Firms, Failures, and Fluctuations

Daron Acemoglu and Alireza Tahbaz-Salehi

National Bank of Belgium

November 2018

Input-Output Linkages and Propagation of Shocks

- Modern economies organized as complex production networks:
- Expenditure on intermediate goods \& services in the U.S. in $2007 \approx 1$ GDP.
- A growing literature argues that input-output linkages...
(i) function as mechanism for propagation \& amplification of shocks (micro);
(ii) can translate micro shocks into aggregate fluctuations (macro).
- Even though linkages are between firms, most models...
(i) focus on interactions at the industry level;
(ii) ignore the possibility of firm failures (all the action is at the intensive margin)

Firm-Level Linkages

- In reality, failures of firms' suppliers and customers can be first order.
- the U.S. auto industry in 2008-09
- bankruptcies due to spillovers over credit linkages (Jacobson and Von Schedvin, 2015)
- the aftermath of the Great East Japan Earthquake (Carvalho et al., 2016)
- Important advances in modeling linkages and propagation through input-output networks, but typically focusing on sectoral models and sectoral shocks.
- But if there is a lot of action at the firm-level, the sectoral focus can miss the most important elements.

This "Paper"

- A theoretical model of firm-level interactions with (i) firm-specific relationships, (ii) endogenous bankruptcies, and (iii) market power.
- Failures are the main channel via which negative shocks propagate.
- Study how firm-level linkages and firm failures shape the nature of how shocks propagate in the economy and impact aggregate fluctuations.
- The aggregated economy at the sectoral level is isomorphic to an industry-level model with distortions, but these distortions are endogenous and depend on the extent of firm failures.
- Main take-away: to understand network-originated fluctuations, we may have to go beyond sectoral linkages and study how firm-level interactions cause chains of failures.

This "Paper"

- A theoretical model of firm-level interactions with (i) firm-specific relationships, (ii) endogenous bankruptcies, and (iii) market power.
- Failures are the main channel via which negative shocks propagate.
- Study how firm-level linkages and firm failures shape the nature of how shocks propagate in the economy and impact aggregate fluctuations.
- The aggregated economy at the sectoral level is isomorphic to an industry-level model with distortions, but these distortions are endogenous and depend on the extent of firm failures.
- Main take-away: to understand network-originated fluctuations, we may have to go beyond sectoral linkages and study how firm-level interactions cause chains of failures.

Related Literature

- Production networks and the origins of aggregate fluctuations
- Long and Plosser (1983); Horvath (1998, 2000); Acemoglu et al. (2012, 2017); Atalay (2017); Baqaee (2018); Baqaee and Farhi (2017), and many more...
- Jones (2013), Bigio and La'O (2018), Baqaee and Farhi (2018), Liu (2018)
- Endogenous production networks
- Carvalho and Voigtländer (2014); Oberfield (2018); Acemoglu and Azar (2018)
- Empirical evidence
- Acemoglu et al. (2016); Barrot and Sauvagnat (2016); Carvalho et al. (2016)
- Models of firm-level interactions
- Taschereau-Dumouchel (2018); Tintelnot et al. (2018); Kikkawaa et al. (2018)

Model

- An economy with $N+1$ industries.
- industries $1, \ldots, N$ produce intermediate goods
- industry 0 produces the final good.
- Each industry $I \in\{1, \ldots, N\}$ consists of two types of firms
- a competitive fringe of firms producing a generic variant of the good
- a unit mass of specialized firms producing specialized/customized inputs
- A unit mass of households
- log utilities over the final good
- one unit of labor supplied inelastically

Generic Inputs

- A competitive fringe of firms in each industry produces a generic variant of the good using labor and other generic inputs.
- Constant returns to scale technology:

$$
\tilde{y}_{I}=F_{I}\left(\widetilde{\ell}_{I}, B_{I 1} \widetilde{x}_{I 1}, \ldots, B_{I N} \widetilde{x}_{I N}\right)
$$

- generic good producers can be indexed by the industry they belong to
- $\tilde{x}_{I J}$: quantities
- $B_{I J}$: productivity shock
- Production of generic goods can be represented by an industry-level network

Customized Inputs

- Specialized firms can produce inputs that are customized to specific customers.
- Firms are matched to potential suppliers via a matching function $\phi_{I J}: I \rightarrow J \cup\{\varnothing\}$

$$
\phi_{I J}(i):= \begin{cases}j & j \in J \text { is a matched supplier of } i \in I \\ \varnothing & i \in I \text { is not matched to a supplier in } J\end{cases}
$$

- Each firm can be matched to...
- suppliers in its input-producing industries;
- at most one supplier in any given industry;
- at most one customer in the entire economy.
- Not all customized firms may be active.

Customized Inputs

- Specialized firms can produce inputs that are customized to specific customers.
- Firms are matched to potential suppliers via a matching function $\phi_{I J}: I \rightarrow J \cup\{\varnothing\}$

$$
\phi_{I J}(i):= \begin{cases}j & j \in J \text { is a matched supplier of } i \in I \\ \varnothing & i \in I \text { is not matched to a supplier in } J\end{cases}
$$

- Each firm can be matched to...
- suppliers in its input-producing industries;
- at most one supplier in any given industry;
- at most one customer in the entire economy.
- Not all customized firms may be active.

Customized Inputs

- Let S denote the set of active firms.
- Production technology of firm $i \in I$:

$$
y_{i}=F_{I}\left(\ell_{i},\left\{A_{i j} x_{i j}\right\}_{j \in S},\left\{B_{i j} \tilde{x}_{i j}\right\}_{j \notin S}\right)
$$

Assumption

Customized inputs are more productive than generic inputs:

$$
A_{i j} \geq B_{i j}
$$

Customized Inputs

- Production of customized goods entails fixed costs, borne by the supplier j.
- z_{j} units of labor, where $z_{j} \sim G_{J}$ and G_{J} has full support over $[0, \infty)$.
- Costs are sunk once the firm customizes its technology to its matched customer.
- Suppliers that cannot meet this fixed cost "fail".
\triangleright The set of active firms S may be different from the set of all firms.
$\triangleright S$ is determined endogenously

Customized Inputs: Terms of Trade

- A pair of matched firms (i, j).
- Price $p_{i j}$ is determined as the SPNE of the Rubinstein bargaining game:
- the supplier j makes an offer with probability $\delta_{i j}$
- the customer i makes an offer with probability $1-\delta_{i j}$
- common discount factor $\eta \rightarrow 1$
- Commitment by j to deliver as many units demanded by i at price $p_{i j}$.
- Remarks:
- Customer i has the outside option of using the generic variant of input J
- When negotiating, firms take all other (generic and customized) prices as given.

Consumption Good Sector

- A firm combining outputs from various firms in an industry into industry-level bundles, which are then combined into a single consumption good:

$$
\begin{aligned}
x_{0 I} & =H_{I}\left(\left(x_{0 i}\right)_{i \in \phi_{0 I}(0)}\right) \\
y_{0} & =F_{0}\left(x_{01}, \ldots, x_{0 N}\right)
\end{aligned}
$$

- Generic variants from industry I are perfect substitutes for all goods produced using the customized technologies
- The supplier has all the bargaining power $\delta_{0 i}=1$.
- Various inputs in H_{I} are gross complements.

Summary and Timing

- Timing:
(1) Firms are matched with potential suppliers/customers in other industries.
(2) Productivities $A_{I J}$ and $B_{I J}$ and customization costs z_{i} are realized.
(3) Firms decide whether to operate the customized technology.
(4) Customized firm-level $p_{i j}$ prices are determined.
(5) Firms choose their inputs, production occurs.
(6) Customized firms that cannot cover their fixed costs fail.

Production Equilibrium

Definition

Given the set of active firms S and customized prices \boldsymbol{p}, a production equilibrium is a collection of quantities $x(S, \boldsymbol{p})$ such that
(a) all firms maximize their profits while meeting their output obligations;
(b) households maximize profits taking prices as given;
(c) all markets clear.

- The equilibrium notion treats prices as exogenous.
- The only requirement on the firms is to minimize production costs to meet demand from their customized customers.

Bargaining Equilibrium

Definition

For a set of active firms S, a bargaining equilibrium is a collection of prices $\boldsymbol{p}(S)=\left(p_{i j}\right)_{i, j \in S}$ such that there does not exist a pair of matched supplier-customer firms in E such that one party would rather deviate by entering into a bargaining process with the other, taking all other prices as given.

- For \boldsymbol{p} to be a bargaining equilibrium, no firm would want to unilaterally
(i) renegotiate a price
(ii) terminate an agreement
(iii) enter into a new agreement

Full Equilibrium

Definition

A full (subgame perfect) equilibrium consist of a collection of active firms S^{*}, firm-level prices $\boldsymbol{p}^{*}(S)$, and quantities $x^{*}(S, \boldsymbol{p})$ such that
(a) given any S and \boldsymbol{p}, the quantities $x^{*}(S, \boldsymbol{p})$ form a production equilibrium;
(b) given any S, the price vector $\boldsymbol{p}^{*}(S)$ is a bargaining equilibrium;
(c) no firm in S^{*} fails and no firm outside of S^{*} would rather start operating:

$$
\begin{array}{ll}
\pi_{i}\left(S^{*}\right) \geq 0 & \forall i \in S^{*} \\
\pi_{i}\left(S^{*} \cup\{i\}\right)<0 & \forall i \notin S^{*}
\end{array}
$$

Generic Inputs

- Generic inputs are produced by a competitive fringe of firms in each industry.
- Competitive sub-economy with constant returns to scale \& a single factor of production

Non-substitution theorem \longrightarrow generic prices determined irrespective of the matching, relationship-specific productivities, bargaining, etc.

- System of N equations and N unknowns:

$$
\widetilde{p}_{I}=c_{I}\left(w, \frac{\widetilde{P}_{1}}{B_{I 1}}, \frac{\widetilde{P}_{2}}{B_{I 2}}, \ldots, \frac{\widetilde{P}_{N}}{B_{I N}}\right) .
$$

- Generic technologies also pin down the real wage.

Production Equilibrium

- Given the set of active firms S and generic and customized prices, the production equilibrium is determined via cost minimization, market clearing, and household's utility maximization.
- cost minimization:

$$
\begin{aligned}
\left(\ell_{i}, x_{i 1}, \ldots, x_{i n}\right)= & \arg \max \\
& w \ell_{i}+\sum_{j \in S} p_{i j} x_{i j}+\sum_{j \notin S} \tilde{p}_{j} x_{i j} \\
& \text { subject to } \quad y_{i}=F_{i}\left(\ell_{i},\left(A_{i j} x_{i j}\right)_{j \in S,}\left(B_{i j} \tilde{x}_{i j}\right)_{j \notin S}\right)
\end{aligned}
$$

- market clearing:

$$
\begin{aligned}
& y_{j}=x_{i j} \\
& \tilde{y}_{J}=\int_{i \in S, j \notin S} \tilde{x}_{i j} d i+\sum_{I} \tilde{x}_{I J}
\end{aligned}
$$

- Household budget constraint:

$$
y_{0}=w L+\sum_{J=1}^{N} \int_{0}^{\infty} \pi_{j} d j
$$

Bargaining Equilibrium

Definition

For a set of active firms S, a bargaining equilibrium is a collection of prices $\boldsymbol{p}(S)=\left(p_{i j}\right)_{i, j \in S}$ such that there does not exist a pair of matched supplier-customer firms in E such that one party would rather deviate by entering into a bargaining process with the other, taking all other prices as given.

Assumption

(Generic or customized) inputs from different industries are gross complements with another and labor in F_{i}.

$$
y_{i}=F_{i}\left(\ell_{i},\left\{A_{i j} x_{i j}\right\}_{j \in S},\left\{B_{i j} \tilde{x}_{i j}\right\}_{j \notin S}\right) .
$$

Pairwise Bargaining

Lemma

Supplier-customer pair (j, i) reach an agreement if and only if $\boldsymbol{p}_{-i j}$ satisfies

$$
c_{i}\left(\boldsymbol{p}_{-i j}, c_{j}\left(\boldsymbol{p}_{-i j}\right)\right) \leq p_{i}
$$

- It guarantees that there are gains from trade between supplier j and customer i.
- Firm i 's marginal cost is smaller than its output price if j sells at marginal cost.
- If violated, there are no gains from trade: the two firms would take the outside option of not trading with one another.

Pairwise Bargaining

Lemma

Suppose $c_{i}\left(\boldsymbol{p}_{-i j}, c_{j}\left(\boldsymbol{p}_{-i j}\right)\right) \leq p_{i}$. The SPNE of the bargaining game entails the price

$$
p_{i j}= \begin{cases}p_{i j}^{\dagger} & \text { if } \psi_{i j}\left(\min \left\{\bar{p}_{i j}, p_{i j}^{o}\right\}\right) \geq 0 \\ \min \left\{\bar{p}_{i j}, p_{i j}^{o}\right\} & \text { if } \psi_{i j}\left(\min \left\{\bar{p}_{i j}, p_{i j}^{o}\right\}\right)<0\end{cases}
$$

where $p_{i j}^{+}$is the solution to the equation

$$
\psi_{i j}\left(p_{i j}^{\dagger}\right)=\delta_{i j} \frac{\bar{\pi}_{i}\left(p_{i j}^{\dagger}\right)}{\bar{\pi}_{i}^{\prime}\left(p_{i j}^{\dagger}\right)}+\left(1-\delta_{i j}\right) \frac{\bar{\pi}_{j}\left(p_{i j}^{\dagger}\right)}{\bar{\pi}_{j}^{\prime}\left(p_{i j}^{\dagger}\right)}=0,
$$

$\bar{p}_{i j}=A_{i j} \widetilde{p}_{j} / B_{i j}$ is the outside option of firm i, and $p_{i j}^{o}$ is the price at which firm i makes zero profits.

- The price depends on the production functions, but not the quantities.
- $\psi_{i j}\left(\min \left\{\bar{p}_{i j}, p_{i j}^{o}\right\}\right) \geq 0$ is the condition that implies outside options do not bind.
- Otherwise, firm i either uses the generic variant or may not produce at all.

Pairwise Bargaining

Lemma

Suppose $c_{i}\left(\boldsymbol{p}_{-i j}, c_{j}\left(\boldsymbol{p}_{-i j}\right)\right) \leq p_{i}$. The SPNE of the bargaining game entails the price

$$
p_{i j}= \begin{cases}p_{i j}^{\dagger} & \text { if } \psi_{i j}\left(\min \left\{\bar{p}_{i j}, p_{i j}^{o}\right\}\right) \geq 0 \\ \min \left\{\bar{p}_{i j}, p_{i j}^{o}\right\} & \text { if } \psi_{i j}\left(\min \left\{\bar{p}_{i j}, p_{i j}^{o}\right\}\right)<0\end{cases}
$$

where $p_{i j}^{+}$is the solution to the equation

$$
\psi_{i j}\left(p_{i j}^{\dagger}\right)=\delta_{i j} \frac{\bar{\pi}_{i}\left(p_{i j}^{\dagger}\right)}{\bar{\pi}_{i}^{\prime}\left(p_{i j}^{\dagger}\right)}+\left(1-\delta_{i j}\right) \frac{\bar{\pi}_{j}\left(p_{i j}^{+}\right)}{\bar{\pi}_{j}^{\prime}\left(p_{i j}^{\dagger}\right)}=0,
$$

$\bar{p}_{i j}=A_{i j} \widetilde{p}_{j} / B_{i j}$ is the outside option of firm i, and $p_{i j}^{o}$ is the price at which firm i makes zero profits.

- The price depends on the production functions, but not the quantities.
- $\psi_{i j}\left(\min \left\{\bar{p}_{i j}, p_{i j}^{o}\right\}\right) \geq 0$ is the condition that implies outside options do not bind.
- Otherwise, firm i either uses the generic variant or may not produce at all.

Pairwise Bargaining

Corollary

$p_{i j}$ is increasing in supplier bargaining power $\delta_{i j}$, supplier's marginal cost c_{j}, customer's output price p_{i}, and the relationship-specific productivity $A_{i j}$.

Corollary
$p_{i j}$ is decreasing in the productivity of generic technology $B_{i j}$.

Bargaining Equilibrium

Theorem

For any given set of active firms S, a bargaining equilibrium \boldsymbol{p} always exists.

Corollary

The bargaining equilibrium $\boldsymbol{p}(S)$ is determined independently of the quantities.

Proposition

An increase in productivity $A_{i j}$
(a) weakly increases all prices upstream to j
(b) weakly decreases all prices downstream to i
(c) weakly increases all prices that are horizontal to the pair ($j, i)$.

Bargaining Equilibrium: Special Cases

- $\delta_{i j}=1$ for all supplier-customer pairs (j, i) :

$$
\begin{aligned}
& p_{i j}=\frac{A_{i j}}{B_{i j}} \widetilde{p}_{j} \\
& \mu_{i j}=p_{i j} / c_{j}=A_{i j} / B_{i j} .
\end{aligned}
$$

- Leontief production functions:

$$
p_{i j}=\min \left\{\left(1-\delta_{i j}\right) c_{j}+\delta_{i j} A_{i j}\left(p_{i}-\hat{c}_{i j}\right), \frac{A_{i j}}{B_{i j}} \widetilde{p}_{j}\right\},
$$

where $\hat{c}_{i j}$ is the marginal cost of acquiring all other inputs.

Example: Production Chains

- Firms $i_{1}, \ldots, i_{n} \in S$ form a production chain:

$$
p_{k, k+1}=\min \left\{(1-\delta) \frac{p_{k+1, k+2}}{A_{k+1, k+2}}+\delta A_{k, k+1} p_{k-1, k}, \frac{A_{k, k+1}}{B_{k, k+1}} \tilde{p}_{k+1}\right\}
$$

with initial conditions:

$$
\begin{aligned}
& p_{0,1}=1 \\
& p_{n, \ell}=w .
\end{aligned}
$$

Full Equilibrium

Definition

A full (subgame perfect) equilibrium consist of a collection of active firms S^{*}, firm-level prices $\boldsymbol{p}^{*}(S)$, and quantities $x^{*}(S, \boldsymbol{p})$ such that
(a) given any S and \boldsymbol{p}, the quantities $x^{*}(S, \boldsymbol{p})$ form a production equilibrium;
(b) given any S, the price vector $\boldsymbol{p}^{*}(S)$ is a bargaining equilibrium;
(c) no firm in S^{*} fails and no firm outside of S^{*} would rather start operating:

$$
\begin{array}{ll}
\pi_{i}\left(S^{*}\right) \geq 0 & \forall i \in S^{*} \\
\pi_{i}\left(S^{*} \cup\{i\}\right)<0 & \forall i \notin S^{*}
\end{array}
$$

Theorem
A full equilibrium exists.

Firm-Level Analysis

- The matching ϕ induces a distribution over firm-level production trees:

$$
Q\left(I_{0}, I_{1}, \ldots, I_{k}\right)=\left\{i_{0} \in I_{0}: \exists\left(i_{1}, \ldots, i_{k}\right) \text { s.t. } i_{r}=\phi_{I_{r+1} I_{r}}\left(i_{r+1}\right) \text { and } \nexists j \text { s.t. } i_{k}=\phi_{I_{k}}(j)\right\}
$$

$\triangleright Q\left(I_{0}\right)$: set of firms in I_{0} with no matched customers.
 $>$ The firm-level trees can be infinitely long $(k=\infty)$.
 D Not sufficient statistics for firm-level variables, but nonetheless useful.

Firm-Level Analysis

- The matching ϕ induces a distribution over firm-level production trees:

$$
Q\left(I_{0}, I_{1}, \ldots, I_{k}\right)=\left\{i_{0} \in I_{0}: \exists\left(i_{1}, \ldots, i_{k}\right) \text { s.t. } i_{r}=\phi_{I_{r+1} I_{r}}\left(i_{r+1}\right) \text { and } \nexists j \text { s.t. } i_{k}=\phi_{I_{k}}(j)\right\}
$$

$\triangleright Q\left(I_{0}\right):$ set of firms in I_{0} with no matched customers.
\triangleright The firm-level trees can be infinitely long $(k=\infty)$.
\triangleright Not sufficient statistics for firm-level variables, but nonetheless useful.

Failure Propagations

- A specialized firm $i \in I$ survives only if its profits exceed the fixed costs $w z_{i}$, where $z_{i} \sim G_{I}$.
- Any revenue a firm earns is obtained from sales to its matched customer in a downstream industry.
- Therefore, as long as G_{I} has no mass point at 0 , firm $i \in I$ fails almost surely if its designated customer fails.
\rightarrow Implication: failures propagate upstream from a firm to its suppliers (may also propagate downstream depending on parameters)

Production Trees

Lemma

An intermediate good producing firm $i_{0} \in I_{0}$ fails if either of the following two conditions are satisfied:
(i) $i_{0} \in Q\left(I_{0}, I_{1}, \ldots, I_{k}\right)$ for some finite k such that $I_{k} \neq 0$.
(ii) $i_{0} \in Q\left(I_{0}, I_{1}, \ldots, I_{k}\right)$ for $k=\infty$.

- A firm can only survive if there is a finite production tree connecting it to the consumption good sector.
\triangleright We can limit our attention to such structures.

Comparative Statics

- How do changes in fixed costs shape the set of active firms?
- Best response function:

$$
\psi(S)=\left\{i \in E: \pi_{i}(S \cup\{i\}) \geq 0\right\} .
$$

Firm $i \in \psi(S)$ if i finds it optimal to operate the customized technology when the set of active firms is S.

- Full equilibrium is a fixed point of the above mapping:
$S^{*}=\psi\left(S^{*}\right)$
- Need a discrete monotone comparative statics result, applied to the above mapping (generalization of Tarski's fixed point theorem)

Comparative Statics

- How do changes in fixed costs shape the set of active firms?
- Best response function:

$$
\psi(S)=\left\{i \in E: \pi_{i}(S \cup\{i\}) \geq 0\right\} .
$$

Firm $i \in \psi(S)$ if i finds it optimal to operate the customized technology when the set of active firms is S.

- Full equilibrium is a fixed point of the above mapping:
- Need a discrete monotone comparative statics result, applied to the above mapping (generalization of Tarski's fixed point theorem)

Comparative Statics

- How do changes in fixed costs shape the set of active firms?
- Best response function:

$$
\psi(S)=\left\{i \in E: \pi_{i}(S \cup\{i\}) \geq 0\right\}
$$

Firm $i \in \psi(S)$ if i finds it optimal to operate the customized technology when the set of active firms is S.

- Full equilibrium is a fixed point of the above mapping:

$$
S^{*}=\psi\left(S^{*}\right)
$$

- Need a discrete monotone comparative statics result, applied to the above mapping (generalization of Tarski's fixed point theorem)

Comparative Statics (detour)

Theorem
Suppose the mapping $\psi: 2^{E} \rightarrow 2^{E}$ satisfies the following:
(i) if $S_{1} \subseteq \psi\left(S_{2}\right)$, then $S_{1} \subseteq \psi\left(S_{1} \cup S_{2}\right)$.
(ii) if $S_{r} \subseteq \psi\left(S_{r}\right)$ for $r \in R$, then $\cup_{r \in R} S_{r} \subseteq \psi\left(\cup_{r \in R} S_{r}\right)$.

Then, $S^{*}=\cup_{S \in \mathcal{S}} S$ is a maximal fixed point of ψ, where $\mathcal{S}=\{S \subseteq E: S \subseteq \psi(S)\}$. Furthermore, if $\psi_{1}(S) \subseteq \psi_{2}(S)$ for all S, then $S_{1}^{*} \subseteq S_{2}^{*}$.

Lemma

Suppose eith er
(1) $\delta_{i j}=1$ for all (i, j) or
(2) all production functions are Leontief.

Then, ψ satisfies (i) and (ii).

Comparative Statics (detour)

Theorem

Suppose the mapping $\psi: 2^{E} \rightarrow 2^{E}$ satisfies the following:
(i) if $S_{1} \subseteq \psi\left(S_{2}\right)$, then $S_{1} \subseteq \psi\left(S_{1} \cup S_{2}\right)$.
(ii) if $S_{r} \subseteq \psi\left(S_{r}\right)$ for $r \in R$, then $\cup_{r \in R} S_{r} \subseteq \psi\left(\cup_{r \in R} S_{r}\right)$.

Then, $S^{*}=\cup_{S \in \mathcal{S}} S$ is a maximal fixed point of ψ, where $\mathcal{S}=\{S \subseteq E: S \subseteq \psi(S)\}$. Furthermore, if $\psi_{1}(S) \subseteq \psi_{2}(S)$ for all S, then $S_{1}^{*} \subseteq S_{2}^{*}$.

Lemma
Suppose either
(1) $\delta_{i j}=1$ for all (i, j) or
(2) all production functions are Leontief.

Then, ψ satisfies (i) and (ii).

Comparative Statics

Theorem
Suppose either $\delta_{i j}=1$ for all (i, j) or all production functions are Leontief. Then,
(a) the set of full equilibria is non-empty and has a maximal element;
(b) the set of active firms in the maximal equilibrium shrinks as fixed costs increase.

Corollary
If G_{I} is replaced by a distribution that first-order stochastically dominates G_{l}, thenthe likelihood of failure in all industries weakly increases;
(b) aggregate output declines;
(c) the average length of the production chains decreases.

- PE effect: an increase in the likelihood of failures in other industries
- GE effect: less demand for all goods in the economy, thus lower 'gross) profits

Comparative Statics

Theorem

Suppose either $\delta_{i j}=1$ for all (i, j) or all production functions are Leontief. Then,
(a) the set offull equilibria is non-empty and has a maximal element;
(b) the set of active firms in the maximal equilibrium shrinks as fixed costs increase.

Corollary
If G_{I} is replaced by a distribution that first-order stochastically dominates G_{I}, then
(a) the likelihood of failure in all industries weakly increases;
(b) aggregate output declines;
(c) the average length of the production chains decreases.

- PE effect: an increase in the likelihood of failures in other industries
- GE effect: less demand for all goods in the economy, thus lower (gross) profits

Decomposition

- So far: existence, (partial) characterization, and (micro) propagations
- Next step: aggregate implications

Partial Equilibrium Decomposition

- $S=\cup_{r \in R} T_{r}$: partition of the set of firms to various production trees
- $s_{r}=m\left(T_{r}\right)$: the mass of active firms in tree T_{r}
- Partial equilibrium decomposition:

$$
d \log \mathrm{GDP}=\underbrace{\sum_{(i, j)} \frac{\partial \log \mathrm{GDP}}{\partial \log A_{i j}} d \log A_{i j}}_{\text {productivity }}+\underbrace{\sum_{r \in R} \frac{\partial \log \mathrm{GDP}}{\partial s_{r}} d s_{r}}_{\text {extensive margin movements }}
$$

- productivity: direct technology effect + reallocation + changes in markups
- extensive margin: changes in the set of active firms changes the production possibility frontier, the total expenditure on fixed costs, household demand.

Partial Equilibrium Decomposition: Productivity

- Keeping the set of active firms constant, the effect of productivity shocks manifests itself as two separate terms:

$$
\frac{d \log \mathrm{GDP}}{d \log A_{i j}}=\underbrace{\frac{\partial \log \mathrm{GDP}}{\partial \log A_{i j}}}_{\begin{array}{c}
\text { shifts in technology frontier } \\
\text { \& reallocation }
\end{array}}+\sum_{k} \underbrace{\frac{\partial \log \mathrm{GDP}}{\partial \log \mu_{k}} \frac{d \log \mu_{k}}{d \log A_{i j}}}_{\text {endogenous changes in markup of firm } k}
$$

- Productivity shocks shift the production possibility frontier, keeping the allocation of resources unchanged (Hulten's)
- When economy is inefficient, reallocation of resources has first-order effect (Baqaee and Farhi, 2018)
- New term: endogenous shifts in markups in the bargaining equilibrium.
\triangleright Determines the passthrough of the shocks

General Equilibrium Decomposition

- Productivity shocks impact the set of active firms (by changing firm profits)
- Household's budget constraint:

$$
y_{0}=w(L-z(s))+(1-c(s, A, B)) y_{0}
$$

- $c(s, A, B)$: equilibrium marginal cost of producing one unit of consumption good, which depends on the bargaining equilibrium and set of active firms.
- $z(s)$: total fixed cost expenditure, which only depends on the set of active firms
- Hence,

$$
\mathrm{GDP}=w \frac{L-z(s)}{c(s, A, B)}
$$

- Chain rule:

$$
\frac{d}{d A_{i j}} \log \mathrm{GDP}=-\frac{1}{c} \frac{d c}{d A_{i j}}-\frac{1}{c} \sum_{r} \frac{d s_{r}}{d A_{i j}}\left(\frac{w}{\mathrm{GDP}} \frac{d z}{d s_{r}}+\frac{d c}{d s_{r}}\right)
$$

General Equilibrium Decomposition

- The set of active firms, however, itself depends on the output.

$$
\frac{d s_{r}}{d A_{i j}}=\frac{\partial s_{r}}{\partial A_{i j}}+\frac{\partial s_{r}}{\partial y_{0}} \frac{d \mathrm{GDP}}{d A_{i j}}
$$

- $\partial s_{r} / \partial A_{i j}$: higher productivity increases profits
- $\partial s_{r} / \partial y_{0}$: aggregate demand channel. Higher demand increases all firms' profits
- Therefore:

$$
\frac{d \log \mathrm{GDP}}{d \log A_{i j}}=-\frac{\frac{\partial \log c}{\partial \log A_{i j}}+\sum_{r}\left(\frac{\partial s_{r}}{\partial \log A_{i j}}\right)\left(\frac{w}{c \mathrm{GDP}} \frac{d z}{d s_{r}}+\frac{d \log c}{d s_{r}}\right)}{1+\sum_{r}\left(\frac{\partial s_{r}}{\partial \log y}\right)\left(\frac{w}{c \mathrm{GDP}} \frac{d z}{d s_{r}}+\frac{d \log c}{d s_{r}}\right)}
$$

General Equilibrium Decomposition

$$
\frac{d \log \mathrm{GDP}}{d \log A_{i j}}=-\frac{\underbrace{\frac{\partial \log c}{\partial \log A_{i j}}+\sum_{r}\left(\frac{\partial s_{r}}{\partial \log A_{i j}}\right)}_{\text {partial equilibrium }(-)}\left(\frac{w}{c \mathrm{GDP}} \frac{d z}{d s_{r}}+\frac{d \log c}{d s_{r}}\right)}{1+\sum_{r}\left(\frac{\partial s_{r}}{\partial \log y}\right)(\frac{w}{c \mathrm{GDP}} \frac{d z}{d s_{r}}+\underbrace{\left.\frac{d \log c}{d s_{r}}\right)}_{\text {fixed cost effect }(+)} \text { (+)} \text { entry effect }(-)}
$$

- Partial equilibrium effect: direct technology effect (Hulten's), reallocation effect, and movements in markups, holding the set of active firms constant
- Cascade effect: shocks change the set of active firms
- Entry effect: changes in the set of active firms changes aggregate productivity
- Aggregate demand effect: more active firms increases households' demand, which then translates into higher profits

General Equilibrium Decomposition

- Suppose the distribution of fixed costs G_{k} is parameterized by a parameter ζ_{k}, with an increase in ζ_{k} corresponding to a first-order stochastic dominance shift in the distribution G_{k}.

> cascade effect (-)

Example: Production Chains

- Suppose there are n industries, with industry I_{k} supplying industry I_{k-1}.
- Supplier has all the bargaining power $\delta_{k-1, k}=1$.

Failures and Aggregate Output

- m_{k} : measure of active firms in industry I_{k}.
- Aggregate output:

$$
\mathrm{GDP}=\frac{L-\bar{z}}{1-\sum_{k=1}^{n} m_{k}\left(A_{12} \ldots A_{k-1, k} B_{k, k+1} \ldots B_{n-1, n}\right)^{-1}\left(\frac{A_{k-1, k}}{B_{k-1, k}}-1\right)}
$$

- failure cascades:

$$
m_{k+1}=m_{k} G_{k+1}\left(\frac{\left(1-B_{k, k+1} / A_{k, k+1}\right) \mathrm{GDP}}{A_{12} \ldots A_{k-1, k} B_{k, k+1} \ldots B_{n-1, n}}\right)
$$

- expenditure on fixed costs:

$$
\bar{z}=\sum_{k=1}^{N} \int_{0}^{\infty} z g_{k}(z) \mathbf{1}\left\{z \leq \frac{\left(1-B_{k, k+1} / A_{k, k+1}\right) \mathrm{GDP}}{A_{12} \ldots A_{k-1, k} B_{k, k+1} \ldots B_{n-1, n}}\right\} d z .
$$

Failures and Aggregate Output

$$
\begin{aligned}
& \mathrm{GDP}=\frac{L-\bar{z}}{\sum_{k=1}^{n}\left(m_{k}-m_{k+1}\right)\left(A_{12} \ldots A_{k-1, k} B_{k, k+1} \ldots B_{n-1, n}\right)^{-1}} \\
& m_{k+1}=m_{k} G_{k+1}\left(\frac{\left(1-B_{k, k+1} / A_{k, k+1}\right) \mathrm{GDP}}{A_{12} \ldots A_{k-1, k} B_{k, k+1} \ldots B_{n-1, n}}\right)
\end{aligned}
$$

- Compare the output to the economy with endogenous set of active firms (GDP*) to that of an economy with exogenous set of active firms (GDP):

$$
\lim _{A_{k} \rightarrow \infty} \lim _{A_{1} \rightarrow B_{1}} \frac{\mathrm{GDP}^{*}}{\mathrm{GDP}}=\infty .
$$

Summary and Next Steps

- A firm-level model of input-output linkages that takes firm-specific relationships and failures into account. Failures are the main channel via which negative shocks propagate
- Expressions for the failure rates and aggregate output as a function of firm-level production chains.
- Aggregated industrial-level variables (Domar weights, sectoral markups) not sufficient statistics for understanding
(i) the propagation of the shocks
(ii) how various shocks shape aggregate output
- Next steps:
\triangleright more detailed comparative statics
\triangleright numerical estimates for the various forces in a more realistic economy.
\triangleright measuring the various terms in the data?

