Dynamics of Subjective Risk Premia

 ${\rm Stefan~Nagel^1} \quad {\rm Zhengyang~Xu^2}$

 $^1{\rm University}$ of Chicago, NBER, CEPR, and CESifo $^2{\rm City}$ University of Hong Kong

October 21, 2022

Asset price cycles

Example: U.S. stock market dividend yield

Time-variation in objective risk premia

Objective risk premia = as estimated by econometrician ex post

Rational expectations models: Subjective = objective

RE: Investors' subj. perception of risk premia = obj. risk premia

- ► Asset price cycles attributed to varying risk or risk aversion
- Example: Campbell-Cochrane, Bansal-Yaron models

Actual subjective risk premia?

Subjective \neq objective e.g., under

- ▶ rational learning with parameter and/or model uncertainty
- ▶ adaptive learning
- ▶ diagnostic expectations

Subjective risk premium dynamics

- ▶ We extract subjective risk premia from price forecasts of professionals and individuals
 - ► Stock market
 - ► Treasury bond market
 - ► Foreign exchange
 - ► Commodity futures

Subjective risk premium dynamics

- We extract subjective risk premia from price forecasts of professionals and individuals
 - ► Stock market
 - ► Treasury bond market
 - ► Foreign exchange
 - Commodity futures
- ► We contrast dynamics of
 - objective risk premia
 - subjective risk premia

with regards to business and asset price cycle variables

Related literature

 Piazzesi et al. (2015): Subjective bond risk premia less cyclical than predictive regression forecasts
 Here: more asset classes, state variables, market participants; comparison with OOS forecasts

Related literature

- Piazzesi et al. (2015): Subjective bond risk premia less cyclical than predictive regression forecasts
 Here: more asset classes, state variables, market participants; comparison with OOS forecasts
- Debate about differences in cyclicality of subjective equity premia of different groups
 - Amromin and Sharpe (2013), Greenwood and Shleifer (2014): individuals, CFOs, procyclical w.r.t. valuation ratios and past returns
 - ▶ Dahlquist and Ibert (2021), Wang (2021): professional forecasters, countercyclical w.r.t. valuation ratios

Here: Subjective risk premia of both groups lack cyclicality relative to objective risk premia

Roadmap

- 1. Cyclicality of objective and subjective risk premia
 - ► Stock market
 - ▶ Bond market
 - Currencies
 - ► Commodity futures
- 2. Comparison with out-of-sample forecasts
- 3. Subjective risk-return tradeoff
- 4. Conclusion

- ► Data
 - Predictor variable x_t : standard predictors + business cycle indicators
 - ightharpoonup Realized excess returns R_{t+1}^e
 - ▶ Subjective risk premium $\tilde{\mathbb{E}}_t R_{t+1}^e$ from survey data

- ► Data
 - Predictor variable x_t : standard predictors + business cycle indicators
 - ightharpoonup Realized excess returns R_{t+1}^e
 - ▶ Subjective risk premium $\mathbb{E}_t R_{t+1}^e$ from survey data
- Objective risk premium dynamics

$$R_{t+1}^e = a + bx_t + e_{t+1}$$

- ► Data
 - Predictor variable x_t : standard predictors + business cycle indicators
 - ightharpoonup Realized excess returns R_{t+1}^e
 - ▶ Subjective risk premium $\tilde{\mathbb{E}}_t R_{t+1}^e$ from survey data
- Objective risk premium dynamics

$$R_{t+1}^e = a + bx_t + e_{t+1}$$

► Subjective risk premium dynamics

$$\tilde{\mathbb{E}}_t R_{t+1}^e = \tilde{a} + \tilde{b} x_t + u_t$$

- ► Data
 - Predictor variable x_t : standard predictors + business cycle indicators
 - ightharpoonup Realized excess returns R_{t+1}^e
 - ightharpoonup Subjective risk premium $\mathbb{E}_t R_{t+1}^e$ from survey data
- Objective risk premium dynamics

$$R_{t+1}^e = a + bx_t + e_{t+1}$$

► Subjective risk premium dynamics

$$\tilde{\mathbb{E}}_t R_{t+1}^e = \tilde{a} + \tilde{b}x_t + u_t$$

- ightharpoonup Compare magnitudes b vs. \tilde{b}
 - ▶ Under RE: $b \approx \tilde{b}$

Stock market: Returns and expectations data

	Frequency	Sample Period	Mean	S.D.
Realized	Monthly	1926/12-2020/12	8.15	21.15
NX	Quarterly	1972Q3-2021Q2	5.95	1.98
CFO	Quarterly	2000Q3-2021Q2	3.98	1.75
Livingston	Semi-annually	1952Q2-2020Q4	4.09	5.86

- Survey data: $\tilde{\mathbb{E}}_t R_{t+1}$ at one-year horizon
 - Nagel and Xu (2022): individual investor expectations from UBS/Gallup, Conference Board, Michigan survey, and a few others
 - ► Graham-Harvey CFO survey
 - ► Livingston Professional Forecasters Survey

Stock market: Returns and expectations data

	Frequency	Sample Period	Mean	S.D.
Realized	Monthly	1926/12-2020/12	8.15	21.15
NX	Quarterly	1972Q3-2021Q2	5.95	1.98
CFO	Quarterly	2000Q3-2021Q2	3.98	1.75
Livingston	Semi-annually	1952 Q2 - 2020 Q4	4.09	5.86

- Survey data: $\mathbb{E}_t R_{t+1}$ at one-year horizon
 - ▶ Nagel and Xu (2022): individual investor expectations from UBS/Gallup, Conference Board, Michigan survey, and a few others
 - Graham-Harvey CFO survey
 - ► Livingston Professional Forecasters Survey
- Subjective risk premium using one-year Treasury yield

$$\tilde{\mathbb{E}}_t R_{t+1}^e = \tilde{\mathbb{E}}_t R_{t+1} - R_{f,t}$$

Stock market excess return expectations: Individuals, CFOs, professionals

Stock market: Predictive regressions for realized excess returns

		Asset-Specific Predictors									
	CA	ΑY	D,	/P	EXPD		NΊ	ΓIS			
Coeff (p-value)	3.24 (0.08)	3.71 (0.10)	6.01 (0.00)	5.83 (0.00)	-6.44 (0.03)	-7.19 (0.04)	-4.87 (0.16)	-4.93 (0.16)			
R_{past}^{e} (p-value)		-3.32 (0.12)		0.36 (0.71)		-3.70 (0.09)		-1.47 (0.51)			
Adj. \mathbb{R}^2	0.03	0.06	0.09	0.09	0.08	0.11	0.06	0.06			
N	272	272	1117	1117	377	373	1117	1117			

- ► All predictors standardized to unit standard deviations in full sample period
- ▶ Predictive regressions are bootstrap bias-adjusted

Stock market: Subjective risk premium regressions

		Asset-Specific Predictors							
		CA	AY	D,	/P	EX	PD	N	ΓIS
NX	Coeff	-0.75	-0.75	-0.24	-0.00	0.17	0.20	-0.36	-0.55
	$(p ext{-value})$	(0.04)	(0.03)	(0.52)	(1.00)	(0.63)	(0.54)	(0.48)	(0.23)
	R_{past}^e		0.87		0.87		0.88		0.98
	(p-value)		(0.01)		(0.02)		(0.00)		(0.00)
	Adj. R^2	0.21	0.33	0.00	0.11	0.00	0.12	0.01	0.16
	N	142	142	142	142	142	142	142	142
CFO	Coeff	-0.23	-0.15	-0.47	-0.41	-0.94	-0.92	0.74	0.67
	$(p entrolength{-}\mathrm{value})$	(0.64)	(0.76)	(0.32)	(0.31)	(0.01)	(0.02)	(0.01)	(0.03)
	R_{past}^e		0.35		0.30		0.16		0.20
	(p entropy-value)		(0.18)		(0.29)		(0.60)		(0.48)
	Adj. R^2	-0.00	0.01	0.04	0.05	0.35	0.34	0.08	0.07
	N	77	77	77	77	77	77	77	77
Liv.	Coeff	-1.70	-1.42	1.01	0.42	-0.37	-0.59	-1.05	-0.88
	$(p entrolength{-}\mathrm{value})$	(0.08)	(0.09)	(0.48)	(0.73)	(0.40)	(0.17)	(0.43)	(0.34)
	R_{past}^e		-2.70		-2.78		-2.94		-2.83
	(p entropy-value)		(0.02)		(0.01)		(0.01)		(0.01)
	Adj. R^2	0.06	0.17	0.01	0.13	-0.00	0.14	0.01	0.14
	N	138	138	138	138	138□	▶ 138 ▶	4 1 38 4	■ 138 ■

Stock market: Predictive regressions for realized excess returns

		Business-Cycle Indicators								
	N-	IP	TE	RM	DEF	AULT	F	`1	VI	X^2
Coeff	1.55	1.26	4.40	4.62	2.84	2.51	4.54	4.16	1.82	1.48
(p entropy-value)	(0.51)	(0.49)	(0.00)	(0.01)	(0.12)	(0.13)	(0.00)	(0.04)	(0.31)	(0.39)
R_{past}^e		-1.23		-1.39		-0.55		-0.65		-1.24
(p-value)		(0.74)		(0.55)		(0.91)		(0.69)		(0.62)
Adj. \mathbb{R}^2	0.01	0.01	0.04	0.04	0.02	0.02	0.06	0.06	0.00	0.00
N	1129	1117	1129	1117	1129	1117	717	717	1129	1117

Stock market: Subjective risk premium regressions

Coeff

 R_{past}^{e} (p-value)

Adj. R^2

 R_{past}^e (p-value)

Ν

Coeff

 R_{past}^{e}

Ν

Adj. R^2

(p-value)

Liv.

Adj. R^2

Ν

CFO Coeff

NX

N-IP 0.98 (p-value) (0.17)

0.04

143

0.32

-0.01

79

5.62

0.27

138

(p-value) (0.55)

(p-value) (0.00)

(0.01)

1.57

0.88

(0.00)

0.23

142

1.64

(0.02)

0.89

(0.01)

0.12

77

5.08

(0.00)

-2.28

(0.01)

0.35

138

Business-Cycle Indicators

DEFAULT

(0.20) (0.18) (0.35) (0.13) (0.68) (0.08)

0.57

1.13

(0.00)

0.13

142

0.47

0.63

(0.08)

0.03

77

3.41

-1.79

(0.05)

0.26

138

-0.30

-0.00

143

-0.15

-0.01

79

4.18

0.22

138

F1

0.63

1.13

(0.00)

0.16

142

0.59

(0.07)

0.85

(0.03)

0.06

77

2.23

(0.00)

-1.67

(0.08)

0.26

122

0.15

-0.00

142

0.08

-0.01

77

2.67

0.23

122

(0.18) (0.68)

(0.04) (0.00)

TERM

0.46

1.07

(0.00)

0.16

142

1.15

0.39

(0.08)

0.44

77

1.03

(0.38) (0.37) (0.03)

-2.87

(0.01)

0.16

138

(0.00) (0.60)

0.44

0.04

143

1.12

(0.00)

0.37

79

1.06

0.03

138

 VIX^2

(0.95) (0.14)

(0.01)

0.15

142

0.23

(0.16)

0.73

(0.05)

0.04

77

1.23

(0.02)

-2.23

(0.06)

0.20

= 138_{0 0 0}

-0.01

-0.01

143

0.01

(0.92)

-0.01

79

1.65

(0.00)

0.13

138

Stock market: Summary

Magnitude of Slope Coefficients

Treasury bond market: Returns and expectations data

	Frequency	Sample Period	Mean	S.D.
Realized	Monthly	1952/03-2020/12	1.32	5.08
BCFF	Monthly	1988/01-2020/12	-0.76	1.70

- ► Extract return expectations from yield forecasts
 - ▶ Par yield forecasts for 6m, 1y, 2y, 5y, and 10y bond maturity yields from current quarter to several quarters ahead
 - ► Fit a Nelson-Siegel term structure model to these forecasts period-by-period
 - Bootstrap zero-coupon yield forecasts from these par yield forecasts
 - Extract expected excess return forecasts from zero-coupon yield yield forecasts
- ► Form portfolio expected return by taking equal-weighted average across maturities

Treasury bond market: Asset Class-Specific Return Predictors

- ▶ LN: macro factor from Ludvigson and Ng (2009)
- ▶ CYCLE: cycle factor from Cieslak and Povala (2015).

Standardized to have unit standard deviations in the full sample period starting from 1952.

Treasury bond market: Realized and subjective premia

	Ass	set-Specif	ic Predic	tors		
	L	N	CYCLE			
A. Realize	d					
Coeff	1.94	2.32	2.29	2.38		
$(p entrolength{-}\mathrm{value})$	(0.00)	(0.00)	(0.01)	(0.02)		
R_{past}^e		-0.85		-0.37		
(p entropy-value)		(0.20)		(0.79)		
Adj. R^2	0.14	0.16	0.24	0.24		
N	717	717	578	578		
B. BCFF						
Coeff	0.37	0.50	0.83	0.83		
$(p entrolength{-}\mathrm{value})$	(0.16)	(0.05)	(0.00)	(0.00)		
R_{past}^e		-0.35		0.02		
(p entropy - value)		(0.08)		(0.90)		
Adj. R^2	0.03	0.05	0.23	0.22		
N	397	397	397	397		

Treasury bond market: Realized and subjective premia

				Busin	ess-Cyo	cle Indi	cators			
	N-	IP	TE	RM	DEF	AULT	F	`1	VI	X^2
A. Realiz	\mathbf{ed}									
Coeff	0.75	0.85	1.48	1.92	1.36	1.35	1.08	1.13	0.30	0.33
$(p ext{-value})$	(0.61)	(0.60)	(0.00)	(0.00)	(0.12)	(0.13)	(0.04)	(0.07)	(0.22)	(0.20)
R_{past}^e		-0.12		-0.94		-0.13		-0.10		0.02
(p entropy - value)		(0.84)		(0.08)		(0.73)		(0.77)		(0.88)
Adj. R^2	0.00	0.00	0.09	0.12	0.02	0.02	0.03	0.03	0.00	0.00
N	826	814	826	814	826	814	717	717	826	814
B. BCFF										
Coeff	0.54	0.67	0.30	0.33	0.30	0.41	0.57	0.75	0.17	0.22
(p entropy-value)	(0.31)	(0.22)	(0.15)	(0.11)	(0.47)	(0.35)	(0.02)	(0.00)	(0.13)	(0.07)
R_{past}^e		-0.25		-0.22		-0.24		-0.44		-0.28
(p entropy - value)		(0.27)		(0.26)		(0.32)		(0.06)		(0.24)
Adj. \mathbb{R}^2	0.02	0.03	0.03	0.04	0.01	0.02	0.07	0.11	0.02	0.04
N	397	397	397	397	397	397	397	397	397	397

Treasury bond market: Summary

Magnitude of Slope Coefficients

Foreign exchange market: Returns and expectations data

	Frequency	Sample Period	Mean	S.D.
Realized	Monthly	1984/10-2021/06	1.78	9.76
CE & FX4casts	Monthly	1986/08-2021/06	0.50	3.16

- ► Extract return expectations from spot rate forecasts and forward rates
- ► Focus on returns of an equal-weighted developed markets currency portfolio
 - ► AUD, CAN, DKK, DEM/EUR, JPY, NZD, NOK, SEK, CHF, GBP

from perspective of a U.S. investor

Foreign exchange market: Asset Class-Specific Return Predictors

► Forward discount for each currency

$$FD_t \equiv \frac{F_t}{S_t} - 1,$$

averaged across all currencies as in Lustig et al. (2014). Standardized to have unit standard deviations in the full sample period starting from 1984.

Foreign exchange market: Realized and subjective premia

	Asset-Spe	cific Predictors
	A	vg. FD
A. Realize	d	
Coeff	3.75	3.79
(p entropy-value)	(0.03)	(0.08)
R_{past}^e		-1.23
(p entropy-value)		(0.42)
Adj. R^2	0.15	0.13
N	442	430
B. CE & I	X4casts	
Coeff	-0.19	0.01
$(p ext{-value})$	(0.75)	(0.99)
R_{past}^e		-0.41
(p entropy - value)		(0.54)
Adj. \mathbb{R}^2	0.00	0.01
N	419	419

Foreign exchange market: Realized and subjective premia

				Busin	ness-Cy	cle India	cators			
	N-	IP	TE	RM	DEF	AULT	F	`1	VI	X^2
A. Realize	ed									
Coeff	6.66	5.55	1.99	2.24	5.99	7.05	2.65	2.50	1.44	1.24
$(p ext{-value})$	(0.04)	(0.10)	(0.27)	(0.29)	(0.07)	(0.07)	(0.06)	(0.14)	(0.03)	(0.04)
R_{past}^e		1.03		-0.12		0.50		0.76		0.75
(p entropy-value)		(0.62)		(0.97)		(0.67)		(0.69)		(0.66)
Adj. R^2	0.10	0.07	0.03	0.04	0.11	0.15	0.04	0.02	0.03	0.04
N	442	430	442	430	442	430	442	430	442	430
B. CE &	FX4ca	\mathbf{sts}								
Coeff	0.27	0.10	-0.68	-0.62	0.27	0.23	0.06	-0.03	0.56	0.53
(p entropy-value)	(0.74)	(0.91)	(0.24)	(0.25)	(0.69)	(0.77)	(0.89)	(0.94)	(0.10)	(0.13)
R_{past}^e	-0.40		-0.20		-0.40		-0.43		-0.25	
(p entropy - value)	(0.57)		(0.76)		(0.57)		(0.54)		(0.71)	
Adj. R^2	-0.00	0.01	0.04	0.04	-0.00	0.01	-0.00	0.01	0.07	0.07
N	419	419	419	419	419	419	414	414	419	_419

Foreign exchange market: Summary

Magnitude of Slope Coefficients

Commodity futures market: Returns and expectations data

	Frequency	Sample Period	Mean	S.D.
Realized, Metals	Monthly	1978/09-2021/06	1.53	25.54
CE, Metals	Monthly	1995/08-2021/06	0.70	5.67
Realized, Oil	Monthly	1984/12-2021/06	8.49	33.68
CE, Oil	Monthly	1995/08 - 2021/06	2.46	9.70

- ► Focus on commodities with the longest history and highest coverage in CE:
 - ► Energy: Crude Oil (WTI)
 - ▶ Metals: Gold, Silver, Aluminum, and Copper
- ► Extract return expectations from spot price forecasts and futures prices

Commodities futures market: Asset Class-Specific Return Predictors

▶ One-year futures basis averaged across commodities

$$Basis_t \equiv \frac{F_t}{S_t} - 1,$$

▶ One-year open interest (in \$) growth

Averaged across commodities (for metals) and standardized to have unit standard deviations in the full sample period starting from 1978 (metals) and 1984 (oil).

Metal futures: Realized and subjective premia

	Asset-Specific Predictors										
	Ba	sis	OI								
A. Realized											
Coeff	-5.86	-4.57	7.45	5.51							
$(p entrolength{-}\mathrm{value})$	(0.20)	(0.31)	(0.11)	(0.19)							
R_{past}^e		4.50		3.61							
$(p ext{-value})$		(0.34)		(0.81)							
Adj. R^2	0.06	0.09	0.09	0.09							
N	516	504	441	441							
B. CE											
Coeff	7.27	1.79	-2.22	-0.01							
$(p entrolength{-}\mathrm{value})$	(0.02)	(0.43)	(0.01)	(0.99)							
R_{past}^e		-3.83		-4.12							
(p-value $)$		(0.00)		(0.00)							
Adj. \mathbb{R}^2	0.12	0.35	0.13	0.34							
N	150	150	150	150							

Metal futures: Realized and subjective premia

	Business-Cycle Indicators											
	N-IP		TERM		DEFAULT		F1		VIX^2			
A. Realized												
Coeff	5.91	7.03	2.33	2.48	-5.19	-3.78	-0.88	1.24	3.80	4.31		
(p entropy-value)	(0.55)	(0.43)	(0.75)	(0.64)	(0.69)	(0.86)	(0.80)	(0.96)	(0.06)	(0.03)		
R_{past}^e		5.68		5.98		4.58		5.51		6.10		
(p entropy - value)		(0.27)		(0.20)		(0.33)		(0.27)		(0.13)		
Adj. R^2	0.01	0.04	0.00	0.03	0.00	0.02	-0.00	0.02	0.03	0.07		
N	516	504	516	504	516	504	516	504	516	504		
B. CE												
Coeff	-0.05	-0.89	0.47	0.41	2.28	0.65	1.24	0.38	1.09	0.68		
$(p entrolength{-}\mathrm{value})$	(0.97)	(0.52)	(0.52)	(0.62)	(0.28)	(0.71)	(0.32)	(0.72)	(0.05)	(0.20)		
R_{past}^e		-4.19		-4.12		-4.01		-3.83		-3.86		
(p entropy - value)		(0.00)		(0.00)		(0.00)		(0.00)		(0.00)		
Adj. \mathbb{R}^2	-0.01	0.35	-0.00	0.35	0.04	0.35	0.02	0.30	0.08	0.38		
N	150	150	150	150	150	150	145	145	150	150		

Metals futures: Summary

Magnitude of Slope Coefficients

Oil futures: Realized and subjective premia

	Asset-Specific Predictors				
	Ba	sis	OI		
A. Realize	d				
Coeff	1.74	0.24	-0.71	0.45	
(p-value)	(0.81)	(0.90)	(0.95)	(0.58)	
R_{past}^e		-1.38		-2.59	
(p entropy-value)		(0.67)		(0.55)	
Adj. \mathbb{R}^2	-0.00	-0.00	-0.00	0.00	
N	439	427	426	426	
B. CE					
Coeff	2.46	-1.43	-3.61	1.98	
$(p entrolength{-}\mathrm{value})$	(0.04)	(0.36)	(0.13)	(0.38)	
R_{past}^e		-6.47		-7.143	
(p-value $)$		(0.01)		(0.00)	
Adj. \mathbb{R}^2	0.07	0.33	0.14	0.33	
N	150	150	150	150	

Oil futures: Realized and subjective premia

	Business-Cycle Indicators									
	N-	IP	TE	RM	DEF	AULT	F	`1	VI	X^2
A. Realize	\mathbf{ed}									
Coeff	10.26	9.32	-4.46	-5.16	0.58	0.66	-0.47	-2.98	4.05	4.18
$(p entrolength{-}\mathrm{value})$	(0.21)	(0.48)	(0.53)	(0.57)	(0.71)	(0.81)	(0.84)	(0.51)	(0.25)	(0.33)
R_{past}^e		-0.66		-2.44		-2.19		-2.52		-0.51
(p entropy - value)		(0.77)		(0.57)		(0.67)		(0.55)		(0.75)
Adj. R^2	0.01	0.01	0.01	0.02	-0.00	0.00	-0.00	0.00	0.03	0.02
N	439	427	439	427	439	427	439	427	439	427
B. CE										
Coeff	3.82	-1.94	-1.73	-1.36	0.19	-5.05	0.22	-2.60	0.52	-0.71
$(p entrolength{-}\mathrm{value})$	(0.23)	(0.55)	(0.35)	(0.41)	(0.95)	(0.00)	(0.92)	(0.19)	(0.52)	(0.29)
R_{past}^e	-5.93		-5.41		-6.60		-7.24		-5.83	
(p entreprise value)	(0.01)		(0.00)		(0.00)		(0.00)		(0.01)	
Adj. \mathbb{R}^2	0.03	0.32	0.01	0.32	-0.01	0.38	-0.01	0.43	0.00	0.32
N	150	150	150	150	150	150	145	145	150	150

Oil futures: Summary

Magnitude of Slope Coefficients

Some variations and summary: Ratios

▶ For each survey, we calculate the following two ratios:

$$M_1 \equiv \frac{\sum_{k \in \mathbb{K}} \operatorname{sgn}\left(\beta_k^{real}\right) \cdot \beta_k^{sub}}{\sum_{k \in \mathbb{K}} \operatorname{sgn}\left(\beta_k^{real}\right) \cdot \beta_k^{real}}, \quad M_2 \equiv \frac{\sum_{k \in \mathbb{K}} |\beta_k^{sub}|}{\sum_{k \in \mathbb{K}} |\beta_k^{real}|},$$

where

- β_k^{sub} : slope coefficient from regressing survey excess return expectations on predictor k
- $\triangleright \beta_k^{real}$: bias-adjusted slope coefficient from regressing realized excess returns on predictor k
- ▶ We then average M_1 and M_2 within asset classes (if there are multiple surveys) then across asset classes

Some variations and summary: Ratios

- Control and Single: with and without controlling for past excess returns
- ► (F): estimates using the full sample
 - (S): estimates using the matched-to-survey sample
- Sig: using only realized excess return predictors w/ p < 0.05.

Statistical inference on cyclicality wedges

- ► Cyclicality wedge d: average difference between realized-return-based and survey-based slope coefficient estimates
 - Signs of predictors flipped if necessary such that they forecast future realized excess returns positively

Statistical inference on cyclicality wedges

- ► Cyclicality wedge d: average difference between realized-return-based and survey-based slope coefficient estimates
 - ➤ Signs of predictors flipped if necessary such that they forecast future realized excess returns positively
- ▶ Interpretation of d: the average wedge between realized excess returns and survey expectations induced by a 1-SD change in the predictor

Statistical inference on cyclicality wedges

- ► Cyclicality wedge d: average difference between realized-return-based and survey-based slope coefficient estimates
 - Signs of predictors flipped if necessary such that they forecast future realized excess returns positively
- ▶ Interpretation of d: the average wedge between realized excess returns and survey expectations induced by a 1-SD change in the predictor
- ▶ Asymptotic inference approach that accounts for different predictors, sample periods, data sets, and measurement frequencies.

Some variations and summary: Cyclicality wedges

		ample	Survey-Sample		
	w/o R_{past}^e	$\text{with}R_{past}^{e}$	$w/o R_{past}^e$	with R_{past}^e	
Stock Market	3.56	3.55	3.37	3.09	
	(0.96)	(1.01)	(1.16)	(1.36)	
Treasury Bonds	0.90	0.95	0.40	0.62	
·	(0.35)	(0.40)	(0.42)	(0.45)	
Foreign Exchange	3.67	3.76	3.29	3.55	
0 0	(0.92)	(1.00)	(0.93)	(0.97)	
Commodities					
Metals	4.97	4.25	10.43	10.70	
	(2.27)	(2.40)	(2.22)	(2.46)	
Oil	2.54	3.97	3.68	5.95	
	(1.86)	(2.64)	(2.49)	(3.45)	
Composite					
Equal-weighted	2.97	3.09	3.53	3.90	
- 0	(0.53)	(0.61)	(0.66)	(0.67)	
σ^{-1} -weighted	2.23	2.31	2.04	2.29	
	(0.40)	(0.43)	(0.44)	(0.44)	

▶ What explains the wedge between objective and subjective expected excess return cyclicality?

- ▶ What explains the wedge between objective and subjective expected excess return cyclicality?
- ▶ One possibility: Investors do not know, but learn about DGP parameters from past data

- ▶ What explains the wedge between objective and subjective expected excess return cyclicality?
- ▶ One possibility: Investors do not know, but learn about DGP parameters from past data
- Suggests comparison of subjective expectations with out-of-sample forecasts of excess returns

1. Estimate

$$R_k^e = \alpha_{i,t} + \beta_{i,t} x_{i,k-1} + \varepsilon_{i,k}, \quad k = 2, \dots, t.$$

over expanding windows, possibly with unequal weights $\omega_{t,k}$,

$$(\hat{\alpha}_{i,t}, \hat{\beta}_{i,t}) \equiv \underset{\alpha, \beta}{\operatorname{argmin}} \sum_{k=2}^{t} \omega_{t,k} (R_k^e - \alpha - \beta x_{i,k-1})^2.$$

1. Estimate

$$R_k^e = \alpha_{i,t} + \beta_{i,t} x_{i,k-1} + \varepsilon_{i,k}, \quad k = 2, \dots, t.$$

over expanding windows, possibly with unequal weights $\omega_{t,k}$,

$$(\hat{\boldsymbol{\alpha}}_{i,t}, \hat{\boldsymbol{\beta}}_{i,t}) \equiv \underset{\alpha, \beta}{\operatorname{argmin}} \sum_{k=2}^{t} \omega_{t,k} (R_k^e - \alpha - \beta x_{i,k-1})^2.$$

2. Shrink predictive regression forecast toward trailing mean R_t^e

$$\hat{\mathbb{E}}_{i,t}R_{t+1}^e \equiv s_{i,t}(\hat{\boldsymbol{\alpha}}_{i,t} + \hat{\boldsymbol{\beta}}_{i,t}x_{i,t}) + (1 - s_{i,t})\bar{R}_t^e,$$

where weight $s_{i,t}$ minimizes past OOS forecast errors until t

$$s_{i,t} = \underset{s}{\operatorname{argmin}} \sum_{k=t_{min}}^{t} \omega_{t,k} u_k(s)^2,$$

$$u_k(s) \equiv R_k^e - s(\hat{\alpha}_{i,k-1} + \hat{\beta}_{i,k-1} x_{i,k-1}) - (1-s)\bar{R}_{k-1}^e.$$

- ▶ Only for stock and Treasury bond markets we have sufficiently long time series
 - ► Construct real-time available version of LN and CYCLE predictors for bond excess returns

- ▶ Only for stock and Treasury bond markets we have sufficiently long time series
 - Construct real-time available version of LN and CYCLE predictors for bond excess returns
- ▶ Regress these $\hat{\mathbb{E}}_{i,t}R_{t+1}^e$ on $x_{i,t}$, obtain β_k^{OOS}
 - OOS forecast sample period matched to survey sample periods

- ▶ Only for stock and Treasury bond markets we have sufficiently long time series
 - ► Construct real-time available version of LN and CYCLE predictors for bond excess returns
- ▶ Regress these $\hat{\mathbb{E}}_{i,t}R_{t+1}^e$ on $x_{i,t}$, obtain β_k^{OOS}
 - OOS forecast sample period matched to survey sample periods
- ► To summarize, use the same ratios as before but with β_k^{sub} replaced by β_k^{OOS} :

$$M_1^* \equiv \frac{\sum_{k \in \mathbb{K}} \operatorname{sgn}\left(\beta_k^{real}\right) \cdot \beta_k^{OOS}}{\sum_{k \in \mathbb{K}} \operatorname{sgn}\left(\beta_k^{real}\right) \cdot \beta_k^{real}}, \quad M_2^* \equiv \frac{\sum_{k \in \mathbb{K}} |\beta_k^{OOS}|}{\sum_{k \in \mathbb{K}} |\beta_k^{real}|},$$

- \triangleright E = data equally weighted in forecasting model estimation
- ► W = data exponentially weighted as in Nagel and Xu (2022)

- \triangleright E = data equally weighted in forecasting model estimation
- ► W = data exponentially weighted as in Nagel and Xu (2022)

➤ Subjective risk premia largely acyclical w.r.t. standard cyclical indicators and return predictors

- ➤ Subjective risk premia largely acyclical w.r.t. standard cyclical indicators and return predictors
- Potentially other sources of variation in subjective risk premia that standard objective risk premium predictors miss?

- ➤ Subjective risk premia largely acyclical w.r.t. standard cyclical indicators and return predictors
- Potentially other sources of variation in subjective risk premia that standard objective risk premium predictors miss?
- ▶ Natural candidate: Time-varying subjective risk perceptions

- ➤ Subjective risk premia largely acyclical w.r.t. standard cyclical indicators and return predictors
- Potentially other sources of variation in subjective risk premia that standard objective risk premium predictors miss?
- ► Natural candidate: Time-varying subjective risk perceptions
- ▶ RE literature: Models (Campbell-Cochrane, Bansal-Yaron) predict approx. linear and positive relation between the objective conditional equity premium and the objective conditional equity return variance, but little empirical support.

- ➤ Subjective risk premia largely acyclical w.r.t. standard cyclical indicators and return predictors
- Potentially other sources of variation in subjective risk premia that standard objective risk premium predictors miss?
- ► Natural candidate: Time-varying subjective risk perceptions
- ▶ RE literature: Models (Campbell-Cochrane, Bansal-Yaron) predict approx. linear and positive relation between the objective conditional equity premium and the objective conditional equity return variance, but little empirical support.
- ► Here: subjective risk premia and subjective perceptions of risk

Subjective risk perceptions

- ➤ Proxies for perceived stock market risk (Lochstoer and Muir 2022):
 - ► Graham-Harvey CFO survey: subjective assessment of the 10th and 90th pctile of 1y stock market returns
 - ➤ Yale ICF survey (individuals): subjective probability of a "catastrophic" U.S. stock market crash
 - ➤ Yale ICF survey (institutional): subjective probability of a "catastrophic" U.S. stock market crash

Subjective risk premia and subjective risk perceptions in CFO survey

Excess Return Expectations and Variance Expectations

Subjective risk premia and subjective risk perceptions

	NX		CFO		Livingston	
Const	0.08	0.09	0.02	0.01	0.19	0.17
$(p ext{-value})$	(0.00)	(0.00)	(0.06)	(0.25)	(0.03)	(0.02)
Crash (Indiv.)	0.38	0.60				
(p-value)	(0.36)	(0.11)				
Var. Exp.			6.72	8.65		
$(p entrolength{-}\mathrm{value})$			(0.06)	(0.04)		
Crash (Insti.)					2.53	1.76
$(p ext{-value})$					(0.10)	(0.14)
R_{past}^e		1.01		0.74		-2.84
(p-value)		(0.00)		(0.02)		(0.00)
Adj. R^2	0.04	0.28	0.12	0.20	0.24	0.40
N	87	86	75	73	39	39

Conclusion

- Pervasive lack of cyclical movement of subjective risk premia
 - ▶ Not consistent with standard time-varying risk or risk aversion theories
 - Swamps other features of return expectations dynamics (e.g., extrapolative/contrarian w.r.t. to recent realized returns)
 - ▶ Matches weak cyclicality of OOS forecasts of excess returns

Conclusion

- Pervasive lack of cyclical movement of subjective risk premia
 - ▶ Not consistent with standard time-varying risk or risk aversion theories
 - Swamps other features of return expectations dynamics (e.g., extrapolative/contrarian w.r.t. to recent realized returns)
 - ▶ Matches weak cyclicality of OOS forecasts of excess returns
- ➤ Some evidence for positive risk-return tradeoff in subjective beliefs, but not aligned with asset price cycles

Conclusion

- Pervasive lack of cyclical movement of subjective risk premia
 - Not consistent with standard time-varying risk or risk aversion theories
 - Swamps other features of return expectations dynamics (e.g., extrapolative/contrarian w.r.t. to recent realized returns)
 - ▶ Matches weak cyclicality of OOS forecasts of excess returns
- ➤ Some evidence for positive risk-return tradeoff in subjective beliefs, but not aligned with asset price cycles
- ➤ Simultaneously matching volatile asset prices, cyclical objective risk premia, and acyclical subjective risk premia, requires a time-varying wedge between subjective and objective forecasts of fundamentals, e.g.,
 - ► Subjective dividend growth for stocks
 - Subjective interest rate expectations for bonds

