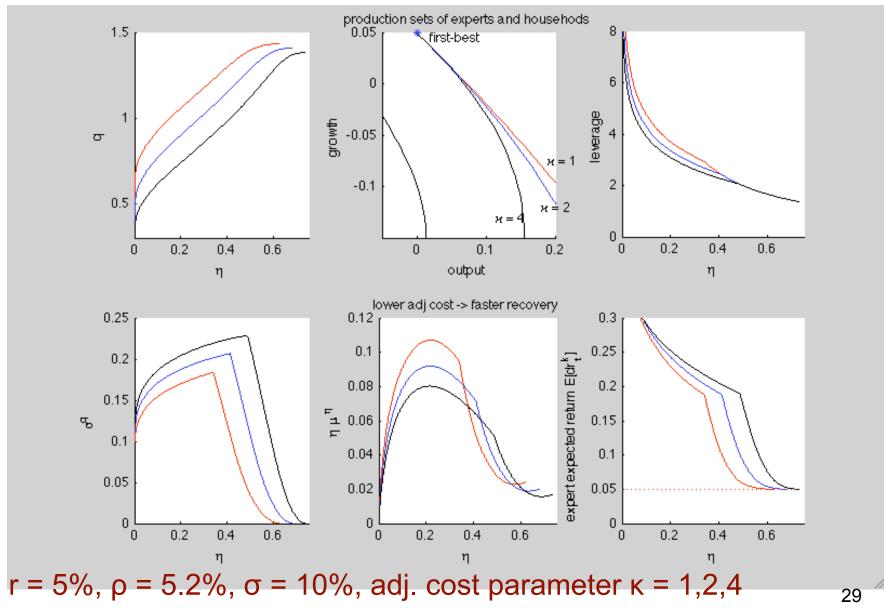
What matters for endogenous risk?

 If exogenous risk σ has little effect on maximal endogenous risk or risk premia, than what does?

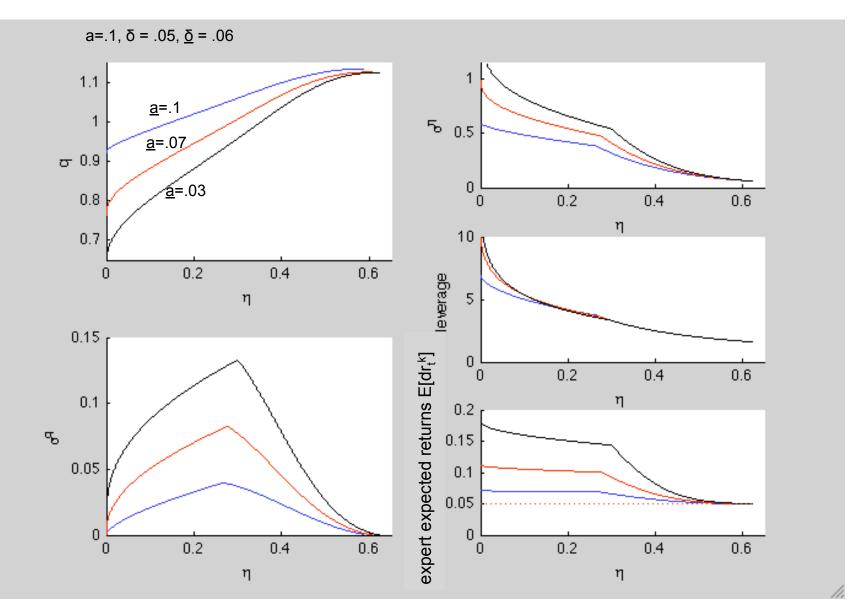
Comparative Statics: Liquidity

- Technological illiquidity: adjustment costs in function Φ, ability to disinvest
- Market illiquidity: difference between first and second-best uses of assets (between a and <u>a</u>, δ and <u>δ</u>)
- Funding illiquidity: ease with which funding can dry up. Short-term debt (in the model so far) has the worst funding liquidity. Long-term debt, equity are a lot better.

Technological Liquidity



Market Liquidity: changing \underline{a} (and \underline{q})



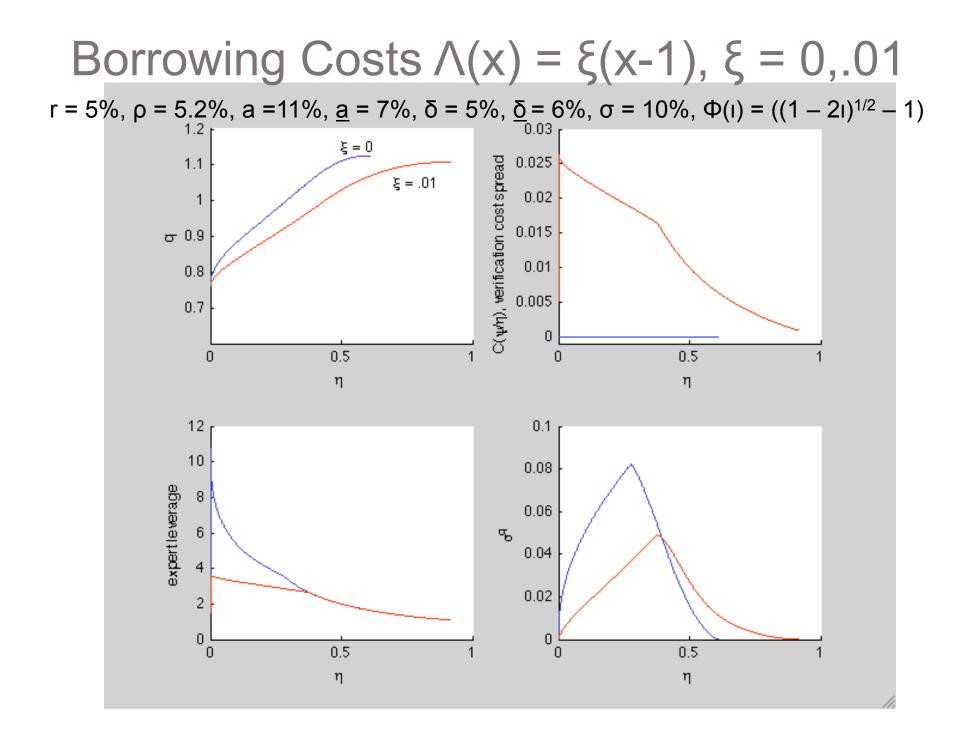
Comparative Statics: Borrowing Costs

Idiosyncratic Poisson shocks cause losses to individual experts that need to be verified (Townsend (1979))

 $dk_t^{i} = (\Phi(I_t) - \delta) k_t^{i} dt + \sigma k_t^{i} dZ_t + k_t^{i} dJ_t^{i} \leftarrow compensated (mean 0) \text{ process}$

Debt no longer risk-free, experts pay a credit spread

$$E[dn_t/n_t] = x_t E[dr_t^k] + (1 - x_t) (r + \Lambda(x_t)) dt - dc_t/n_t$$
spread due to
verification costs



Risk Management to Reduce Borrowing Costs

- **Proposition.** If experts can hedge idiosyncratic shocks among each other, the solution becomes identical to that with no shocks.
- Thus, while hedging reduces inefficiencies (costly verification), it leads to higher endogenous risk and greater likelihood of crisis

Deterministic vs. Stochastic Steady State

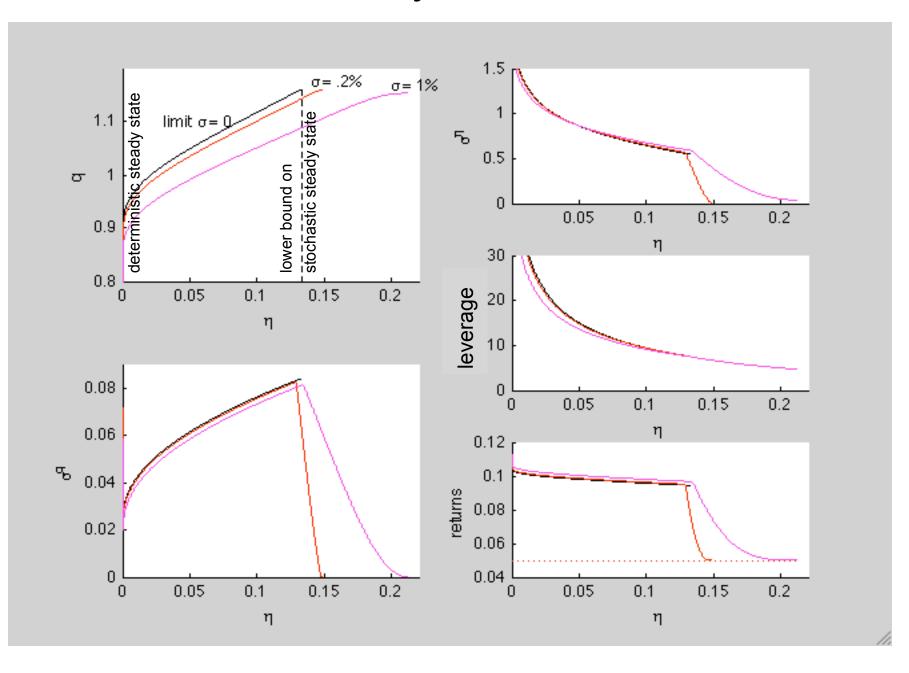
- Deterministic steady state (BGG, KM): stationary point of an economy without shocks
- Proposition. With borrowing costs Λ(x), deterministic steady state η⁰ is characterized by

 $\rho - r = (1 - \eta^0) / (\eta^0)^2 \Lambda'(1/\eta^0) + \Lambda(1/\eta^0)$

- $\eta^0 \rightarrow 0$ as verification costs go to 0.
- Stochastic steady state: point where the system stays in place in the absence of shocks, in an economy with anticipated shocks (it is η^*)

Deterministic steady state \neq stochastic steady state as $\sigma \rightarrow 0$

Economy as $\sigma \rightarrow 0$:



Kocherlakota (2000) Critique does not apply

- Unique unanticipated shocks produce little amplification
- Following shock, price recovers for sure, so it drops little
 - if market knows that the recovery is for sure, there is enough demand even if prices drop by a little
- But, fully anticipated shocks can produce a lot of amplification (price may drop further a lot more)
- In fact, as $\sigma \rightarrow 0$, amplification is infinite!

Results

- Dynamics
 - nonlinearity (small vs. large shocks)
 - stationary distribution \cup shaped (system gets trapped in bad states)
 - asset prices: correlation in crises, fat tails
- Comparative Statics
 - lower exogenous risk _____ "volatility paradox"

 - technological / market / funding liquidity and endogenous risk
- Regulation
 - effect on entire dynamics, not just after crisis happens
 - unintended consequences

	asset price level	amplification in crisis	leverage	asset allocation	crisis probability
bounds on leverage	-	-	-	-	-
dividend restrictions	+	+	-	0	-
price floor/recapitalization	+	-	+	+	-

Policies

"Micromanaging"

 Proposition: If a regulator fully controls asset allocation, investment and consumption, subject to resource constraints, based on public information in the market, <u>first-best</u> can be attained

Capital requirements/leverage bounds

- similar to borrowing costs (but more crude)
- cost: asset misallocation; benefit: crisis less likely

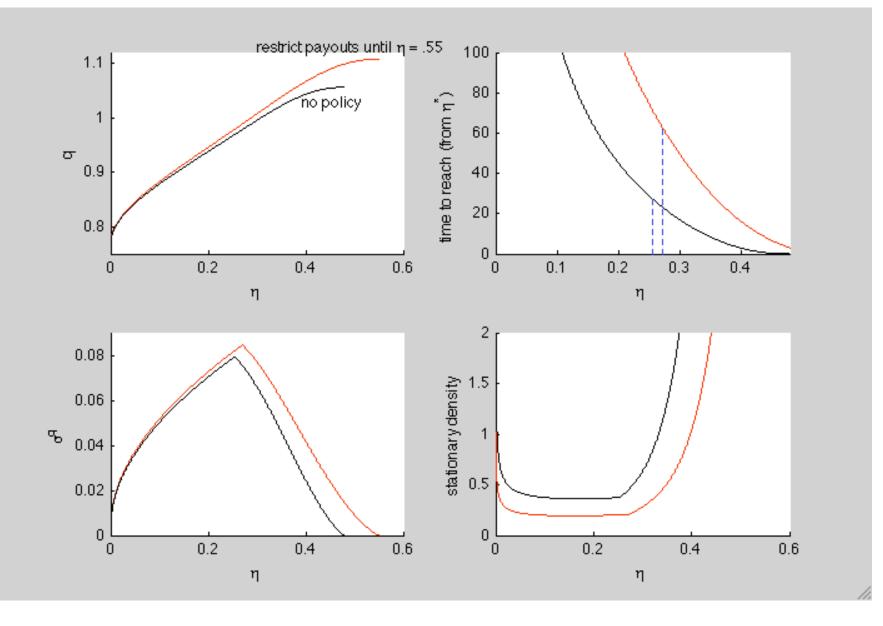
Restriction on dividends/payouts

- reduces crisis probability
- but stimulates prices, i.e. crises become worse

Recapitalization in downturns/price floor

- improves funding/market liquidity
- can be decentralized, with freely traded insurance contracts
- low exogenous, high endogenous risk \Rightarrow low cost to improve welfare₃₈

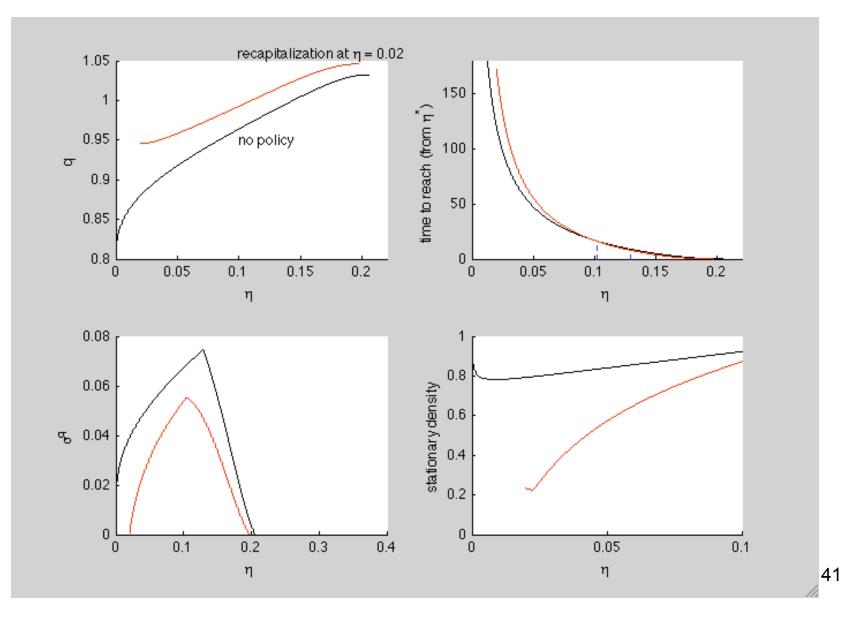
Policy: Restriction on Payouts



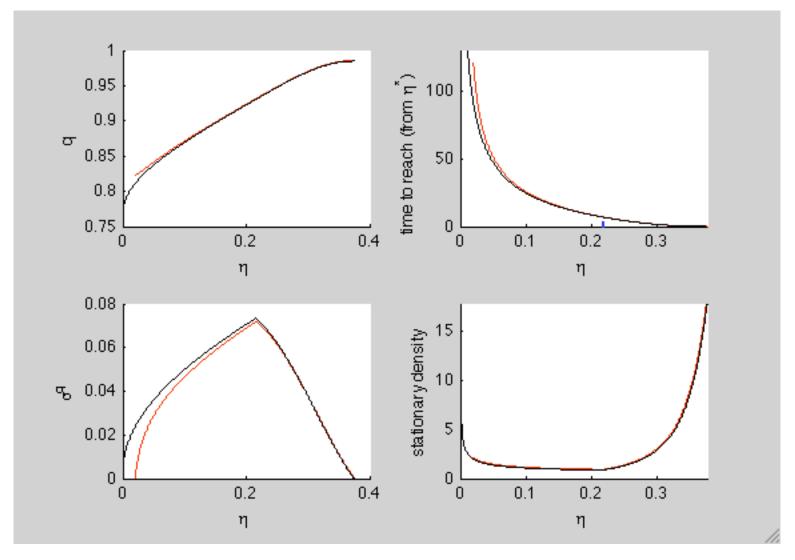
Policy: Restriction on Payouts

- This policy
 - improves experts' net worth buffers
 - reduces frequency of crisis, time spent in depressed regimes
 - stimulates prices, so worse endogenous risk in crisis
 - generally reduces welfare within model, but can improve welfare if there are spillovers

Recapitalizing experts at $\eta = .02$, $\sigma = 3\%$



But with $\sigma = 10\%$, less impressive effect



42

Policy: Recapitalization

- This policy
 - works particularly well with low exogenous risk, potentially high endogenous risk, effectively by improving funding liquidity
 - may not reduce the frequency of firesales (endogenous leverage), but reduces time spent in deeply depressed states
 - improves welfare within the model
 - creates little moral hazard if recapitalization is proportional to net worth, i.e. it benefits cautious experts more than risk-takers
 - can be implemented through free trading of insurance securities (rather than an explicit bailout)
 - price support policy has similar effects

Conclusion

- Continuous time offers a powerful methodology to analyze heterogeneous-agent models with financial frictions
- System dynamics: normal times (low amplification) different from crisis times (high amplification/risk premia, correlated asset prices)
- Endogenous risk-taking leads to paradoxes
 - diversification opportunities, hedging instruments, lower exogenous risk may lead to higher endogenous risk in crises
- Regulation
 - model offers a laboratory to study the effects of policies
 - important, because many policies have unexpected consequences

Thank you!