Risk, Uncertainty and Monetary Policy

Columbia GSB

Geert Bekaert Marie Hoerova ECB

Marco Lo Duca ECB

The views expressed are solely those of the authors.

The "fear index" and MP

LVIX,RERA(-i)	LVIX,RERA(+i)	i	lag	lead
1	I 🗖	0	0.1716	0.1716
1	r 🗖	1	0.2169	0.1391
î 📃	r 🗖 i	2	0.2651	0.1119
	(🗐 (3	0.3119	0.0846
1	1 🗐 I	4	0.3547	0.0586
E E	1 1 1	5	0.3988	0.0300
1	I I	6	0.4225	-0.0039
1	1 🛛 1	7	0.4401	-0.0283
C	i 🖬 i	8	0.4473	-0.0350
	101	9	0.4560	-0.0513
L	10	10	0.4684	-0.0759
L	I I	11	0.4912	-0.0935
1		12	0.5057	-0.1193
I	 1	13	0.5150	-0.1628
		14	0.5314	-0.2032
F	1	15	0.5485	-0.2321
E		16	0.5634	-0.2719
I	1	17	0.5731	-0.2947
		18	0.5846	-0.3107
1		19	0.5979	-0.3344
1		20	0.6151	-0.3614
I I		21	0.6329	-0.3979
1	1	22	0.6438	-0.4308
0		23	0.6491	-0.4544
1		24	0.6515	-0.4686

Research questions / Related research

- Does monetary policy (MP) affect stock market risk appetite?
 - Evidence for risk appetite of banks (loans); see Altunbas et al. (2010), loannidou et al. (2009), Jiménez et al. (2009), Maddaloni and Peydró (2010)
 - Role of broad liquidity and credit (Adrian and Shin, 2008; Borio and Zhu, 2004)
- What is the relation between MP and stock market volatility?
 - Heightened "uncertainty" decreases employment and output (Bloom, 2009)
- MP and the stock market what is the channel?
 - Expansionary MP affects the stock market positively and vice versa; see Thorbecke (1997), Rigobon and Sack (2003, 2004), Bernanke and Kuttner (2005)

Empirical challenges

- Endogeneity
 - use structural VAR framework, different identifying restrictions
 - → robust relations
- Measuring monetary policy stance/shocks
 - try various measures for robustness
 - In particular: also identification using high frequency Fed funds futures changes
- Omitted variables
 - include a business cycle variable
- The VIX: indicator of risk aversion but also "uncertainty"
 - split into the two components

Data

- Monthly, January 1990 August 2010; sub-sample; January 1990 – July 2007.
- Risk aversion RA and uncertainty UC
- Monetary policy stance: real rate RERA [Fed funds end of month target rate minus CPI annual inflation rate]
 - robustness: Fed Funds rate FED, Taylor rule deviations, M1 growth
- Business cycle: industrial production (IPI)
 - robustness: non-farm employment, ISM index
- Price level(s): CPI, PPI

The VIX!

A simple discrete-state, one-period economy

• Return distribution with 3 states x_i , occur with prob. π_i :

State	Return x _i	Prob. π_i
Good	$x_g = \mu + a$	$\pi_g = \frac{1-p}{2}$
Bad	$x_b = \mu - a$	$\pi_b = \frac{1-p}{2}$
Crash	$x_c = c < 0$	$\pi_c = p$

Investor has all wealth in the stock market:

$$U\left(\tilde{W}\right) = E\left[\frac{\left(W_0\tilde{R}\right)^{1-\gamma}}{1-\gamma}\right]$$

where \overline{R} – gross return, W_0 – initial wealth, γ - CRRA • "Pricing kernel": marginal utility *m*, proportional to $\overline{R}^{-\gamma}$

• Stock market down, *m* relatively high and vice versa

 "Physical" stock market variance measured using actual probabilities:

$$V = \pi_g (x_g - \overline{x})^2 + \pi_b (x_b - \overline{x})^2 + \pi_c (x_c - \overline{x})^2$$

The VIX measures the risk-neutral variance, using probabilities adjusted for risk π_j^{RN} :

$$VIX^{2} = \pi_{g}^{RN} (x_{g} - \overline{x})^{2} + \pi_{b}^{RN} (x_{b} - \overline{x})^{2} + \pi_{c}^{RN} (x_{c} - \overline{x})^{2}$$

where

$$\pi_j^{RN} = \pi_j \frac{m_j}{E[m]} = \pi_j \frac{(1+x_j)^{-\gamma}}{E[m]}$$

The variance premium is given by:

$$VP \equiv VIX^2 - V = \sum_{j=g,b,c} (\pi_j^{RN} - \pi_j)(x_j - \overline{x})^2$$

The VIX: risk aversion and uncertainty

Since $\pi_c^{RN} >> \pi_c$ and the crash state induces lots of variance, VP > 0

• if $\gamma \uparrow \rightarrow$ weight on the crash state $\uparrow \rightarrow VP \uparrow$

• With a Campbell-Cochrane (1999)-like external habit:

- the "pricing kernel" is given by $(\tilde{R} W_{bm})^{-\gamma}$, where W_{bm} is benchmark wealth
- the coefficient of relative risk aversion is $\frac{\gamma \hat{R}}{\hat{R} W_{hm}}$

The VIX: risk aversion and uncertainty

Suppose statistics to match are: $\overline{x} = 10\%$, $\sigma = 15\%$, skewness Sk = -1 and c = -25%

• The implied crash probability is p = 0.5%

• The VIX and VP as a function of γ or W_{bm}:

Parameters	VIX VP		Parameters	VIX	VP
$\gamma = 2, W_{bm} = 0$	15.9871	0.0031	$\gamma = 4, W_{bm} = 0.05$	17.8677	0.0094
$\gamma = 4, W_{bm} = 0$	17.6115	0.0085	$\gamma = 4, W_{bm} = 0.25$	19.5977	0.0159
$\gamma = 6, W_{bm} = 0$	20.1388	0.0181	$\gamma = 4, W_{bm} = 0.50$	27.9344	0.0556

♦VP↑ as effective risk aversion ↑

The VIX: risk aversion and uncertainty

- Two components of the VIX (risk-neutral expected stock market volatility)!
- Actual expected stock market variance V, (log="uncertainty")
 - fitted values from regressing realized variance on lagged VIX and lagged realized variance
 - \rightarrow best model in horse race
- Variance premium, $VIX^2 V$, (log = "risk aversion")
 - increases monotonically with effective risk aversion in the economy

VIX decomposed: RA (green)

VIX decomposed: UC (green)

• Structural VAR: $AZ_t = \Phi Z_{t-1} + \varepsilon_t$

• Reduced-form VAR: $Z_t = A^{-1}\Phi Z_{t-1} + A^{-1}\varepsilon_t$

 Structural identification: restrictions on contemporaneous responses (Cholesky)

- A is lower triangular
- order of variables: price and business cycle first (slow-moving); MP; RA and UC last (fast-moving)

Results: monetary policy shocks

Model with RERA: DIPI RERA RA UC

Model with FED: CPI IPI FED PPI RA UC
 (See Christiano, Eichenbaum, Evans, 1999)

A contractionary MP shock:

- an increase in the real / Fed Funds rate of 35 / 15 b.p.
- industrial production decreases in medium run (insignificant)
- price level decreases (significant)

Results with employment stronger.

Results: monetary policy shocks

Results: monetary policy shocks

Results: Variance decomposition

of variance explained by MP shocks

Results: RA/UC shocks

Impulse: RA; Response: MP

Results: RA/UC shocks

Impulse: UC; Response: MP

Robustness

- Measuring monetary policy:
 - Fed funds rate
 - Taylor rule residuals
 - Growth rate M1
- Business cycle measures:
 - Employment, ISM index
- Identification of monetary policy shocks:
 - long-run neutrality of money restrictions

Can a monthly VAR really identify MP shocks?

Two alternatives:

 Bernanke-Kuttner (2005) exogenous monthly MP shocks using Federal funds futures contracts

 New procedure using high-frequency data (inspired by D'Amico and Farka, 2011)

 Step 1: MP shocks = high frequency change in Fed futures rate around the FOMC announcement (Gürkaynak, Sack, and Swanson, 2005)

Step 2: Run high frequency "response" regressions

 $\Delta RA_t = -0.039 + 0.047 \Delta MP_t - 0.005 \Delta IP_t - 0.004 \Delta ISM_t - 0.004 \Delta EMP_t$ (0.007) (0.020) (0.014) (0.016) (0.017)

 $\Delta UC_t = -0.009 + 0.013 \Delta MP_t + 0.002 \Delta IP_t - 0.002 \Delta ISM_t - 0.008 \Delta EMP_t$ (0.003) (0.010) (0.005) (0.005) (0.011)

 Step 3: Use these coefficients as the estimates of A⁻¹ in the VAR! [delivers 4 restrictions]

Impulse MP, Response RA

Note: BC and MP do not respond instantaneously to UC

Impulse MP, Response UC

Concluding remarks

VAR analysis to characterize links between RA, UC and MP

• Provide an interpretation of the VIX \leftrightarrow MP relations:

- co-movement between past MP and current VIX: channel is both RA and UC but RA effect stronger
- co-movement between current VIX and future MP: MP accommodates but not statistically significant
- Monetary easing increases risk appetite
 - Effect significant after 8 months, lasts for 3 years

What are the theoretical links between monetary policy and risk-taking behavior in asset markets?

 Structural sources of the VIX dynamics in consumption-based asset pricing models: Bekaert and Engstrom (2010), Bollerslev et al. (2008), Drechsler and Yaron (2011), but no MP equation

 Possible channels include (excessive) risk-taking in asset management (Rajan, 2006); balance sheets of financial intermediaries (Adrian and Shin, 2010); . . .

Asset Return Dynamics under Bad Environment - Good Environment Fundamentals

Geert Bekaert

Columbia University and NBER

Eric Engstrom

Federal Reserve Board of Governors