Monetary Policy and Macroeconomic Stability Revisited

Yasuo Hirose Keio University Takushi Kurozumi Bank of Japan

Willem Van Zandweghe FRB Kansas City

National Bank of Belgium June 21, 2018

Outline

- INTRODUCTION
- THE MODEL

Background

- What led to U.S. macroeconomic stability after the Great Inflation of the 1970s?
- A large literature: shift from indeterminacy to determinacy of equilibrium
- Achieved by the Fed's policy change from a passive to an active response to inflation.
 - Clarida, Galí, and Gertler (2000); Lubik and Schorfheide (2004)
 - Based on canonical NK models.

Objective

- Revisit the view on the shift from indeterminacy to determinacy by estimating a staggered price model with trend inflation.
- Even when the trend inflation rate is non-zero, a fraction of prices is kept unchanged in each period.
 - Consistent with micro evidence on price adjustment.
 - A generalized NK Phillips curve replaces the canonical one.
- The model is more susceptible to indeterminacy than canonical NK models.
 - Ascari and Ropele (2009); Hornstein and Wolman (2005); Kiley (2007)
 - Even an active monetary policy response to inflation can induce indeterminacy.

Strategy

- The model is estimated during two periods, before 1979 and after 1982, allowing for both determinacy and indeterminacy.
 - Bayesian method of Lubik and Schorfheide (2004).
- To evaluate the empirical performance of the model, its canonical NK counterpart is also estimated.
 - Firms that would keep prices unchanged update prices using indexation to trend inflation as in Yun (1996).

Strategy (cont.)

- A difficulty in the method of Lubik and Schorfheide:
 - The likelihood function is possibly discontinuous at the boundary of determinacy and indeterminacy regions of the parameter space.
 - The RWMH algorithm can get stuck near a local mode and fail to find the entire posterior distribution.
- We adopt the sequential Monte Carlo (SMC) algorithm developed by Herbst and Schorfheide (2014, 2015).
 - The SMC algorithm can produce more reliable estimates than the RWMH algorithm when the posterior distribution is multimodal.

New Findings

- The model empirically outperforms its canonical NK counterpart during both the pre-1979 and post-1982 periods.
 - Justifies the use of the model instead of the NK counterpart.
 - That some prices are unchanged in each period in the model is consistent with micro evidence and improves its fit to macro time series.
- 2 The US economy was likely under indeterminacy before 1979, while it was likely under determinacy after 1982.
 - In line with the literature.
 - However, even during the pre-1979 period, the estimated response to (current) inflation was active in the Taylor-type rule.
 - Contrasts with the literature's view that the policy response to inflation was passive during the Great Inflation era.

New Findings (cont.)

- The rise in the policy response to inflation alone does not suffice for explaining the shift to determinacy.
 - Unless accompanied by either the fall in trend inflation or the change in the policy responses to the output gap and output growth.
 - Points to the importance of the changes in other aspects of monetary policy than its response to inflation.

		Estimated policy rule	System estimation
+ calibrated model of e		of entire model	
Ì	Canonical NK	Clarida, Galí, and Gertler (2000)	Lubik and Schorfheide (2004)
Ì	Trend inflation	Coibion and Gorodnichenko (2011)	Our paper

- Coibion and Gorodnichenko (2011) shows that the shift can be explained by their calibrated fall in trend inflation along with their estimated rise in the policy response to inflation.
- Our paper confirms their view by estimating both trend inflation and the policy response parameters under cross-equation restrictions.

INTRODUCTION 000000000

Comparison with Coibion and Gorodnichenko (2011) (cont.)

- Our paper offers another alternative view: the shift can be explained by a decrease in the policy response to the output gap and an increase in the response to output growth, along with a rise in the response to inflation—regardless of the fall in trend inflation.
 - The Fed during the post-1982 period was inclined to pay less attention to the output gap.
 - Orphanides (2001): Involves great uncertainty of measurement due to unobservable potential output.
- Our model empirically outperforms its canonical NK counterpart and thus the use of our model is justified.
 - Coibion and Gorodnichenko (2011) provide no such justification.

Outline

- 1 INTRODUCTION
- 2 THE MODEL
- 3 ESTIMATION STRATEGY
- 4 RESULTS
- 5 CONCLUSION

Household

• The representative household maximizes the utility function

$$E_0 \sum_{t=0}^{\infty} \beta^t \exp(z_{u,t}) \left\{ \log(\tilde{C}_t - hC_{t-1}) - \frac{1}{1 + \frac{1}{\eta}} \int_0^1 l_t(i)^{1 + \frac{1}{\eta}} di \right\},\,$$

subject to the budget constraint

$$P_t \tilde{C}_t + B_t = \int_0^1 P_t W_t(i) l_t(i) di + r_{t-1} B_{t-1} + T_t.$$

Preference shock:

$$z_{u,t} = \rho_u z_{u,t-1} + \varepsilon_{u,t}, \qquad \varepsilon_{u,t} \sim N(0, \sigma_u).$$

• The representative final-good firm produces output Y_t by choosing a combination of intermediate inputs $\{Y_t(i)\}$ to maximize profit

$$P_t Y_t - \int_0^1 P_t(i) Y_t(i) di,$$

subject to the CES production technology

$$Y_t = \left[\int_0^1 Y_t(i)^{\frac{\theta - 1}{\theta}} di \right]^{\frac{\theta}{\theta - 1}}.$$

ullet Each intermediate-good firm i produces one kind of differentiated good $Y_t(i)$ subject to the production function

$$Y_t(i) = A_t l_t(i),$$

where A_t is the technology level and follows the stochastic process

$$\log A_t = \log a + \log A_{t-1} + z_{a,t}.$$

Technology shock:

$$z_{a,t} = \rho_a z_{a,t-1} + \varepsilon_{a,t}, \qquad \varepsilon_{a,t} \sim N(0, \sigma_a).$$

- Set prices on a staggered basis as in Calvo (1983).
 - In each period, a fraction $\lambda \in (0,1)$ of firms keeps prices unchanged, while the remaining fraction $1-\lambda$ sets prices in the following two ways:
 - **1** A fraction $\omega \in [0, 1)$ of price-setting firms uses a backward-looking rule of thumb, as in Galí and Gertler (1999).
 - 2 The remaining fraction 1ω optimizes prices.
- The firms that optimize their prices maximize expected profit

$$E_t \sum_{j=0}^{\infty} \lambda^j Q_{t,t+j} \left(\frac{P_t(i)}{P_{t+j}} - mc_{t+j}(i) \right) Y_{t+j} \left(\frac{P_t(i)}{P_{t+j}} \right)^{-\theta}.$$

• Monetary policy rule:

$$\log r_t = \phi_r \log r_{t-1}$$

$$+ (1 - \phi_r) \begin{bmatrix} \log r + \phi_\pi (\log \pi_t - \log \pi) \\ + \phi_x \log x_t + \phi_{\Delta y} \left(\log \frac{Y_t}{Y_{t-1}} - \log a\right) \end{bmatrix} + z_{r,t}$$

- $x_t = \frac{Y_t}{Y_t^n}$ is the output gap, where Y_t^n is the natural output.
- Monetary policy shock:

$$z_{r,t} = \rho_r z_{r,t-1} + \varepsilon_{r,t}, \qquad \varepsilon_{r,t} \sim N(0, \sigma_r).$$

Log-Linearized Equilibrium Conditions

$$\hat{\pi}_t = \gamma_b \hat{\pi}_{t-1} + \gamma_f E_t \hat{\pi}_{t+1} + \kappa \left[\hat{y}_t + \frac{h\eta}{(a-h)(1+\eta)} (\hat{y}_t - \hat{y}_{t-1} + z_{a,t}) \right] + \psi_t,$$
(1)

$$\psi_t = \beta \lambda \pi^{\theta - 1} E_t \psi_{t+1} + \kappa_f (E_t \hat{y}_{t+1} - \hat{y}_t + \theta E_t \hat{\pi}_{t+1} - \hat{r}_t),$$
 (2)

$$\hat{y}_{t} = \frac{h}{a+h}(\hat{y}_{t-1} - z_{a,t}) + \frac{a}{a+h}(E_{t}\hat{y}_{t+1} + E_{t}z_{a,t+1}) - \frac{a-h}{a+h}(\hat{r}_{t} - E_{t}\hat{\pi}_{t+1} + E_{t}z_{u,t+1} - z_{u,t}),$$
(3)

$$\hat{r}_t = \phi_r \hat{r}_{t-1} + (1 - \phi_r) [\phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + \phi_{\Delta y} (\hat{y}_t - \hat{y}_{t-1} + z_{a,t})] + z_{r,t}, \tag{4}$$

$$\hat{x}_t = \hat{y}_t - \hat{y}_t^n, \tag{5}$$

$$\hat{y}_t^n = \frac{h\eta}{a(1+\eta) - h} (\hat{y}_{t-1}^n - z_{a,t}), \tag{6}$$

where
$$\gamma_b = \frac{\omega}{\varphi}$$
, $\varphi = \lambda \pi^{\theta-1} + \omega (1 - \lambda \pi^{\theta-1} + \beta \lambda \pi^{\theta(1+\frac{1}{\eta})})$, $\gamma_f = \beta \lambda \pi^{\theta(1+\frac{1}{\eta})}/\varphi$, $\kappa = (1 - \lambda \pi^{\theta-1})(1 - \beta \lambda \pi^{\theta(1+\frac{1}{\eta})})(1 + \frac{1}{\eta})(1 - \omega)/[\varphi(1 + \frac{\theta}{\eta})]$, $\kappa_f = \beta \lambda \pi^{\theta-1}(\pi^{1+\frac{\theta}{\eta}} - 1)(1 - \lambda \pi^{\theta-1})(1 - \omega)/[\varphi(1 + \frac{\theta}{\eta})]$.

- To evaluate the empirical performance of the model, its canonical NK counterpart is also estimated.
- Firms that would keep prices unchanged update prices using indexation to trend inflation as in Yun (1996).
- The generalized NK Phillips curve (1) and the auxiliary variable equation (2) is replaced with

$$\hat{\pi}_t = \gamma_{b,1}\hat{\pi}_{t-1} + \gamma_{f,1}E_t\hat{\pi}_{t+1} + \kappa_1 \left[\hat{y}_t + \frac{h\eta}{(a-h)(1+\eta)} (\hat{y}_t - \hat{y}_{t-1} + z_{a,t}) \right],$$

where $\gamma_{b,1}$, $\gamma_{f,1}$, κ_1 correspond to γ_b , γ_f , κ with $\pi=1$.

Outline

- 1 INTRODUCTION
- 2 THE MODEL
- STIMATION STRATEGY
- 4 RESULTS
- 5 CONCLUSION

Rational expectations solutions under indeterminacy

A full set of LRE solutions (Lubik and Schorfheide, 2003):

$$s_t = \Phi_x(\vartheta) s_{t-1} + \Phi_{\varepsilon}(\vartheta, \tilde{M}) \varepsilon_t + \Phi_{\zeta}(\vartheta) \zeta_t,$$

- $\bigcirc \hspace{0.1in} \zeta_t \sim N(0,\sigma_{\zeta}^2) \text{: Sunspot shock}$
- $ilde{\mathbf{M}}$: Arbitrary matrix represents multiplicity of fundamental solutions
 - Case of determinacy: $s_t = \Phi_x^D\left(\vartheta\right) s_{t-1} + \Phi_\varepsilon^D\left(\vartheta\right) \varepsilon_t$.
- Components of the arbitrary matrix \hat{M} are estimated, following Lubik and Schorfheide (2004).
 - Construct a prior that is centered on a particular solution $M^*(\vartheta)$.
 - Replace \tilde{M} with $M^*(\vartheta) + M$ and estimate M with prior mean zero.
 - Select $M^*(\vartheta)$ so that $\partial s_t/\partial \varepsilon_t$ is continuous at the boundary between determinacy and indeterminacy regions of the parameter space.

Bayesian Inference

- Estimate LRE model with full-information Bayesian approach of Lubik and Schorfheide (2004).
- Likelihood function is constructed for the indeterminacy region and determinacy region of the parameter space:

$$p(\boldsymbol{X}^T|\boldsymbol{\vartheta},\boldsymbol{M}) = 1\{\boldsymbol{\vartheta} \in \boldsymbol{\Theta}^D\}\, p^D(\boldsymbol{X}^T|\boldsymbol{\vartheta}) + 1\{\boldsymbol{\vartheta} \in \boldsymbol{\Theta}^I\}\, p^I(\boldsymbol{X}^T|\boldsymbol{\vartheta},\boldsymbol{M}).$$

 \bullet Updating a prior distribution $p(\vartheta,M)$ with the sample X^T leads to the posterior distribution:

$$\begin{split} p(\vartheta, M | X^T) &= \frac{p(X^T | \vartheta, M) p(\vartheta, M)}{p(X^T)} \\ &= \frac{p(X^T | \vartheta, M) p(\vartheta, M)}{\int p(X^T | \vartheta, M) p(\vartheta, M) d\vartheta \cdot dM}. \end{split}$$

Sequential Monte Carlo Algorithm

- The likelihood function is possibly discontinuous at the boundary of determinacy and indeterminacy regions.
 - The posterior distribution is possibly multimodal.
 - The RWMH algorithm can get stuck near a local mode and fail to find the entire posterior distribution.
- Adopt the SMC algorithm developed by Herbst and Schorfheide (2014, 2015) to generate the posterior distribution.
 - Overcome the problem by building a particle approximation to the posterior gradually through tempering the likelihood function.
 - Sequence of tempered posteriors:

$$\varpi_n(\vartheta) = \frac{[p(X^T | \vartheta, M)]^{\tau_n} p(\vartheta, M)}{\int [p(X^T | \vartheta, M)]^{\tau_n} p(\vartheta, M) d\vartheta \cdot dM}, \qquad n = 0, ..., N_\tau.$$

- Tempering schedule: $\tau_n = (n/N_\tau)^\chi$ with $N_\tau = 200$ and $\chi = 2$.
- N = 10,000 particles

Data

- Data: real GDP growth rate; inflation rate of the GDP price deflator; federal funds rate
- Observation equations:

$$\begin{bmatrix} 100\Delta \log Y_t \\ 100 \log \pi_t \\ 100 \log r_t \end{bmatrix} = \begin{bmatrix} \bar{a} \\ \bar{\pi} \\ \bar{r} \end{bmatrix} + \begin{bmatrix} \hat{y}_t - \hat{y}_{t-1} + z_{a,t} \\ \hat{\pi}_t \\ \hat{r}_t \end{bmatrix},$$

where
$$\bar{a} = 100(a-1)$$
, $\bar{\pi} = 100(\pi-1)$, and $\bar{r} = 100(r-1)$.

- Estimated for two periods:
 - Pre-1979 period (1966:I–1979:II)
 - Post-1982 period (1982:IV-2008:IV)
 - The Volcker disinflation period (1979:III–1982:III) is excluded, following Lubik and Schorfheide (2004).

Priors

Parameter	Distribution	Mean	St. dev.
\bar{a}	Normal	0.370	0.150
$ar{\pi}$	Normal	0.985	0.750
$ar{r}$	Gamma	1.597	0.250
h	Beta	0.700	0.100
ω	Beta	0.500	0.150
λ	Beta	0.500	0.050
ϕ_r	Beta	0.750	0.100
ϕ_π	Gamma	1.500/1.100	0.750
ϕ_x	Gamma	0.125	0.100
$\phi_{\Delta y}$	Gamma	0.125	0.100
$ ho_u, ho_a, ho_r$	Beta	0.500	0.200
$\sigma_u, \sigma_a, \sigma_r, \sigma_\zeta$	Inverse gamma	0.627	0.328
M_u, M_a, M_r	Normal	0.000	1.000

- Fixed parameters: $\theta = 9.32$ (Ascari and Sbordone, 2014); $\eta = 1$
- Prior probability of determinacy: 0.482 (0.485 for NK counterpart)

Outline

- 1 INTRODUCTION
- 2 THE MODEL
- 3 ESTIMATION STRATEGY
- 4 RESULTS
- 5 CONCLUSION

Posterior Estimates: Pre-1979 Period

	Bas	seline model	NK	counterpart	
Parameter	Mean	90% interval	Mean	90% interval	
\bar{a}	0.353	[0.156, 0.572]	0.387	[0.172, 0.619]	
$ar{\pi}$	1.512	[1.189, 1.836]	1.349	[0.900, 1.794]	
$ar{r}$	1.663	[1.395, 1.941]	1.585	[1.270, 1.914]	
h	0.550	[0.439, 0.653]	0.548	[0.426, 0.669]	
ω	0.143	[0.050, 0.222]	0.110	[0.039, 0.180]	
λ	0.521	[0.450, 0.594]	0.513	[0.428, 0.595]	
ϕ_r	0.707	[0.591, 0.833]	0.692	[0.573, 0.814]	
ϕ_π	1.028	[0.399, 1.640]	0.401	[0.083, 0.696]	
ϕ_x	0.313	[0.095, 0.562]	0.163	[0.002, 0.320]	
$\phi_{\Delta y}$	0.119	[0.003, 0.235]	0.125	[0.003, 0.243]	
$\log p(X^T)$		-127.100		-133.240	
$\mathbb{P}\{\vartheta \in \Theta^D X^T\}$		0.000		0.002	

Posterior Estimates: Post-1982 Period

	Baseline model		NK	counterpart		
Parameter	Mean	90% interval	Mean	90% interval		
\bar{a}	0.399	[0.211, 0.584]	0.410	[0.223, 0.576]		
$ar{\pi}$	0.701	[0.537, 0.880]	0.679	[0.491, 0.873]		
$ar{r}$	1.442	[1.168, 1.741]	1.385	[1.119, 1.672]		
h	0.625	[0.540, 0.713]	0.605	[0.523, 0.682]		
ω	0.064	[0.024, 0.102]	0.069	[0.026, 0.110]		
λ	0.458	[0.389, 0.534]	0.435	[0.365, 0.503]		
ϕ_r	0.678	[0.602, 0.768]	0.617	[0.530, 0.701]		
ϕ_π	2.730	[1.924, 3.574]	2.358	[1.795, 2.893]		
ϕ_x	0.114	[0.001, 0.229]	0.085	[0.002, 0.168]		
$\phi_{\Delta y}$	0.466	[0.269, 0.673]	0.409	[0.239, 0.565]		
$\log p(X^T)$	-67.513			-77.511		
$\mathbb{P}\{\vartheta \in \Theta^D X^T\}$	1.000			1.000		

RESULTS 000000000

- Examine whether abstracting from some properties of the model can improve the fit of the model even further.
- Cogley and Sbordone (2008): No empirical support for intrinsic inertia of inflation in their generalized NK Phillips curve
 - Our model is estimated in the absence of rule-of-thumb price-setting, i.e., $\omega = 0$.

	Pre-1979 period		ı	Post-1982 period		
	Baseline $\omega = 0$		Ī	Baseline	$\omega = 0$	
$\log p(X^T)$	-127.1	-120.2		-67.5	-55.6	
$\mathbb{P}\{\vartheta \in \Theta^D X^T\}$	0.000	0.001		1.000	1.000	

Posterior Estimates: $\omega = 0$

	Pre-1979		F	Post-1982		
Parameter	Mean	90% interval	Mean	90% interval		
\bar{a}	0.379	[0.193, 0.555]	0.392	[0.221, 0.560]		
$ar{\pi}$	1.447	[1.116, 1.768]	0.700	[0.560, 0.839]		
$ar{r}$	1.641	[1.359, 1.920]	1.446	[1.173, 1.722]		
h	0.568	[0.430, 0.700]	0.598	[0.520, 0.682]		
λ	0.530	[0.455, 0.601]	0.458	[0.390, 0.522]		
ϕ_r	0.702	[0.583, 0.819]	0.690	[0.607, 0.776]		
ϕ_π	1.179	[0.260, 2.065]	2.989	[2.228, 3.792]		
ϕ_x	0.370	[0.106, 0.620]	0.125	[0.001, 0.252]		
$\phi_{\Delta y}$	0.106	[0.003, 0.212]	0.526	[0.322, 0.746]		

Model Selection: No Response to Output Gap?

- Policy response to the output gap ϕ_x decreased considerably.
- Examine whether this decrease suggests virtually no response to the output gap.
 - The model with $\omega = 0$ is further estimated by fixing $\phi_x = 0$.

	Pre-1979 period		Post-	Post-1982 period		
	$\omega = 0 \omega = \phi_x = 0$		$\omega = 0$	$\omega = \phi_x = 0$		
$\log p(X^T)$	-120.2	-124.0	-55.6	-54.2		
$\mathbb{P}\{\vartheta \in \Theta^D X^T\}$	0.001	0.168	1.000	1.000		

Posterior Estimates for Subsequent Analysis

	Pre-1979			Post-1982		
		$\omega = 0$		ω	$=\phi_x=0$	
Parameter	Mean	90% interval		Mean	90% interval	
\bar{a}	0.379	[0.193, 0.555]		0.404	[0.231, 0.578]	
$ar{\pi}$	1.447	[1.116, 1.768]		0.699	[0.556, 0.841]	
$ar{r}$	1.641	[1.359, 1.920]		1.452	[1.173, 1.713]	
h	0.568	[0.430, 0.700]		0.582	[0.500, 0.664]	
λ	0.530	[0.455, 0.601]		0.462	[0.398, 0.535]	
ϕ_r	0.702	[0.583, 0.819]		0.678	[0.588, 0.762]	
ϕ_π	1.179	[0.260, 2.065]		3.013	[2.143, 3.825]	
ϕ_x	0.370	[0.106, 0.620]		0	_	
$\phi_{\Delta y}$	0.106	[0.003, 0.212]		0.525	[0.302, 0.725]	
$\mathbb{P}\{\vartheta \in \Theta^D X^T\}$		0.001)1		1.000	

Sources of Shift from Indeterminacy to Determinacy

(a) Pre-1979 estimates of all model parameters

$$\times: (4\bar{\pi}^{pre79}, \phi_{\pi}^{pre79}); \quad *: (4\bar{\pi}^{pre79}, \phi_{\pi}^{post82}); \quad \circ: (4\bar{\pi}^{post82}, \phi_{\pi}^{post82})$$

Sources of Shift from Indeterminacy to Determinacy (cont.)

$$\times$$
: $(4\bar{\pi}^{pre79}, \phi_{\pi}^{pre79})$; *: $(4\bar{\pi}^{pre79}, \phi_{\pi}^{post82})$; \circ : $(4\bar{\pi}^{post82}, \phi_{\pi}^{post82})$

Sources of Shift from Indeterminacy to Determinacy (cont.)

(c) Post-1982 estimates of all model parameters

$$\times: (4\bar{\pi}^{pre79}, \phi_{\pi}^{pre79}); \quad *: (4\bar{\pi}^{pre79}, \phi_{\pi}^{post82}); \quad \circ: (4\bar{\pi}^{post82}, \phi_{\pi}^{post82})$$

Outline

- 1 INTRODUCTION
- 2 THE MODEL
- 3 ESTIMATION STRATEGY
- 4 RESULTS
- **5** CONCLUSION

Conclusion ●00

Conclusion

- Revisited the view that US macroeconomic stability after the Great Inflation was achieved by the Fed's policy change from a passive to an active response to inflation.
- Estimated a staggered price model with trend inflation and a Taylor-type rule during two periods, before 1979 and after 1982.
 - Full-information Bayesian approach that allows for indeterminacy
 - SMC algorithm
- The model empirically outperforms its canonical NK counterpart.
- U.S. economy was likely under indeterminacy before 1979, while it was likely under determinacy after 1982.

Conclusion (cont.)

- The policy response to inflation was active even during the pre-1979 period, in addition to the post-1982 period.
- The rise in the response to inflation from the pre-1979 estimate to the post-1982 one alone does not suffice for explaining the shift.
 - Without changes in trend inflation or the policy responses to the output gap and output growth.
- Extends the literature by emphasizing the importance of the changes in the Fed's target inflation and responses to real economic activity in achieving US macroeconomic stability.