How the Wealth Was Won: Factor Shares as Market Fundamentals

Daniel L. Greenwald, Martin Lettau, and Sydney C. Ludvigson

MIT Sloan, UC Berkeley Haas, NYU
Sharp Rise in Equity Values in Post-War Period

- Stock market risen sharply in post-war era, driven mostly *last 30 years*.

<table>
<thead>
<tr>
<th>Subsample</th>
<th>Market Equity</th>
<th>Output</th>
<th>Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989:Q1 - 2017:Q4</td>
<td>6.9%</td>
<td>2.5%</td>
<td>4.8%</td>
</tr>
<tr>
<td>1959:Q1 - 1988:Q4</td>
<td>3.2%</td>
<td>4.3%</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

Notes: Variables for the nonfinancial corporate sector (NFCS). Annualized growth rates for the specified sample, in real terms, deflated by the implicit price deflator for NFCS output (net value added).
Sharp Rise in Equity Values in Post-War Period

- Stock market risen sharply in post-war era, driven mostly last 30 years.

<table>
<thead>
<tr>
<th>Subsample</th>
<th>Market Equity</th>
<th>Output</th>
<th>Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989:Q1 - 2017:Q4</td>
<td>6.9%</td>
<td>2.5%</td>
<td>4.8%</td>
</tr>
<tr>
<td>1959:Q1 - 1988:Q4</td>
<td>3.2%</td>
<td>4.3%</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

Notes: Variables for the nonfinancial corporate sector (NFCS). Annualized growth rates for the specified sample, in real terms, deflated by the implicit price deflator for NFCS output (net value added).
Sharp Rise in Equity Values in Post-War Period

- Stock market risen sharply in post-war era, driven mostly last 30 years.
- From 89:Q1-17:Q4 (29 yrs) real value market equity for NFCS grew more than double the rate of prev. 29 yrs.

<table>
<thead>
<tr>
<th>Subsample</th>
<th>Market Equity</th>
<th>Output</th>
<th>Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989:Q1 - 2017:Q4</td>
<td>6.9%</td>
<td>2.5%</td>
<td>4.8%</td>
</tr>
<tr>
<td>1959:Q1 - 1988:Q4</td>
<td>3.2%</td>
<td>4.3%</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

Notes: Variables for the nonfinancial corporate sector (NFCS). Annualized growth rates for the specified sample, in real terms, deflated by the implicit price deflator for NFCS output (net value added).
Sharp Rise in Equity Values in Post-War Period

- Stock market risen sharply in post-war era, driven mostly last 30 years.
- From 89:Q1-17:Q4 (29 yrs) real value market equity for NFCS grew more than double the rate of prev. 29 yrs.
- By contrast: real value of output shows the opposite temporal pattern.

<table>
<thead>
<tr>
<th>Subsample</th>
<th>Market Equity</th>
<th>Output</th>
<th>Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989:Q1 - 2017:Q4</td>
<td>6.9%</td>
<td>2.5%</td>
<td>4.8%</td>
</tr>
<tr>
<td>1959:Q1 - 1988:Q4</td>
<td>3.2%</td>
<td>4.3%</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

Notes: Variables for the nonfinancial corporate sector (NFCS). Annualized growth rates for the specified sample, in real terms, deflated by the implicit price deflator for NFCS output (net value added).
Sharp Rise in Equity Values in Post-War Period

- Stock market risen sharply in post-war era, driven mostly last 30 years.
- From 89:Q1-17:Q4 (29 yrs) real value market equity for NFCS grew more than double the rate of prev. 29 yrs.
- By contrast: real value of output shows the opposite temporal pattern.

<table>
<thead>
<tr>
<th>Subsample</th>
<th>Market Equity</th>
<th>Output</th>
<th>Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989:Q1 - 2017:Q4</td>
<td>6.9%</td>
<td>2.5%</td>
<td>4.8%</td>
</tr>
<tr>
<td>1959:Q1 - 1988:Q4</td>
<td>3.2%</td>
<td>4.3%</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

Notes: Variables for the nonfinancial corporate sector (NFCS). Annualized growth rates for the specified sample, in real terms, deflated by the implicit price deflator for NFCS output (net value added).
Sharp Rise in Equity Values in Post-War Period

- Stock market risen sharply in post-war era, driven mostly last 30 years.
- From 89:Q1-17:Q4 (29 yrs) real value market equity for NFCS grew more than double the rate of prev. 29 yrs.
- By contrast: real value of output shows the opposite temporal pattern.
- Upshot? Widening chasm between stock market and broader economy.

<table>
<thead>
<tr>
<th>Subsample</th>
<th>Market Equity</th>
<th>Output</th>
<th>Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989:Q1 - 2017:Q4</td>
<td>6.9%</td>
<td>2.5%</td>
<td>4.8%</td>
</tr>
<tr>
<td>1959:Q1 - 1988:Q4</td>
<td>3.2%</td>
<td>4.3%</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

Notes: Variables for the nonfinancial corporate sector (NFCS). Annualized growth rates for the specified sample, in real terms, deflated by the implicit price deflator for NFCS output (net value added).
Stock Market v.s Broader Economy

- **ME**: Total value of market equity of the NFCS.

Notes:
Stock Market v.s Broader Economy

- ME relative to 3 different measures of agg. economic activity is at or near post-war high.

Stock Market v.s Broader Economy

- Notably, ME/E not near post-war high.

Textbook economics teaches us: stock market and economy should contain a common trend.
Textbook economics teaches us: stock market and economy should contain a *common trend*.

Very factors that *boost economy* are also *key to rising equity values* over long periods (e.g., Kaldor ’57).
Textbook economics teaches us: stock market and economy should contain a *common trend*.

Very *factors* that *boost economy* are also *key to rising equity values* over long periods (e.g., Kaldor ’57).

Figure 1 suggests basic *tenet of macroeconomic* theory not borne out by data.
Textbook economics teaches us: stock market and economy should contain a *common trend*.

Very factors that *boost economy* are also *key to rising equity values* over long periods (e.g., Kaldor '57).

Figure 1 suggests basic *tenet of macroeconomic* theory not borne out by data.

What is responsible for sharply rising equity values over post-war period?
Addressing question *empirically* requires not just data, but a model of how investors value equity.
Addressing question *empirically* requires not just data, but a model of how investors value equity.

Theoretical factors other than growth could predominate over long periods of time if persistent and large enough.
How Was the Wealth Won?

- Addressing question *empirically* requires not just data, but a model of how investors value equity.

- **Theoretical factors** other than growth could predominate over long periods of time if persistent and large enough.
 - **Shareholder payout**: Changes in how economic growth expected to be linked to cash payments to shareholders.
How Was the Wealth Won?

- Addressing question *empirically* requires not just data, but a model of how investors value equity.

- **Theoretical factors other than growth** could predominate over long periods of time if persistent and large enough.
 - **Shareholder payout**: Changes in how economic growth expected to be linked to cash payments to shareholders
 - **Discount rates**: Changes in how those payments are discounted back to present (expected path of future short rates, risk premia)
How Was the Wealth Won?

- Addressing question *empirically* requires not just data, but a model of how investors value equity.

- **Theoretical factors other than growth** could predominate over long periods of time if persistent and large enough.
 - **Shareholder payout**: Changes in how economic growth expected to be linked to cash payments to shareholders
 - **Discount rates**: Changes in how those payments are discounted back to present (expected path of future short rates, risk premia)
 - **Economic growth**: Could still be key to market’s rise over post-war period, even if last 30 years have been a striking exception.
How Was the Wealth Won?

- This paper: Estimate **model of U.S. equity market**.
This paper: Estimate model of U.S. equity market.

Allow data to speak as much as possible.
How Was the Wealth Won?

- This paper: Estimate **model of U.S. equity market**.
- Allow data to speak as much as possible.
 - Estimate **Flexible parametric** model of how equities are priced
 - Allows for influence from several **Mutually uncorrelated latent factors**
 - Infer what values latent factors must have taken over sample to explain the data.
This paper: Estimate model of U.S. equity market.

Allow data to speak as much as possible.

- Estimate Flexible parametric model of how equities are priced
- Allows for influence from several Mutually uncorrelated latent factors
- Infer what values latent factors must have taken over sample to explain the data.

Identification of mutually uncorrelated components + loglinear model => precisely decompose 100% of market’s observed growth into distinct component sources in the model.
Equity priced in our model by a representative *shareholder*, akin to wealthy household or large institutional investor.
How Was the Wealth Won?

- Equity priced in our model by a representative *shareholder*, akin to wealthy household or large institutional investor.

- Remaining agents *supply labor*, play no role in asset pricing.
How Was the Wealth Won?

- Equity priced in our model by a representative *shareholder*, akin to wealthy household or large institutional investor.
- Remaining agents *supply labor*, play no role in asset pricing.
- Shareholder preferences subject to a shock alters *appetite for risk*.
How Was the Wealth Won?

- Equity priced in our model by a representative *shareholder*, akin to wealthy household or large institutional investor.

- Remaining agents *supply labor*, play no role in asset pricing.

- Shareholder preferences subject to a shock alters *appetite for risk*.

- Investors understand state variables subject to *transitional dynamics* and take these into account when forming expectations.
How Was the Wealth Won?

- Equity priced in our model by a representative *shareholder*, akin to wealthy household or large institutional investor.

- Remaining agents *supply labor*, play no role in asset pricing.

- Shareholder preferences subject to a shock alters *appetite for risk*.

- Investors understand state variables subject to *transitional dynamics* and take these into account when forming expectations.

- Estimate *full dynamic model* that incorporates time variation in:

 - Expect. growth of rents generated from productive activity
 - How rents are apportioned between shareholders and labor
 - Equity risk premium
 - Expected future path of short rates in near- and long-term

How Was the Wealth Won?

- Equity priced in our model by a representative shareholder, akin to wealthy household or large institutional investor.
- Remaining agents supply labor, play no role in asset pricing.
- Shareholder preferences subject to a shock alters appetite for risk.
- Investors understand state variables subject to transitional dynamics and take these into account when forming expectations.
- Estimate full dynamic model that incorporates time variation in:
 - Expect. growth of rents generated from productive activity
How Was the Wealth Won?

- Equity priced in our model by a representative shareholder, akin to wealthy household or large institutional investor.

- Remaining agents supply labor, play no role in asset pricing.

- Shareholder preferences subject to a shock alters appetite for risk.

- Investors understand state variables subject to transitional dynamics and take these into account when forming expectations.

- Estimate full dynamic model that incorporates time variation in:
 - Expect. growth of rents generated from productive activity
 - How rents are apportioned between shareholders and labor
How Was the Wealth Won?

- Equity priced in our model by a representative *shareholder*, akin to wealthy household or large institutional investor.

- Remaining agents *supply labor*, play no role in asset pricing.

- Shareholder preferences subject to a shock alters *appetite for risk*.

- Investors understand state variables subject to *transitional dynamics* and take these into account when forming expectations.

- Estimate **full dynamic model** that incorporates time variation in:
 - Expect. *growth of rents* generated from productive activity
 - How rents are *apportioned* between shareholders and labor
 - *Equity risk premium* and expected future path of *short rates* in near- and long-term
Equity priced in our model by a representative shareholder, akin to wealthy household or large institutional investor.

Remaining agents supply labor, play no role in asset pricing.

Shareholder preferences subject to a shock alters appetite for risk.

Investors understand state variables subject to transitional dynamics and take these into account when forming expectations.

Estimate full dynamic model that incorporates time variation in:

- Expect. growth of rents generated from productive activity
- How rents are apportioned between shareholders and labor
- Equity risk premium and expected future path of short rates in near- and long-term

Foremost driving force behind market’s sharp gains in last 30 years?
Foremost **driving force** behind market’s sharp gains in last 30 years?

- Not economic growth, short-term interest rates, or risk premia. Instead, single most important factor is...

Factors share shock that reallocates rewards of production without affecting size of rewards. FS shocks persist. reallocated rents to shareholders away from labor. Realization of these shocks:

2. Interest rates explain 11% since 1989, 2.6% over full sample.
3. Risk Premia explain 11% since 1989, 11% over full sample.

Economic growth contributed 23% since 1989, and 50% over full sample. From 1952-1988, economic growth accounted for 92%, but that 37 year period created less than half wealth generated in 29 years since 1989.
Results Preview

- Foremost **driving force** behind market’s sharp gains in last 30 years?
- Not economic growth, short-term interest rates, or risk premia. Instead, single most important factor is...
- ...*Factors share shock* that **reallocates** rewards of production without affecting size of rewards.

Greenwald, Lettau, and Ludvigson

How the Wealth Was Won
Foremost **driving force** behind market’s sharp gains in last 30 years?

Not economic growth, short-term interest rates, or risk premia. Instead, single most important factor is...

...**Factors share shock** that **reallocates** rewards of production without affecting size of rewards.

FS shocks persist. reallocated **rents to shareholders** away from labor.
Foremost **driving force** behind market’s sharp gains in last 30 years?

Not economic growth, short-term interest rates, or risk premia. Instead, single most important factor is...

... *Factors share shock* that **reallocates** rewards of production without affecting size of rewards.

FS shocks persist. reallocated **rents to shareholders** away from labor.

Realization of these shocks:

Results Preview

- Foremost **driving force** behind market’s sharp gains in last 30 years?
- Not economic growth, short-term interest rates, or risk premia. Instead, single most important factor is...
- **Factors share shock** that **reallocates** rewards of production without affecting size of rewards.
- FS shocks persist. reallocated **rents to shareholders** away from labor.
- Realization of these shocks:
 2. Interest rates explain **11%** since 1989, **2.6%** over full sample.
Foremost **driving force** behind market’s sharp gains in last 30 years?

Not economic growth, short-term interest rates, or risk premia. Instead, single most important factor is...

...*Factors share shock* that **reallocates** rewards of production without affecting size of rewards.

FS shocks persist. reallocated **rents to shareholders** away from labor.

Realization of these shocks:

2. Interest rates explain **11%** since 1989, **2.6%** over full sample.
3. Risk Premia explain **11%** since 1989, **11%** over full sample.
Foremost **driving force** behind market’s sharp gains in last 30 years?

Not economic growth, short-term interest rates, or risk premia. Instead, single most important factor is...

...*Factors share shock* that reallocates rewards of production without affecting size of rewards.

FS shocks persist. reallocated *rents to shareholders* away from labor.

Realization of these shocks:

2. Interest rates explain **11%** since 1989, **2.6%** over full sample.
3. Risk Premia explain **11%** since 1989, **11%** over full sample.

Economic growth contributed **23%** since 1989, and **50%** over full sample.
Foremost **driving force** behind market’s sharp gains in last 30 years?

Not economic growth, short-term interest rates, or risk premia. Instead, single most important factor is...

...*Factors share shock* that **reallocates** rewards of production without affecting size of rewards.

FS shocks persist. reallocated **rents to shareholders** away from labor.

Realization of these shocks:

2. Interest rates explain **11%** since 1989, **2.6%** over full sample.
3. Risk Premia explain **11%** since 1989, **11%** over full sample.

Economic growth contributed **23%** since 1989, and **50%** over full sample.

From 1952-1988, **economic growth** accounted for **92%**, but that **37 year** period created *less than half* wealth generated in **29 years since 1989**.
Implication: **high returns** to holding equity in post-war period have been in large part the result of **good luck**.

Attributable to a string of FS shocks that reallocated rents to shareholders.
Implication: **high returns** to holding equity in post-war period have been in large part the result of *good luck*.

Attributable to a string of FS shocks that reallocated rents to shareholders.

Estimate: $\approx 2.1 \text{ percentage points}$ of post-war avg. annual \log return on equity in excess of short term interest rate attributable to this string of shocks.
Implication: **high returns** to holding equity in post-war period have been in large part the result of **good luck**

Attributable to a string of FS shocks that reallocated rents to shareholders.

Estimate: \(\approx 2.1 \) percentage points of post-war avg. annual \(\log \) return on equity in excess of short term interest rate attributable to this string of shocks.

Model & estimates \(\Rightarrow \) common practice of averaging of returns, dividend, payout data over post-war sample to estimate ERP overstates the true risk premium by \(\approx 50\% \).
Related Literature

- **Drivers of real level of stock market**: Few studies. Lettau & Ludvigson ’13, and Greenwald, Lettau, Ludvigson (GLL) ’14.

- This paper replaces GLL, differs substantively from both. Neither study did formal estimation of asset pricing model. GLL model is less flexible, less general.

- **Heterogeneous agent, limited participation** perspective adds **realism**: just 52% households own equity in 2016 (any amt, any form); most own very little: top 5% of stock wealth dist. owns 76% of market and earns small fraction of income in form of labor compensation.
Related Literature

- **Drivers of real level of stock market**: Few studies. Lettau & Ludvigson ’13, and Greenwald, Lettau, Ludvigson (GLL) ’14.

- This paper replaces GLL, differs substantively from both. Neither study did formal estimation of asset pricing model. GLL model is less flexible, less general.

- **Heterogeneous agent, limited participation** perspective adds **realism**: just 52% households own equity in 2016 (any amt, any form); most own very little: **top 5% of stock wealth dist. owns 76% of market** and earns small fraction of income in form of labor compensation.

- **Limited participation**: Mankiw ‘86; Mankiw, Zeldes ’91; Vissing-Jorgensen ’02; Ait-Sahalia et. al., ’04, Guvenen ‘09. In contrast to this, GLL, Lettau et. al., ’19 and this paper: investors are **concerned about redistributive shocks** that have opposite effects on labor and capital.
Related Literature

- **Drivers of real level of stock market**: Few studies. Lettau & Ludvigson ’13, and Greenwald, Lettau, Ludvigson (GLL) ’14.

- This paper replaces GLL, differs substantively from both. Neither study did formal estimation of asset pricing model. GLL model is less flexible, less general.

- **Heterogeneous agent, limited participation** perspective adds realism: just 52% households own equity in 2016 (any amt, any form); most own very little: top 5% of stock wealth dist. owns 76% of market and earns small fraction of income in form of labor compensation.

- **Limited participation**: Mankiw ’86; Mankiw, Zeldes ’91; Vissing-Jorgensen ’02; Ait-Sahalia et. al., ’04, Guvenen ’09. In contrast to this, GLL, Lettau et. al., ’19 and this paper: investors are concerned about redistributive shocks that have opposite effects on labor and capital.

- **Decline in labor share**: Karabarounis, Neiman ’13, Lansing ’13.
Related Literature

- **Drivers of real level of stock market**: Few studies. Lettau & Ludvigson ’13, and Greenwald, Lettau, Ludvigson (GLL) ’14.

- This paper replaces GLL, differs substantively from both. Neither study did formal estimation of asset pricing model. GLL model is less flexible, less general.

- **Heterogeneous agent, limited participation** perspective adds realism: just 52% households own equity in 2016 (any amt, any form); most own very little: **top 5% of stock wealth dist. owns 76% of market** and earns small fraction of income in form of labor compensation.

- **Limited participation**: Mankiw ’86; Mankiw, Zeldes ’91; Vissing-Jorgensen ’02; Ait-Sahalia et. al., ’04, Guvenen ’09. In contrast to this, GLL, Lettau et. al., ’19 and this paper: investors are concerned about redistributive shocks that have opposite effects on labor and capital.

- **Decline in labor share**: Karabarounis, Neiman ’13, Lansing ’13.

- **Negative correlation returns human wealth and stock market**: Lustig, Van Nieuwerburgh ’08; Lettau, Ludvigson ’09; Chen et. al., ’14.
The Model

- Representative firm, 2 types of agents: *workers* and *shareholders*.
The Model

- Representative firm, 2 types of agents: *workers* and *shareholders*.
- Workers own no assets, consume labor income. Shareholders akin to *wealthy household or inst. investor* finances consump. from assets.
The Model

- Representative firm, 2 types of agents: workers and shareholders.
- Workers own no assets, consume labor income. Shareholders akin to wealthy household or inst. investor finances consump. from assets.
- Aggregate output:
 \[Y_t = A_t N_t^\alpha K_t^{1-\alpha} \]
 - \(A_t \) mean zero TFP; \(N_t \) labor endowment (hours × prod. factor).
- Workers inelastically supply labor; hours fixed, normalized to unity.
- \(K_t \) grows deterministically at gross rate \(G \equiv 1 + g \Rightarrow K_t = K_0 G^t \).
- Labor productivity grows: \(N_t = G^t \).
The Model

- Representative firm, 2 types of agents: workers and shareholders.
- Workers own no assets, consume labor income. Shareholders akin to wealthy household or inst. investor finances consump. from assets.
- Aggregate output:
 \[Y_t = A_t N_t^\alpha K_t^{1-\alpha} \]
 \(A_t\) mean zero TFP; \(N_t\) labor endowment (hours \(\times\) prod. factor).
 - Workers inelastically supply labor; hours fixed, normalized to unity.
 - \(K_t\) grows deterministically at gross rate \(G \equiv 1 + g \Rightarrow K_t = K_0 G^t\).
 - Labor productivity grows: \(N_t = G^t\).
- Fraction \(\tau_t\) of \(Y_t\) devoted to taxes & interest & other. Earnings \(E_t\) (after-tax profits):
 \[E_t \equiv S_t Z_t Y_t \]
 \(Z_t \equiv 1 - \tau_t; S_t \equiv AT\) profit share of AT profit+labor comp.
- Labor compensation
 \[W_t N_t \equiv (1 - S_t) Z_t Y_t, \]
- \(E_t / Y_t\) “earnings share” and \((W_t N_t) / Y_t\) “labor share”.

Greenwald, Lettau, and Ludvigson

How the Wealth Was Won
Factors Share Shock

- Variable S_t modeled as exogenous factors share shock.
- Captures changes may occur, for any reason, in allocation of rewards between firms and workers under imperfect competition.
- Possible sources include changes in:
 1. **Industry concentration** structure alters labor intensivity of production
 2. **Bargaining power** of US workers (international competition, prevalence of unions, off-shoring)
 3. **Technological factors** alter substitutability of labor for capital.
The Model

- **Cash payments to shareholders** = net payout ("cashflows") differs from E_t by **net new investment**.

- Firm reinvests fixed fraction ωY_t each period $=>$

 $$C_t = E_t - \omega Y_t = (S_t Z_t - \omega) Y_t.$$

 cashflows

- Reinvestment needed to achieve long-term growth in Y_t at rate g—simple method of allowing for retained earnings.
The Model

- **Cash payments to shareholders** = net payout ("cashflows") differs from E_t by **net new investment**.

- Firm reinvests fixed fraction ωY_t each period \Rightarrow

\[
C_t = E_t - \omega Y_t = (S_t Z_t - \omega) Y_t.
\]

- Reinvestment needed to achieve long-term growth in Y_t at rate g–simple method of allowing for retained earnings.

- Shareholders (SH): identical pref., face identical risks \Rightarrow equity priced by a **representative shareholder** consumes per-capita shareholder cons.

- In equilibrium, agg. SH consumption $= \text{agg. net payout } C_t$.

Greenwald, Lettau, and Ludvigson

How the Wealth Was Won
The Model

- **Cash payments to shareholders** = *net payout* ("cashflows") differs from *E* by **net new investment**.

- Firm reinvests fixed fraction *ω* *Y* *t* each period =>
 \[
 C_t = E_t - ωY_t = (S_tZ_t - ω) Y_t.
 \]

- Reinvestment needed to achieve long-term growth in *Y* *t* at rate *g*—simple method of allowing for retained earnings.

- Shareholders (SH): identical pref., face identical risks => equity priced by a **representative shareholder** consumes per-capita shareholder cons.

- In equilibrium, agg. SH consumption = agg. **net payout** *C* *t*.

- Distinguished from **representative household** who consumes p.c. aggregate consumption.
The Model: SDF

- IMRS of *shareholder* consumption is the SDF and takes the form:

\[
M_{t+1} = \beta_t \left(\frac{C_{t+1}}{C_t} \right)^{-x_t}, \quad \beta_t \equiv \exp(\delta_t) / \exp(d_t)
\]

\[
\ln M_{t+1} = -1'\delta_t - d_t - x_t \Delta \ln C_{t+1}
\]
The Model: SDF

- IMRS of shareholder consumption is the SDF and takes the form:

\[M_{t+1} = \beta_t \left(\frac{C_{t+1}}{C_t} \right)^{-x_t}, \quad \beta_t \equiv \frac{\exp(\delta_t)}{\exp(\delta_t)} \]

\[\ln M_{t+1} = -1'\delta_t - d_t - x_t \Delta \ln C_{t+1} \]

- Preference shifter \(x_t \) and time varying sub. time-discount factor taken as given by ind. shareholders, driven by market as whole.

- \(x_t \) drives price of risk in SDF; latent state variable affects risk premia.
The Model: SDF

IMRS of *shareholder* consumption is the **SDF** and takes the form:

\[
M_{t+1} = \beta_t \left(\frac{C_{t+1}}{C_t} \right)^{-x_t}, \quad \beta_t \equiv \frac{\exp(\delta_t)}{\exp(d_t)}
\]

\[
\ln M_{t+1} = -1'\delta_t - d_t - x_t \Delta \ln C_{t+1}
\]

More general version SDFs Campbell, Cochrane ’99, Lettau, Wachter ’07.

Preference shifter \(x_t\) and time varying sub. time-discount factor taken as given by ind. shareholders, driven by market as whole.

\(x_t\) drives **price of risk** in SDF; latent state variable affects risk premia.

SDF reflects both preferences and beliefs \(\Rightarrow\) decrease in \(x_t\) interpreted as either a decrease in **effective risk aversion** or decrease in **pessimism**.
The Model: SDF

- IMRS of shareholder consumption is the SDF and takes the form:

\[
M_{t+1} = \beta_t \left(\frac{C_{t+1}}{C_t} \right)^{-x_t}, \quad \beta_t \equiv \frac{\exp(\delta_t)}{\exp(d_t)}
\]

\[
\ln M_{t+1} = -1' \delta_t - d_t - x_t \Delta \ln C_{t+1}
\]

- More general version SDFs Campbell, Cochrane ’99, Lettau, Wachter ’07.

- Preference shifter \(x_t \) and time varying sub. time-discount factor taken as given by ind. shareholders, driven by market as whole.

- \(x_t \) drives price of risk in SDF; latent state variable affects risk premia.

- SDF reflects both preferences and beliefs \(\Rightarrow \) decrease in \(x_t \) interpreted as either a decrease in effective risk aversion or decrease in pessimism.

- \(x_t \) positive on average but may occasionally go negative reflecting occasional risk tolerance or confidence.
IMRS of *shareholder* consumption is the SDF and takes the form:

\[M_{t+1} = \beta_t \left(\frac{C_{t+1}}{C_t} \right)^{-x_t} , \quad \beta_t = \exp(\delta_t) \exp(d_t) \]

\[\ln M_{t+1} = -1' \delta_t - d_t - x_t \Delta \ln C_{t+1} \]

More general version SDFs Campbell, Cochrane ’99, Lettau, Wachter ’07.

Preference shifter \(x_t \) and time varying sub. time-discount factor taken as given by ind. shareholders, driven by market as whole.

\(x_t \) drives **price of risk** in SDF; latent state variable affects risk premia.

SDF reflects both preferences and beliefs \(\Rightarrow \) decrease in \(x_t \) interpreted as either a decrease in *effective risk aversion* or decrease in *pessimism*.

\(x_t \) **positive on average** but may occasionally go negative reflecting occasional risk tolerance or confidence.

Time varying \(\beta_t \) essential for obtaining **stable risk-free rate** along with volatile equity premium.
Loglinear Model: Earnings

- Work with loglinear approximation solved analytically. $\ln\left(\frac{E_t}{Y_t}\right)$ could go above 1, but does so rarely (less than 1% of time in 10,000 period simulation).

- Lowercase letters denote log variables.
Loglinear Model: Earnings

- Work with loglinear approximation solved analytically. $\ln(E_t/Y_t)$ could go above 1, but does so rarely (less than 1% of time in 10,000 period simulation).

- Lowercase letters denote log variables.

- **TFP and Output growth:**

 \[
 \Delta a_{t+1} = \varepsilon_{a,t+1}, \quad \Delta y_{t+1} = g + \varepsilon_{a,t+1}, \quad \varepsilon_{a,t+1} \sim N \text{i.i.d.} \left(0, \sigma_a^2\right).
 \]
Loglinear Model: Earnings

- Work with loglinear approximation solved analytically. \(\ln(E_t/Y_t) \) could go above 1, but does so rarely (less than 1% of time in 10,000 period simulation).

- Lowercase letters denote log variables.

- **TFP and Output growth:**

 \[
 \Delta a_{t+1} = \varepsilon_{a,t+1}, \quad \Delta y_{t+1} = g + \varepsilon_{a,t+1}, \quad \varepsilon_{a,t+1} \sim N \text{i.i.d.}\left(0, \sigma_a^2\right).
 \]

- **Earnings:** Since \(E_t = S_t Z_t Y_t \), earnings growth

 \[
 \Delta e_t = \Delta s_t + \Delta z_t + \Delta y_t.
 \]
Loglinear Model: Payout

- **Payout:** Let $Q_t \equiv S_t Z_t$, then $C_t = (Q_t - \omega) Y_t$, or $c_t = \ln (Q_t - \omega) + y_t$.

- Loglinearize to obtain approximate equation for log payout

 $$c_t = \bar{c} + \bar{\xi} (s_t + z_t) + y_t,$$

 where $\bar{\xi} = \frac{SZ}{SZ - \omega}$ and \bar{SZ} is the average value of $S_t Z_t$.

- **Log payout growth** is given by

 $$\Delta c_t = \bar{\xi} (\Delta s_t + \Delta z_t) + \Delta y_t.$$
Data on earnings share suggests existence of both low- and higher-frequency components.

Allow for this in model. Denote $s_t = (s_{LFt}, s_{HFt})'$.

$s_t = 1's_t$, where $1' = (1, 1)$. $s_{LF,t}$ a lower frequency component, $s_{HF,t}$ a higher frequency component.

Specify dynamics of $\Delta c_t, \Delta s_t$ as

$$\Delta c_{t+1} = \zeta 1' \Delta s_{t+1} + \zeta \Delta z_{t+1} + \Delta y_{t+1}$$

$$s_{t+1} = (I - \Phi_s)\bar{s} + \Phi_s s_t + \epsilon_{s,t+1}, \quad \epsilon_{s,t+1} \sim N(0, \Sigma_s)$$

$$\Delta s_{t+1} = -(I - \Phi_s)\bar{s}_t + \epsilon_{s,t+1}, \quad \bar{s}_t \equiv s_t - \bar{s}$$
Loglinear Model: Risk Free Rate

- **Risk-free rate of return** known with certainty at t:

 $$R_{f, t+1} \equiv (\mathbb{E}_t [M_{t+1}])^{-1}, \quad \beta_t \equiv \frac{\exp (\delta_t)}{\exp (d_t)}.$$

- Data on short rates suggests **low- and higher-frequency components**.
Loglinear Model: Risk Free Rate

- **Risk-free rate of return** known with certainty at t:

 $$ R_{f,t+1} \equiv (\mathbb{E}_t [M_{t+1}])^{-1}, \quad \beta_t \equiv \frac{\exp(\delta_t)}{\exp(d_t)}. $$

- Data on short rates suggests **low- and higher-frequency components**.

- Model $\delta_t = 1'\delta_t$, where $\delta_t = (\delta_{LF_t}, \delta_{HF_t})'$ and

 $$ m_{t+1} \equiv \ln M_{t+1} = -1'\delta - d_t - x_t \Delta c_{t+1} $$

 $$ \delta_{t+1} = (I - \Phi_\delta)\bar{\delta} + \Phi_\delta \delta_t + \epsilon_{\delta, t+1}, \quad \epsilon_{\delta, t+1} \sim N(0, \Sigma_\delta), $$

Greenwald, Lettau, and Ludvigson

How the Wealth Was Won
Loglinear Model: Risk Free Rate

- **Risk-free rate of return** known with certainty at t:

 $$R_{f,t+1} \equiv (\mathbb{E}_t [M_{t+1}])^{-1}, \quad \beta_t \equiv \frac{\exp(\delta_t)}{\exp(d_t)}.$$

- Data on short rates suggests **low- and higher-frequency components**.

- Model $\delta_t = \mathbf{1}'\delta_t$, where $\delta_t = (\delta_{LFt}, \delta_{HFt})'$ and

 $$m_{t+1} \equiv \ln M_{t+1} = -\mathbf{1}'\delta_t - d_t - x_t\Delta c_{t+1},$$
 $$\delta_{t+1} = (I - \Phi_\delta)\tilde{\delta} + \Phi_\delta \delta_t + \varepsilon_{\delta,t+1}, \quad \varepsilon_{\delta,t+1} \sim N(0, \Sigma_\delta),$$

- Parameter d_t is a compensating factor chosen to ensure

 $$r_{f,t} = -\ln \mathbb{E}_t \exp(m_{t+1}) = \mathbf{1}'\delta_t.$$
Loglinear Model: Risk Free Rate

- **Risk-free rate of return** known with certainty at \(t \):
 \[
 R_{f,t+1} \equiv (\mathbb{E}_t [M_{t+1}])^{-1}, \quad \beta_t \equiv \frac{\exp(\delta_t)}{\exp(d_t)}.
 \]

- Data on short rates suggests **low- and higher-frequency components**.

- Model \(\delta_t = 1'\delta_t \), where \(\delta_t = (\delta_{LFt}, \delta_{HFt})' \) and
 \[
 m_{t+1} \equiv \ln M_{t+1} = -1'\delta_t - d_t - x_t \Delta c_{t+1}
 \]
 \[
 \delta_{t+1} = (I - \Phi_\delta)\tilde{\delta} + \Phi_\delta \delta_t + \varepsilon_{\delta,t+1}, \quad \varepsilon_{\delta,t+1} \sim N(0, \Sigma_\delta),
 \]

- Parameter \(d_t \) is a compensating factor chosen to ensure
 \[
 r_{f,t} = -\ln \mathbb{E}_t \exp(m_{t+1}) = 1'\delta_t.
 \]

- Gaussian shocks, the SDF is **conditionally lognormal**:
 \[
 r_{f,t+1} = 1'\delta_t + d_t + x_t (g - \zeta \phi_z \tilde{z}_t - \zeta 1' (I - \Phi_s)\tilde{s}_t) - \frac{1}{2} x_t^2 \left(\sigma_a^2 + \zeta (1' \Sigma_s 1) \right).
 \]
 \[
 d_t = -x_t (g - \zeta \phi_z \tilde{z}_t) + \zeta x_t 1' (I - \Phi_s)\tilde{s}_t + \frac{1}{2} x_t^2 \left(\sigma_a^2 + \zeta (1' \Sigma_s 1) \right).
 \]
Price of Risk Dynamics

- **Price of risk** x_t follows:

\[x_{t+1} = (1 - \phi_x) \bar{x} + \phi_x x_t + \varepsilon_{x,t+1}, \quad \varepsilon_{x,t+1} \sim N \text{i.i.d.} \left(0, \sigma_x^2 \right). \]
Price of Risk Dynamics

- **Price of risk** x_t follows:

$$x_{t+1} = (1 - \phi_x) \bar{x} + \phi_x x_t + \epsilon_{x,t+1}, \quad \epsilon_{x,t+1} \sim N \text{i.i.d.} \left(0, \sigma_x^2\right).$$

- **Latent process** Z_t: Data on taxes & interest filtered to infer values of latent stochastic process for Z_t. (Equilibrium asset returns in model depend not only on today’s Z_t but also expected future path of Z_t.)

$$z_{t+1} = (1 - \phi_z) \bar{z} + \phi_z z_t + \epsilon_{z,t+1}, \quad \epsilon_{z,t+1} \sim N \text{i.i.d.} \left(0, \sigma_z^2\right).$$
Loglinear Model: Equilibrium Stock Market Values

- **Equity return**: Let P_t denote total market equity, with C_t equity payout, return on equity is
 \[R_{t+1} = \frac{P_{t+1} + C_{t+1}}{P_t}. \]

- $pc_t \equiv \ln \left(\frac{P_t}{C_t} \right)$. The log return obeys the following approximate identity:
 \[r_{t+1} = \kappa_0 + \kappa_1 pc_{t+1} - pc_t + \Delta c_{t+1}, \]
 where $\kappa_1 = \exp(\overline{pc}) / (1 + \exp(\overline{pc})), \text{ and } \kappa_0 = \exp(\overline{pc}) + 1 - \kappa_1 \overline{pc}.$
Loglinear Model: Equilibrium Stock Market Values

- **Equity return**: Let P_t denote total market equity, with C_t equity payout, return on equity is

$$R_{t+1} = \frac{P_{t+1} + C_{t+1}}{P_t}.$$

- $pc_t \equiv \ln \left(\frac{P_t}{C_t} \right)$. The log return obeys the following approximate identity:

$$r_{t+1} = \kappa_0 + \kappa_1 pc_{t+1} - pc_t + \Delta c_{t+1},$$

where $\kappa_1 = \exp (\bar{pc}) / (1 + \exp (\bar{pc}))$, and $\kappa_0 = \exp (\bar{pc}) + 1 - \kappa_1 \bar{pc}$.

- The first-order-condition for optimal shareholder consumption:

$$\frac{P_t}{C_t} = E_t \exp \left[m_{t+1} + \Delta c_{t+1} + \ln \left(\frac{P_{t+1}}{C_{t+1}} + 1 \right) \right].$$

- **Conjecture and verify** a solution takes form:

$$pc_t = A_0 + A_s \tilde{s}_t + A_r \tilde{\delta}_t + A_x \tilde{x}_t + A_z \tilde{z}_t.$$
Loglinear Model Solution

\[pc_t = A_0 + A'_s \tilde{s}_t + A'_r \tilde{\delta}_t + A_x \tilde{x}_t + A_z \tilde{z}_t \]

\[A'_s = -\xi 1' (I - \Phi_s) (I - \kappa_1 \Phi_s)^{-1} \]
\[A'_x = -\left[\left(\frac{\xi^2}{\delta} \left(1' \Sigma_s 1 + \sigma_z^2 \right) + \sigma_g^2 \right) + \xi \kappa_1 (A'_s \Sigma_s 1) \right] (1 - \kappa_1 \phi_x)^{-1} \]
\[A'_\delta = -1' (I - \kappa_1 \Phi_\delta)^{-1} \]
\[A_z = -\xi (1 - \phi_z)(1 - \kappa_1 \phi_z)^{-1} \]

- All terms LHS are negative.
- \(A'_\delta \) and \(A'_x \) < 0: ↑ risk-free rate or in price of risk increases rate future cash payments discounted.
- \(A'_s \) < 0: \(\Phi_s \) < 1. Equity values rise proportionally less than \(c_t \) in anticipation of eventual mean-reversion in payout.
- **Size of effects** depends on magnitudes of \(\Phi_\delta, \phi_x, \) and \(\Phi_s \).
Model solution implies log equity premium:

\[
E_t[r_{t+1}] - r_{f,t} = \left[(\bar{\sigma}^2 \left(1^\prime \Sigma_s 1 + \sigma_z^2 \right) + \sigma_a^2) + \xi \kappa_1 \left(A_s^\prime \Sigma_s 1 + A_z \sigma_T^2 \right) \right] x_t \\
- \frac{1}{2} \nabla_t (r_{t+1}) \\
\n\n\n\n\n\n\n\n
\n
\n
\n
\n
Homoskedastic shocks: \(\nabla_t \) constant, but risk premium varies with \(x_t \).
Estimation and Data

- **Primitive parameters**

\[\theta = \left(\xi, g, \sigma^2_a, \text{vec}(\Phi_s), \text{vec}(\Phi_\delta), \phi_x, \phi_Z, \text{vec}(\Sigma_s), \text{vec}(\Sigma_\delta), \sigma^2_x, \sigma^2_Z, \bar{s}, \bar{\delta}, \bar{x}, \bar{z} \right)' \]
Estimation and Data

- **Primitive parameters**

\[\theta = \left(\xi, g, \sigma_a^2, \text{vec}(\Phi_s), \text{vec}(\Phi_\delta), \phi_x, \phi_Z, \text{vec}(\Sigma_s), \text{vec}(\Sigma_\delta), \sigma_x^2, \sigma_Z^2, \bar{s}, \bar{\delta}, \bar{x}, \bar{z} \right)' \]

- **Two groups**
 - Small number (\(\bar{s}, \xi, \phi_x \)) calibrated (discussed below).
 - Remaining parameters freely estimated.
Estimation and Data

- **Primitive parameters**
 \[\theta = \left(\xi, g, \sigma^2_a, \text{vec} (\Phi_s), \text{vec} (\Phi_\delta), \phi_x, \phi_Z, \text{vec} (\Sigma_s), \text{vec} (\Sigma_\delta), \sigma^2_{x_s}, \sigma^2_Z, s, \bar{\delta}, \bar{x}, \bar{z} \right)' \]

- **Two groups**
 - Small number \((s, \xi, \phi_x)\) calibrated (discussed below).
 - Remaining parameters freely estimated.

- **Estimation of Parameters**: Bayesian methods with flat priors.

- **Estimation of Latent States**: Model linear in logs so can use Kalman filter.
Confront model with observations 1952:Q1-2017:Q4 on:

1. Log output growth \(\Delta y_t \)
2. Log earnings share \(e_t - y_t \equiv ey_t \)
3. Interest rate to proxy \(r_f, t \)
4. Taxes & interest share \(z_t \)
5. Equity-to-output ratio \(p_t - y_t \equiv py_t \)

Risk-free rate 3-Mo T-bill minus fitted \(\hat{\pi}_t \) from regression on lagged \(\pi_t \).

NFCS observations for all others.

Need \(y_t, ey_t, py_t \) etc., to be measured for same sector of economy. Otherwise subject to confounding compositional effects.

Corporate sector advantage: 1 - \(S_t \) not affected by statistical imputation of labor income from total income reported by sole proprietors and unincorporated business.
Estimation and Data

Confront model with observations **1952:Q1-2017:Q4** on:

1. Log output growth Δy_t
2. Log earnings share $e_t - y_t \equiv ey_t$
3. Interest rate to proxy $r_{f,t}$
4. Taxes & interest share z_t
5. Equity-to-output ratio $p_t - y_t \equiv py_t$
Confront model with observations 1952:Q1-2017:Q4 on:

1. Log output growth Δy_t
2. Log earnings share $e_t - y_t \equiv e y_t$
3. Interest rate to proxy $r_{f,t}$
4. Taxes & interest share z_t
5. Equity-to-output ratio $p_t - y_t \equiv p y_t$

Risk-free rate 3-Mo T-bill minus fitted $\hat{\pi}_t$ from regression on lagged π_t.

NFCS observations for all others.

1. Need $y_t, e y_t, p y_t$ etc., to be measured for same sector of economy. Otherwise subject to confounding compositional effects.
2. Corporate sector advantage: $1 - S_t$ not affected by statistical imputation of labor income from total income reported by sole proprietors and unincorporated business.
Forgoing variables are related to θ and latent states:

\[

ey_t = 1'(\tilde{s}_t + \bar{s}) \\
rf_t = 1'(\tilde{\delta}_t + \bar{\delta}) \\
py_t = \bar{p}\bar{y} + (A'_s + \zeta 1')\tilde{s}_t + A'_r\tilde{\delta}_t + A_x\tilde{x}_t + (A_Z + \zeta)\tilde{z}_t \\
\tilde{z}_{t+1} = \phi_Z\tilde{z}_t + \varepsilon_{Z,t+1} \\
z_t = \tilde{z}_t + \bar{z} \\
\Delta y_t = g + \Delta\tilde{y}_t
\]

$\bar{p}\bar{y} \equiv A_0 + \bar{c} + \bar{\zeta}\bar{z}_t$

Last two are identities that exactly pin down values of $\varepsilon_{z,t}$ and $\varepsilon_{a,t}$.
Estimation and Data

- **State space form:**
 \[Y_t = H' \beta_t + G' 1 \]
 \[\beta_t = F \beta_{t-1} + v_t, \]

- **Observation equation:** \(Y_t \equiv (e_y t, r_f t, p y t, \Delta z_t, \Delta y_t)' \)

- **Latent states:** \(\beta_t \equiv (\tilde{s}_{LF,t}, \tilde{s}_{HF,t}, \tilde{\delta}_{LF,t}, \tilde{\delta}_{HF,t}, \tilde{x}_t, \tilde{z}_t, \Delta \tilde{y}_t)' \), where
 \[v_t = (\varepsilon_{s,LF,t}, \varepsilon_{s,HF,t}, \varepsilon_{\delta,LF,t}, \varepsilon_{\delta,HF,t}, \varepsilon_{x,t}, \varepsilon_{Z,t}, \varepsilon_{a,t})' \]

and \(F, H', \) and \(G' \) are matrices of primitive parameters.
Estimation and Data

- **State space form:**
 \[
 \mathcal{Y}_t = H'\beta_t + G'1 \tag{1}
 \]
 \[
 \beta_t = F\beta_{t-1} + v_t, \tag{2}
 \]

- **Observation equation:** \(\mathcal{Y}_t \equiv \left(e_y t, r_{ft}, p y_t, \Delta z_t, \Delta y_t \right)' \)

- **Latent states:** \(\beta_t \equiv (\tilde{s}_{LF,t}, \tilde{s}_{HF,t}, \tilde{\delta}_{LF,t}, \tilde{\delta}_{HF,t}, \tilde{x}_t, \tilde{z}_t, \Delta \tilde{y}_t)' \), where
 \[
 v_t = (\varepsilon_{s,LF,t}, \varepsilon_{s,HF,t}, \varepsilon_{\delta,LF,t}, \varepsilon_{\delta,HF,t}, \varepsilon_{x,t}, \varepsilon_{Z,t}, \varepsilon_{a,t})'
 \]
 and \(F, H', \) and \(G' \) are matrices of primitive parameters.

- **Kalman filter** gives *smoothed* estimates of latent states \(\beta_t | T \).

- **Measurement error effectively zero** in (1) due to flexible loglinear model and use of 7 latent states to match only 5 variables.
Estimation and Data

- **Posterior of θ**: Obtained by computing likelihood using KF and combining with priors.

- **Flat priors**: posterior coincides with likelihood, posterior mode coincides with MLE estimate.

- **Parameter uncertainty**: Characterized using a RWMH algorithm.

- **Error bands** therefore reflect both parameter and latent state uncertainty.
Estimation and Data

- Three parameters are calibrated: \bar{s}, ζ, ϕ_x

- Mean earnings share variable \bar{s}: forces exactly right mean in ey without error.

- Payout-earnings growth relation ζ

\[
\Delta c_t = \zeta (\Delta s_t + \Delta z_t) + \Delta y_t.
\]

Calibrated to match relative vol of Δc_t to $\Delta e_t \approx 2$.

- Persistence of x_t: No observable series to discipline ϕ_x.
 - If ϕ_x freely estimated with flat prior, procedure will choose parameters of FS and RF process to fit s_t, $r_{f,t}$ exactly, set ϕ_x to explain all variation in py_t.
 - Implausible implication: RP shocks very persistent, since $\hat{\phi}_x > 0.97$.
 - Estimates of risk-premium: cay_t proxy AR1 ≈ 0.9; Martin '17 SVIX proxy: AR1 ≈ 0.8.
 - Baseline happy medium $\phi_x = 0.85$; robustness: $\phi_x = 0.80$, $\phi_x = 0.90$.
Effective mean risk aversion modest reflecting volatility cash payments to shareholders.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter</th>
<th>Mode</th>
<th>5%</th>
<th>Median</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Price Mean</td>
<td>\bar{x}</td>
<td>4.4832</td>
<td>3.3174</td>
<td>4.3791</td>
<td>5.8452</td>
</tr>
<tr>
<td>Risk Price Vol.</td>
<td>σ_x</td>
<td>3.8086</td>
<td>2.8981</td>
<td>3.8307</td>
<td>5.1905</td>
</tr>
<tr>
<td>Risk-Free Rate Mean</td>
<td>\bar{r}_f</td>
<td>0.0023</td>
<td>0.0008</td>
<td>0.0027</td>
<td>0.0048</td>
</tr>
<tr>
<td>Risk-Free (HF) Pers.</td>
<td>$\phi_{\delta, HF}$</td>
<td>0.1587</td>
<td>0.0290</td>
<td>0.1928</td>
<td>0.4109</td>
</tr>
<tr>
<td>Risk-Free (HF) Vol.</td>
<td>$\sigma_{\delta, HF}$</td>
<td>0.0019</td>
<td>0.0016</td>
<td>0.0019</td>
<td>0.0022</td>
</tr>
<tr>
<td>Risk-Free (LF) Pers.</td>
<td>$\phi_{\delta, LF}$</td>
<td>0.9321</td>
<td>0.8949</td>
<td>0.9314</td>
<td>0.9558</td>
</tr>
<tr>
<td>Risk-Free (LF) Vol.</td>
<td>$\sigma_{\delta, LF}$</td>
<td>0.0015</td>
<td>0.0012</td>
<td>0.0015</td>
<td>0.0019</td>
</tr>
<tr>
<td>Factor Share (HF) Pers.</td>
<td>$\phi_{s, HF}$</td>
<td>0.9250</td>
<td>0.8981</td>
<td>0.9245</td>
<td>0.9455</td>
</tr>
<tr>
<td>Factor Share (HF) Vol.</td>
<td>$\sigma_{s, HF}$</td>
<td>0.0680</td>
<td>0.0633</td>
<td>0.0683</td>
<td>0.0734</td>
</tr>
<tr>
<td>Factor Share (LF) Pers.</td>
<td>$\phi_{s, LF}$</td>
<td>0.9997</td>
<td>0.9984</td>
<td>0.9996</td>
<td>0.9999</td>
</tr>
<tr>
<td>Factor Share (LF) Vol.</td>
<td>$\sigma_{s, LF}$</td>
<td>0.0179</td>
<td>0.0132</td>
<td>0.0179</td>
<td>0.0230</td>
</tr>
<tr>
<td>Tax + Interest Share Pers.</td>
<td>ϕ_Z</td>
<td>0.9545</td>
<td>0.9244</td>
<td>0.9583</td>
<td>0.9875</td>
</tr>
<tr>
<td>Tax + Interest Vol.</td>
<td>σ_Z</td>
<td>0.0041</td>
<td>0.0038</td>
<td>0.0041</td>
<td>0.0044</td>
</tr>
<tr>
<td>Productivity Vol.</td>
<td>σ_a</td>
<td>0.0160</td>
<td>0.0148</td>
<td>0.0159</td>
<td>0.0171</td>
</tr>
</tbody>
</table>

Parameter Estimates

- Short rates: $\phi_{\delta,LF} = 0.93 \Rightarrow$ substantial declines recently in $r_{f,t}$ not important impetus for equity boom.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter</th>
<th>Mode</th>
<th>5%</th>
<th>Median</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Price Mean</td>
<td>\bar{x}</td>
<td>4.4832</td>
<td>3.3174</td>
<td>4.3791</td>
<td>5.8452</td>
</tr>
<tr>
<td>Risk Price Vol.</td>
<td>σ_x</td>
<td>3.8086</td>
<td>2.8981</td>
<td>3.8307</td>
<td>5.1905</td>
</tr>
<tr>
<td>Risk-Free Rate Mean</td>
<td>\bar{r}_f</td>
<td>0.0023</td>
<td>0.0008</td>
<td>0.0027</td>
<td>0.0048</td>
</tr>
<tr>
<td>Risk-Free (HF) Pers.</td>
<td>$\phi_{\delta,HF}$</td>
<td>0.1587</td>
<td>0.0290</td>
<td>0.1928</td>
<td>0.4109</td>
</tr>
<tr>
<td>Risk-Free (HF) Vol.</td>
<td>$\sigma_{\delta,HF}$</td>
<td>0.0019</td>
<td>0.0016</td>
<td>0.0019</td>
<td>0.0022</td>
</tr>
<tr>
<td>Risk-Free (LF) Pers.</td>
<td>$\phi_{\delta,LF}$</td>
<td>0.9321</td>
<td>0.8949</td>
<td>0.9314</td>
<td>0.9558</td>
</tr>
<tr>
<td>Risk-Free (LF) Vol.</td>
<td>$\sigma_{\delta,LF}$</td>
<td>0.0015</td>
<td>0.0012</td>
<td>0.0015</td>
<td>0.0019</td>
</tr>
<tr>
<td>Factor Share (HF) Pers.</td>
<td>$\phi_{s,HF}$</td>
<td>0.9250</td>
<td>0.8981</td>
<td>0.9245</td>
<td>0.9455</td>
</tr>
<tr>
<td>Factor Share (HF) Vol.</td>
<td>$\sigma_{s,HF}$</td>
<td>0.0680</td>
<td>0.0633</td>
<td>0.0683</td>
<td>0.0734</td>
</tr>
<tr>
<td>Factor Share (LF) Pers.</td>
<td>$\phi_{s,LF}$</td>
<td>0.9997</td>
<td>0.9984</td>
<td>0.9996</td>
<td>0.9999</td>
</tr>
<tr>
<td>Factor Share (LF) Vol.</td>
<td>$\sigma_{s,LF}$</td>
<td>0.0179</td>
<td>0.0132</td>
<td>0.0179</td>
<td>0.0230</td>
</tr>
<tr>
<td>Tax + Interest Share Pers.</td>
<td>ϕ_Z</td>
<td>0.9545</td>
<td>0.9244</td>
<td>0.9583</td>
<td>0.9875</td>
</tr>
<tr>
<td>Tax + Interest Vol.</td>
<td>σ_Z</td>
<td>0.0041</td>
<td>0.0038</td>
<td>0.0041</td>
<td>0.0044</td>
</tr>
<tr>
<td>Productivity Vol.</td>
<td>σ_a</td>
<td>0.0160</td>
<td>0.0148</td>
<td>0.0159</td>
<td>0.0171</td>
</tr>
</tbody>
</table>

Parameter Estimates

Factors share:
\[\phi_{s,LF} = 0.9997 \] estimated to be more persistent.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter</th>
<th>Mode</th>
<th>5%</th>
<th>Median</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Price Mean</td>
<td>(\bar{x})</td>
<td>4.4832</td>
<td>3.3174</td>
<td>4.3791</td>
<td>5.8452</td>
</tr>
<tr>
<td>Risk Price Vol.</td>
<td>(\sigma_x)</td>
<td>3.8086</td>
<td>2.8981</td>
<td>3.8307</td>
<td>5.1905</td>
</tr>
<tr>
<td>Risk-Free Rate Mean</td>
<td>(\bar{r}_f)</td>
<td>0.0023</td>
<td>0.0008</td>
<td>0.0027</td>
<td>0.0048</td>
</tr>
<tr>
<td>Risk-Free (HF) Pers.</td>
<td>(\phi_{\delta,HF})</td>
<td>0.1587</td>
<td>0.0290</td>
<td>0.1928</td>
<td>0.4109</td>
</tr>
<tr>
<td>Risk-Free (HF) Vol.</td>
<td>(\sigma_{\delta,HF})</td>
<td>0.0019</td>
<td>0.0016</td>
<td>0.0019</td>
<td>0.0022</td>
</tr>
<tr>
<td>Risk-Free (LF) Pers.</td>
<td>(\phi_{\delta,LF})</td>
<td>0.9321</td>
<td>0.8949</td>
<td>0.9314</td>
<td>0.9558</td>
</tr>
<tr>
<td>Risk-Free (LF) Vol.</td>
<td>(\sigma_{\delta,LF})</td>
<td>0.0015</td>
<td>0.0012</td>
<td>0.0015</td>
<td>0.0019</td>
</tr>
<tr>
<td>Factor Share (HF) Pers.</td>
<td>(\phi_{s,HF})</td>
<td>0.9250</td>
<td>0.8981</td>
<td>0.9245</td>
<td>0.9455</td>
</tr>
<tr>
<td>Factor Share (HF) Vol.</td>
<td>(\sigma_{s,HF})</td>
<td>0.0680</td>
<td>0.0633</td>
<td>0.0683</td>
<td>0.0734</td>
</tr>
<tr>
<td>Factor Share (LF) Pers.</td>
<td>(\phi_{s,LF})</td>
<td>(0.9997)</td>
<td>(0.9984)</td>
<td>(0.9996)</td>
<td>(0.9999)</td>
</tr>
<tr>
<td>Factor Share (LF) Vol.</td>
<td>(\sigma_{s,LF})</td>
<td>0.0179</td>
<td>0.0132</td>
<td>0.0179</td>
<td>0.0230</td>
</tr>
<tr>
<td>Tax + Interest Share Pers.</td>
<td>(\phi_Z)</td>
<td>0.9545</td>
<td>0.9244</td>
<td>0.9583</td>
<td>0.9875</td>
</tr>
<tr>
<td>Tax + Interest Vol.</td>
<td>(\sigma_Z)</td>
<td>0.0041</td>
<td>0.0038</td>
<td>0.0041</td>
<td>0.0044</td>
</tr>
<tr>
<td>Productivity Vol.</td>
<td>(\sigma_a)</td>
<td>0.0160</td>
<td>0.0148</td>
<td>0.0159</td>
<td>0.0171</td>
</tr>
</tbody>
</table>

Notes: The table reports parameter estimates from the posterior distribution. The sample spans the period 1952:Q1-2017:Q4.
Asset Pricing Moments

- “Model” numbers from simulations. “Fitted” numbers use estimated latent states obtained from fitting model to historical data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model Mean(%)</th>
<th>Model SD(%)</th>
<th>Fitted Mean(%)</th>
<th>Fitted SD(%)</th>
<th>Data Mean(%)</th>
<th>Data SD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Equity Return</td>
<td>5.264</td>
<td>16.868</td>
<td>7.516</td>
<td>17.203</td>
<td>8.671</td>
<td>16.872</td>
</tr>
<tr>
<td>Log Risk-Free Rate</td>
<td>0.942</td>
<td>1.515</td>
<td>1.110</td>
<td>1.998</td>
<td>1.110</td>
<td>1.998</td>
</tr>
<tr>
<td>Log Price-Payout Ratio</td>
<td>3.507</td>
<td>0.334</td>
<td>3.486</td>
<td>0.456</td>
<td>3.392</td>
<td>0.493</td>
</tr>
<tr>
<td>Log Earnings Growth</td>
<td>2.065</td>
<td>11.198</td>
<td>2.450</td>
<td>15.041</td>
<td>2.450</td>
<td>15.041</td>
</tr>
<tr>
<td>Log Earnings Share Growth</td>
<td>0.000</td>
<td>10.897</td>
<td>0.405</td>
<td>13.337</td>
<td>0.405</td>
<td>13.337</td>
</tr>
<tr>
<td>Log Payout Share Growth</td>
<td>0.000</td>
<td>21.804</td>
<td>1.106</td>
<td>26.607</td>
<td>2.254</td>
<td>28.678</td>
</tr>
</tbody>
</table>

Notes: All statistics are computed for annual (continuously compounded) data. “Model” numbers are averages across 1000 simulations of the model of the same size as our data sample. “Fitted” numbers use the estimated latent states fitted to observed data in our historical sample. The sample spans the period 1952:Q1-2017:Q4.
Asset Pricing Moments

- Fitted moments are model’s implications *conditional on observed sequence of shocks*; are therefore *directly comparable* to “Data” moments.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model Mean(%)</th>
<th>Model SD(%)</th>
<th>Fitted Mean(%)</th>
<th>Fitted SD(%)</th>
<th>Data Mean(%)</th>
<th>Data SD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Equity Return</td>
<td>5.264</td>
<td>16.868</td>
<td>7.516</td>
<td>17.203</td>
<td>8.671</td>
<td>16.872</td>
</tr>
<tr>
<td>Log Risk-Free Rate</td>
<td>0.942</td>
<td>1.515</td>
<td>1.110</td>
<td>1.998</td>
<td>1.110</td>
<td>1.998</td>
</tr>
<tr>
<td>Log Price-Payout Ratio</td>
<td>3.507</td>
<td>0.334</td>
<td>3.486</td>
<td>0.456</td>
<td>3.392</td>
<td>0.493</td>
</tr>
<tr>
<td>Log Earnings Growth</td>
<td>2.065</td>
<td>11.198</td>
<td>2.450</td>
<td>15.041</td>
<td>2.450</td>
<td>15.041</td>
</tr>
<tr>
<td>Log Earnings Share Growth</td>
<td>0.000</td>
<td>10.897</td>
<td>0.405</td>
<td>13.337</td>
<td>0.405</td>
<td>13.337</td>
</tr>
<tr>
<td>Log Payout Share Growth</td>
<td>0.000</td>
<td>21.804</td>
<td>1.106</td>
<td>26.607</td>
<td>2.254</td>
<td>28.678</td>
</tr>
</tbody>
</table>

Notes: All statistics are computed for annual (continuously compounded) data. “Model” numbers are averages across 1000 simulations of the model of the same size as our data sample. “Fitted” numbers use the estimated latent states fitted to observed data in our historical sample. The sample spans the period 1952:Q1-2017:Q4.
Asset Pricing Moments

- **Fitted moments** of Δe_t, Δey_t, and $r_{f,t}$ match exactly b/c observables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model Mean(%)</th>
<th>Model SD(%)</th>
<th>Fitted Mean(%)</th>
<th>Fitted SD(%)</th>
<th>Data Mean(%)</th>
<th>Data SD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Equity Return</td>
<td>5.264</td>
<td>16.868</td>
<td>7.516</td>
<td>17.203</td>
<td>8.671</td>
<td>16.872</td>
</tr>
<tr>
<td>Log Risk-Free Rate</td>
<td>0.942</td>
<td>1.515</td>
<td>1.110</td>
<td>1.998</td>
<td>1.110</td>
<td>1.998</td>
</tr>
<tr>
<td>Log Price-Payout Ratio</td>
<td>3.507</td>
<td>0.334</td>
<td>3.486</td>
<td>0.456</td>
<td>3.392</td>
<td>0.493</td>
</tr>
<tr>
<td>Log Earnings Growth</td>
<td>2.065</td>
<td>11.198</td>
<td>2.450</td>
<td>15.041</td>
<td>2.450</td>
<td>15.041</td>
</tr>
<tr>
<td>Log Earnings Share Growth</td>
<td>0.000</td>
<td>10.897</td>
<td>0.405</td>
<td>13.337</td>
<td>0.405</td>
<td>13.337</td>
</tr>
<tr>
<td>Log Payout Share Growth</td>
<td>0.000</td>
<td>21.804</td>
<td>1.106</td>
<td>26.607</td>
<td>2.254</td>
<td>28.678</td>
</tr>
</tbody>
</table>

Notes: All statistics are computed for annual (continuously compounded) data. “Model” numbers are averages across 1000 simulations of the model of the same size as our data sample. “Fitted” numbers use the estimated latent states fitted to observed data in our historical sample. The sample spans the period 1952:Q1-2017:Q4.
Asset Pricing Moments

- Fitted moments of log R, log excess returns, and pc_t match data moments reasonably well.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model Mean(%)</th>
<th>Model SD(%)</th>
<th>Fitted Mean(%)</th>
<th>Fitted SD(%)</th>
<th>Data Mean(%)</th>
<th>Data SD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Equity Return</td>
<td>5.264</td>
<td>16.868</td>
<td>7.516</td>
<td>17.203</td>
<td>8.671</td>
<td>16.872</td>
</tr>
<tr>
<td>Log Risk-Free Rate</td>
<td>0.942</td>
<td>1.515</td>
<td>1.110</td>
<td>1.998</td>
<td>1.110</td>
<td>1.998</td>
</tr>
<tr>
<td>Log Price-Payout Ratio</td>
<td>3.507</td>
<td>0.334</td>
<td>3.486</td>
<td>0.456</td>
<td>3.392</td>
<td>0.493</td>
</tr>
<tr>
<td>Log Earnings Growth</td>
<td>2.065</td>
<td>11.198</td>
<td>2.450</td>
<td>15.041</td>
<td>2.450</td>
<td>15.041</td>
</tr>
<tr>
<td>Log Earnings Share Growth</td>
<td>0.000</td>
<td>10.897</td>
<td>0.405</td>
<td>13.337</td>
<td>0.405</td>
<td>13.337</td>
</tr>
<tr>
<td>Log Payout Share Growth</td>
<td>0.000</td>
<td>21.804</td>
<td>1.106</td>
<td>26.607</td>
<td>2.254</td>
<td>28.678</td>
</tr>
</tbody>
</table>

Notes: All statistics are computed for annual (continuously compounded) data. “Model” numbers are averages across 1000 simulations of the model of the same size as our data sample. “Fitted” numbers use the estimated latent states fitted to observed data in our historical sample. The sample spans the period 1952:Q1-2017:Q4.
Asset Pricing Moments

- Fitted mean of excess return understates data mean because model understates mean PO growth over the sample (not an estimation target).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model Mean(%)</th>
<th>Model SD(%)</th>
<th>Fitted Mean(%)</th>
<th>Fitted SD(%)</th>
<th>Data Mean(%)</th>
<th>Data SD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Equity Return</td>
<td>5.264</td>
<td>16.868</td>
<td>7.516</td>
<td>17.203</td>
<td>8.671</td>
<td>16.872</td>
</tr>
<tr>
<td>Log Risk-Free Rate</td>
<td>0.942</td>
<td>1.515</td>
<td>1.110</td>
<td>1.998</td>
<td>1.110</td>
<td>1.998</td>
</tr>
<tr>
<td>Log Price-Payout Ratio</td>
<td>3.507</td>
<td>0.334</td>
<td>3.486</td>
<td>0.456</td>
<td>3.392</td>
<td>0.493</td>
</tr>
<tr>
<td>Log Earnings Growth</td>
<td>2.065</td>
<td>11.198</td>
<td>2.450</td>
<td>15.041</td>
<td>2.450</td>
<td>15.041</td>
</tr>
<tr>
<td>Log Earnings Share Growth</td>
<td>0.000</td>
<td>10.897</td>
<td>0.405</td>
<td>13.337</td>
<td>0.405</td>
<td>13.337</td>
</tr>
<tr>
<td>Log Payout Share Growth</td>
<td>0.000</td>
<td>21.804</td>
<td>1.106</td>
<td>26.607</td>
<td>2.254</td>
<td>28.678</td>
</tr>
</tbody>
</table>

Notes: All statistics are computed for annual (continuously compounded) data. “Model” numbers are averages across 1000 simulations of the model of the same size as our data sample. “Fitted” numbers use the estimated latent states fitted to observed data in our historical sample. The sample spans the period 1952:Q1-2017:Q4.
Asset Pricing Moments

- Fitted mean log ER^e (6.4%) > model mean log ER^e (4.3%) by 2.1 perc. points, attributable to good luck, string of favorable shocks redistributed rents to shareholders.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model Mean(%)</th>
<th>Model SD(%)</th>
<th>Fitted Mean(%)</th>
<th>Fitted SD(%)</th>
<th>Data Mean(%)</th>
<th>Data SD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Equity Return</td>
<td>5.264</td>
<td>16.868</td>
<td>7.516</td>
<td>17.203</td>
<td>8.671</td>
<td>16.872</td>
</tr>
<tr>
<td>Log Risk-Free Rate</td>
<td>0.942</td>
<td>1.515</td>
<td>1.110</td>
<td>1.998</td>
<td>1.110</td>
<td>1.998</td>
</tr>
<tr>
<td>Log Price-Payout Ratio</td>
<td>3.507</td>
<td>0.334</td>
<td>3.486</td>
<td>0.456</td>
<td>3.392</td>
<td>0.493</td>
</tr>
<tr>
<td>Log Earnings Growth</td>
<td>2.065</td>
<td>11.198</td>
<td>2.450</td>
<td>15.041</td>
<td>2.450</td>
<td>15.041</td>
</tr>
<tr>
<td>Log Earnings Share Growth</td>
<td>0.000</td>
<td>10.897</td>
<td>0.405</td>
<td>13.337</td>
<td>0.405</td>
<td>13.337</td>
</tr>
<tr>
<td>Log Payout Share Growth</td>
<td>0.000</td>
<td>21.804</td>
<td>1.106</td>
<td>26.607</td>
<td>2.254</td>
<td>28.678</td>
</tr>
</tbody>
</table>

Notes: All statistics are computed for annual (continuously compounded) data. “Model” numbers are averages across 1000 simulations of the model of the same size as our data sample. “Fitted” numbers use the estimated latent states fitted to observed data in our historical sample. The sample spans the period 1952:Q1-2017:Q4.
Asset Pricing Moments

- *Fitted means* for Δe_t and Δc_t larger than *model means*.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model Mean(%)</th>
<th>Model SD(%)</th>
<th>Fitted Mean(%)</th>
<th>Fitted SD(%)</th>
<th>Data Mean(%)</th>
<th>Data SD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Equity Return</td>
<td>5.264</td>
<td>16.868</td>
<td>7.516</td>
<td>17.203</td>
<td>8.671</td>
<td>16.872</td>
</tr>
<tr>
<td>Log Risk-Free Rate</td>
<td>0.942</td>
<td>1.515</td>
<td>1.110</td>
<td>1.998</td>
<td>1.110</td>
<td>1.998</td>
</tr>
<tr>
<td>Log Price-Payout Ratio</td>
<td>3.507</td>
<td>0.334</td>
<td>3.486</td>
<td>0.456</td>
<td>3.392</td>
<td>0.493</td>
</tr>
<tr>
<td>Log Earnings Growth</td>
<td>2.065</td>
<td>11.198</td>
<td>2.450</td>
<td>15.041</td>
<td>2.450</td>
<td>15.041</td>
</tr>
<tr>
<td>Log Earnings Share Growth</td>
<td>0.000</td>
<td>10.897</td>
<td>0.405</td>
<td>13.337</td>
<td>0.405</td>
<td>13.337</td>
</tr>
<tr>
<td>Log Payout Share Growth</td>
<td>0.000</td>
<td>21.804</td>
<td>1.106</td>
<td>26.607</td>
<td>2.254</td>
<td>28.678</td>
</tr>
</tbody>
</table>

Notes: All statistics are computed for annual (continuously compounded) data. “Model” numbers are averages across 1000 simulations of the model of the same size as our data sample. “Fitted” numbers use the estimated latent states fitted to observed data in our historical sample. The sample spans the period 1952:Q1-2017:Q4.
Asset Pricing Moments

- Estimates imply roughly 2.1 percentage points of the post-war mean log return on stocks in excess of a T-bill is attributable to this string of favorable factors share shocks, rather than to genuine compensation for bearing risk.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model Mean(%)</th>
<th>Model SD(%)</th>
<th>Fitted Mean(%)</th>
<th>Fitted SD(%)</th>
<th>Data Mean(%)</th>
<th>Data SD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Equity Return</td>
<td>5.264</td>
<td>16.868</td>
<td>7.516</td>
<td>17.203</td>
<td>8.671</td>
<td>16.872</td>
</tr>
<tr>
<td>Log Risk-Free Rate</td>
<td>0.942</td>
<td>1.515</td>
<td>1.110</td>
<td>1.998</td>
<td>1.110</td>
<td>1.998</td>
</tr>
<tr>
<td>Log Price-Payout Ratio</td>
<td>3.507</td>
<td>0.334</td>
<td>3.486</td>
<td>0.456</td>
<td>3.392</td>
<td>0.493</td>
</tr>
<tr>
<td>Log Earnings Growth</td>
<td>2.065</td>
<td>11.198</td>
<td>2.450</td>
<td>15.041</td>
<td>2.450</td>
<td>15.041</td>
</tr>
<tr>
<td>Log Earnings Share Growth</td>
<td>0.000</td>
<td>10.897</td>
<td>0.405</td>
<td>13.337</td>
<td>0.405</td>
<td>13.337</td>
</tr>
<tr>
<td>Log Payout Share Growth</td>
<td>0.000</td>
<td>21.804</td>
<td>1.106</td>
<td>26.607</td>
<td>2.254</td>
<td>28.678</td>
</tr>
</tbody>
</table>

Notes: All statistics are computed for annual (continuously compounded) data. “Model” numbers are averages across 1000 simulations of the model of the same size as our data sample. “Fitted” numbers use the estimated latent states fitted to observed data in our historical sample. The sample spans the period 1952:Q1-2017:Q4.
Earnings Share Over Time

- Look at key data series we match exactly, starting with e_{yt}.

Notes: The figure exhibits the observed log earnings share series for the nonfinancial corporate sector. The sample spans the period 1952:Q1-2017:Q4.
Earnings Share Over Time

- Increases in e_y_t equivalent to declines in labor share.

Notes: The figure exhibits the observed log earnings share series for the nonfinancial corporate sector. The sample spans the period 1952:Q1-2017:Q4.
Earnings Share Over Time

- High in 1950s, 1960s, low in 1970s, 1980s, **upward trajectory** since 1990.

Notes: The figure exhibits the observed log earnings share series for the nonfinancial corporate sector. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Earnings Share Over Time

Notes: The figure exhibits the observed earnings share series along with the model-implied variation in the series attributable to the latent factor share components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Earnings Share Over Time

- $s_{HF,t}$ captures transitory variation in e_{yt}.

Notes: The figure exhibits the observed earnings share series along with the model-implied variation in the series attributable to the latent factor share components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Earnings Share Over Time

- $s_{LF,t}$ captures *longer term trend* in e_y_t.

Notes: The figure exhibits the observed earnings share series along with the model-implied variation in the series attributable to the latent factor share components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Risk-Free Rate Over Time

- Real rates **low** in 1950s & late 1970s, **high** during Volcker disinflation and after, **low** post-financial crisis.

Notes: The real risk-free rate is computed as the three-month T-bill rate minus the fitted value from a regression of GDP deflator inflation on lags of inflation. The sample spans the period 1952:Q1-2017:Q4.
Risk-Free Rate Over Time

- Although rates are low today, they are not unusually low by historical standards.

Notes: The real risk-free rate is computed as the three-month T-bill rate minus the fitted value from a regression of GDP deflator inflation on lags of inflation. The sample spans the period 1952:Q1-2017:Q4.
Sources of Risk-Free Rate Variation

Notes: The real risk-free rate is computed as the three-month T-bill rate minus the fitted value from a regression of GDP deflator inflation on lags of inflation and interest rates. The figure exhibits the observed risk-free rate series along with the model-implied variation in the series attributable to the latent risk-free rate components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Risk-Free Rate Variation

- Component $\delta_{HF,t}$ picks up transitory variation in $r_{f,t}$.

Notes: The real risk-free rate is computed as the three-month T-bill rate minus the fitted value from a regression of GDP deflator inflation on lags of inflation and interest rates. The figure exhibits the observed risk-free rate series along with the model-implied variation in the series attributable to the latent risk-free rate components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Risk-Free Rate Variation

- **Low-high-low** pattern of $r_{f,t}$ well captured by $\delta_{LF,t}$

Notes: The real risk-free rate is computed as the three-month T-bill rate minus the fitted value from a regression of GDP deflator inflation on lags of inflation and interest rates. The figure exhibits the observed risk-free rate series along with the model-implied variation in the series attributable to the latent risk-free rate components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Risk-Free Rate Variation

- LF component shows downward trend since about 1989.

Notes: The real risk-free rate is computed as the three-month T-bill rate minus the fitted value from a regression of GDP deflator inflation on lags of inflation and interest rates. The figure exhibits the observed risk-free rate series along with the model-implied variation in the series attributable to the latent risk-free rate components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Price-Output Ratio Over Time

- Equity relative to output has **short-term “wiggles”**, longer-term **trends**.

Notes: The figure exhibits the observed log market equity-to-output series for the nonfinancial corporate sector. The sample spans the period 1952:Q1-2017:Q4.
Over the sample observe an *upward* trend.

Notes: The figure exhibits the observed log market equity-to-output series for the nonfinancial corporate sector. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

Notes: The figure exhibits the observed log market equity-to-output series along with the model-implied variation in the series attributable to the latent factors share components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

- Upward trend well captured by LF FS factor $s_{LF,t}$.

Notes: The figure exhibits the observed log market equity-to-output series along with the model-implied variation in the series attributable to the latent factors share components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

- **HF FS factor** $s_{HF,t}$ captures “wiggles”.

Notes: The figure exhibits the observed log market equity-to-output series along with the model-implied variation in the series attributable to the latent factors share components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

- Fix the LF component, model is unable to capture *any of upward trend* since 1989.

Notes: The figure exhibits the observed log market equity-to-output series along with the model-implied variation in the series attributable to the latent factors share components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

- Zero-in on period post-1989 => **large role for factors share shifts** in driving upward value of ME relative to output.

Notes: The figure exhibits the observed log market equity-to-output series along with the model-implied variation in the series attributable to the latent factors share components. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

- Role of risk-free rate?

\[\text{Log ME/Y} \]

- Risk-free rate (LF) Only

- Risk-free rate (HF) Only

- Risk-free rate (LF) Fixed at Mean

- Risk-free rate (LF) Fixed Since 1989

Notes: The figure exhibits the observed market equity-to-output series along with the model-implied variation in the series attributable to the risk-free rate component. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

- Shutting down either LF or HF component does little to model’s ability to match trend movements in p_u_t.

Notes: The figure exhibits the observed market equity-to-output series along with the model-implied variation in the series attributable to the risk-free rate component. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

- Modest role since 1989.

Notes: The figure exhibits the observed market equity-to-output series along with the model-implied variation in the series attributable to the risk-free rate component. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

- Risk premium (x_t) variation explains almost all of transitory booms & busts.

Notes: The figure exhibits the observed market equity-to-output series along with the model-implied variation in the series attributable to the risk premium component. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

- Does not explain trend component.

Notes: The figure exhibits the observed market equity-to-output series along with the model-implied variation in the series attributable to the risk premium component. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

- Small portion of increase in e_y_t, esp since 1989, explained by decline in risk premia.

Notes: The figure exhibits the observed market equity-to-output series along with the model-implied variation in the series attributable to the risk premium component. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Sources of Variation in Price-Output Ratio

- Tax & interest component explains negligible fraction of variation in p_{yt}.

Notes: The figure exhibits the observed market equity-to-output series along with the model-implied variation in the series attributable to the tax/interest component. The shaded areas surrounding each estimated component are 90% credible sets that take into account both parameter and latent state uncertainty. The sample spans the period 1952:Q1-2017:Q4.
Growth Decompositions

- Now **quantify importance** of different drives of equity values over time.
- Decompose total growth in equity values into *distinct component sources*.
- Parts attributable to a single source obtained by **fixing all other components** at their values at beginning of sample.
- Components sum to **100% of observed variation**: model + estimated latent components perfectly match time-series on py_t and Δy_t, over sample and **at each point in time**.
Market’s rise: 54% since 1989 and 36% over full sample attributable to $S_{LF,t} + S_{HF,t}$.

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Panel: Market Equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1381.05%</td>
</tr>
<tr>
<td>Factor share (LF)</td>
<td>37.60%</td>
</tr>
<tr>
<td>Factor share (HF)</td>
<td>-1.89%</td>
</tr>
<tr>
<td>Tax + Interest Share</td>
<td>0.49%</td>
</tr>
<tr>
<td>Risk premium</td>
<td>11.02%</td>
</tr>
<tr>
<td>Risk-free rate (LF)</td>
<td>2.47%</td>
</tr>
<tr>
<td>Risk-free rate (HF)</td>
<td>0.09%</td>
</tr>
<tr>
<td>Real Output Growth</td>
<td>50.22%</td>
</tr>
</tbody>
</table>

Notes: The table presents the growth decompositions for the real value of market equity (top panel) or the market equity-output ratio (bottom panel). The persistence parameter of the risk price is set to its baseline value of 0.85. The sample spans the period 1952:Q1-2017:Q4.
Growth Decompositions

- **Other components since 1989**: much smaller roles, e.g., $r_{f,t}$, risk premium.

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Panel: Market Equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1381.05%</td>
</tr>
<tr>
<td>Factor share (LF)</td>
<td>37.60%</td>
</tr>
<tr>
<td>Factor share (HF)</td>
<td>-1.89%</td>
</tr>
<tr>
<td>Tax + Interest Share</td>
<td>0.49%</td>
</tr>
<tr>
<td>Risk premium</td>
<td>11.02%</td>
</tr>
<tr>
<td>Risk-free rate (LF)</td>
<td>2.47%</td>
</tr>
<tr>
<td>Risk-free rate (HF)</td>
<td>0.09%</td>
</tr>
<tr>
<td>Real Output Growth</td>
<td>50.22%</td>
</tr>
</tbody>
</table>

Notes: The table presents the growth decompositions for the real value of market equity (top panel) or the market equity-output ratio (bottom panel). The persistence parameter of the risk price is set to its baseline value of 0.85. The sample spans the period 1952:Q1-2017:Q4.

Greenwald, Lettau, and Ludvigson

How the Wealth Was Won
Growth Decompositions

- **Economic Growth** contributes **just 23%** since 1989; **50%** over full sample.

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Panel: Market Equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1381.05%</td>
</tr>
<tr>
<td>Factor share (LF)</td>
<td>37.60%</td>
</tr>
<tr>
<td>Factor share (HF)</td>
<td>-1.89%</td>
</tr>
<tr>
<td>Tax + Interest Share</td>
<td>0.49%</td>
</tr>
<tr>
<td>Risk premium</td>
<td>11.02%</td>
</tr>
<tr>
<td>Risk-free rate (LF)</td>
<td>2.47%</td>
</tr>
<tr>
<td>Risk-free rate (HF)</td>
<td>0.09%</td>
</tr>
<tr>
<td>Real Output Growth</td>
<td>50.22%</td>
</tr>
</tbody>
</table>

Notes: The table presents the growth decompositions for the real value of market equity (top panel) or the market equity-output ratio (bottom panel). The persistence parameter of the risk price is set to its baseline value of 0.85. The sample spans the period 1952:Q1-2017:Q4.
Growth Decompositions

- **1952-1988**: Δy_t explained 92% of market’s rise. But...

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Panel: Market Equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1381.05%</td>
</tr>
<tr>
<td>Factor share (LF)</td>
<td>37.60%</td>
</tr>
<tr>
<td>Factor share (HF)</td>
<td>-1.89%</td>
</tr>
<tr>
<td>Tax + Interest Share</td>
<td>0.49%</td>
</tr>
<tr>
<td>Risk premium</td>
<td>11.02%</td>
</tr>
<tr>
<td>Risk-free rate (LF)</td>
<td>2.47%</td>
</tr>
<tr>
<td>Risk-free rate (HF)</td>
<td>0.09%</td>
</tr>
<tr>
<td>Real Output Growth</td>
<td>50.22%</td>
</tr>
</tbody>
</table>

Notes: The table presents the growth decompositions for the real value of market equity (top panel) or the market equity-output ratio (bottom panel). The persistence parameter of the risk price is set to its baseline value of 0.85. The sample spans the period 1952:Q1-2017:Q4.
Growth Decompositions

- That **37 year period** created *less than half* wealth created in **29 years** since 1989.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1381.05%</td>
<td>190.38%</td>
<td>394.03%</td>
</tr>
<tr>
<td>Factor share (LF)</td>
<td>37.60%</td>
<td>16.57%</td>
<td>52.17%</td>
</tr>
<tr>
<td>Factor share (HF)</td>
<td>-1.89%</td>
<td>-5.23%</td>
<td>1.92%</td>
</tr>
<tr>
<td>Tax + Interest Share</td>
<td>0.49%</td>
<td>0.55%</td>
<td>0.54%</td>
</tr>
<tr>
<td>Risk premium</td>
<td>11.02%</td>
<td>4.75%</td>
<td>10.96%</td>
</tr>
<tr>
<td>Risk-free rate (LF)</td>
<td>2.47%</td>
<td>-8.91%</td>
<td>10.60%</td>
</tr>
<tr>
<td>Risk-free rate (HF)</td>
<td>0.09%</td>
<td>0.02%</td>
<td>0.12%</td>
</tr>
<tr>
<td>Real Output Growth</td>
<td>50.22%</td>
<td>92.25%</td>
<td>23.69%</td>
</tr>
</tbody>
</table>

Notes: The table presents the growth decompositions for the real value of market equity (top panel) or the market equity-output ratio (bottom panel). The persistence parameter of the risk price is set to its baseline value of 0.85. The sample spans the period 1952:Q1-2017:Q4.
Growth Decompositions: Alternative ϕ_x

- $\phi_x = 0.9$: Declining x_t explains 17% (rather than 11%) of market’s rise. $s_{LF,t} + s_{HF,t}$ explain 48% (vs. 54% baseline) since 1989 and 30% (vs. 36% baseline) over full sample.

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Panel A: Market Equity, $\phi_x = 0.80$</th>
<th>Panel B: Market Equity, $\phi_x = 0.90$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1381.05%</td>
<td>190.38%</td>
</tr>
<tr>
<td>Factor share (LF)</td>
<td>41.48%</td>
<td>21.16%</td>
</tr>
<tr>
<td>Factor share (HF)</td>
<td>-2.18%</td>
<td>-5.58%</td>
</tr>
<tr>
<td>Tax + Interest Share</td>
<td>0.48%</td>
<td>0.54%</td>
</tr>
<tr>
<td>Risk premium</td>
<td>7.54%</td>
<td>0.16%</td>
</tr>
<tr>
<td>Risk-free rate (LF)</td>
<td>2.38%</td>
<td>-8.55%</td>
</tr>
<tr>
<td>Risk-free rate (HF)</td>
<td>0.09%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Real PC Output Growth</td>
<td>50.22%</td>
<td>92.25%</td>
</tr>
</tbody>
</table>

Notes: The table presents the growth decompositions for market equity with persistence parameter of the risk price set to 0.80 (top panel) and set to 0.90 (bottom panel). The sample spans the period 1952:Q1-2017:Q4.
Growth Decompositions: Alternative ϕ_x

- $\phi_x = 0.8$: Declining x_t explains 8% (rather than 11%) of market’s rise. $s_{LF,t} + s_{HF,t}$ explain 57% (vs. 54% baseline) since 1989 and 39% (vs. 36% baseline) over full sample.

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Panel A: Market Equity, $\phi_x = 0.80$</th>
<th>Panel B: Market Equity, $\phi_x = 0.90$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1381.05% 190.38% 394.03%</td>
<td>1381.05% 190.38% 394.03%</td>
</tr>
<tr>
<td>Factor share (LF)</td>
<td>41.48% 21.16% 55.61%</td>
<td>30.78% 10.14% 45.07%</td>
</tr>
<tr>
<td>Factor share (HF)</td>
<td>-2.18% -5.58% 1.65%</td>
<td>-1.35% -4.68% 2.45%</td>
</tr>
<tr>
<td>Tax + Interest Share</td>
<td>0.48% 0.54% 0.53%</td>
<td>0.49% 0.55% 0.54%</td>
</tr>
<tr>
<td>Risk premium</td>
<td>7.54% 0.16% 8.20%</td>
<td>17.18% 11.12% 16.99%</td>
</tr>
<tr>
<td>Risk-free rate (LF)</td>
<td>2.38% -8.55% 10.19%</td>
<td>2.58% -9.40% 11.12%</td>
</tr>
<tr>
<td>Risk-free rate (HF)</td>
<td>0.09% 0.02% 0.12%</td>
<td>0.09% 0.02% 0.13%</td>
</tr>
<tr>
<td>Real PC Output Growth</td>
<td>50.22% 92.25% 23.69%</td>
<td>50.22% 92.25% 23.69%</td>
</tr>
</tbody>
</table>

Notes: The table presents the growth decompositions for market equity with persistence parameter of the risk price set to 0.80 (top panel) and set to 0.90 (bottom panel). The sample spans the period 1952:Q1-2017:Q4.
Conclusion and Summary

- **Why has the market risen** over the post-war period? Of importance to financial economists and long-term investors alike.

- We estimate **flexible parametric model** allows influence from several latent components, while inferring values components must have taken to explain the data.

- **Finding**: high returns to holding equity due in large part to good luck, attributable to **string of shocks that reallocated rents** toward shareholders away from workers.

- Realizations **added 2.1 percentage points** to mean log excess return, according to estimates (overstating risk premium by $\approx 50\%$).

- Factors share shocks account for most of market’s rise since 1989; economic growth and other factors relatively little.

- **For 37 years** from 1952-1989, **economic growth was king** for the equity market.

- But that period was **comparatively lackluster for equity values**, generating less than half as much wealth as the 29 years since 1989.
Appendix
Growth Decompositions: Representative Agent

Panel: Representative Agent

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1381.05%</td>
<td>190.38%</td>
<td>394.03%</td>
</tr>
<tr>
<td>Factor share (LF)</td>
<td>37.60%</td>
<td>16.57%</td>
<td>52.17%</td>
</tr>
<tr>
<td>Factor share (HF)</td>
<td>-1.89%</td>
<td>-5.23%</td>
<td>1.92%</td>
</tr>
<tr>
<td>Tax + Interest Share</td>
<td>0.49%</td>
<td>0.55%</td>
<td>0.54%</td>
</tr>
<tr>
<td>Risk premium</td>
<td>11.02%</td>
<td>4.75%</td>
<td>10.96%</td>
</tr>
<tr>
<td>Risk-free rate (LF)</td>
<td>2.47%</td>
<td>-8.91%</td>
<td>10.60%</td>
</tr>
<tr>
<td>Risk-free rate (HF)</td>
<td>0.09%</td>
<td>0.02%</td>
<td>0.12%</td>
</tr>
<tr>
<td>Real Output Growth</td>
<td>50.22%</td>
<td>92.25%</td>
<td>23.69%</td>
</tr>
</tbody>
</table>

Panel B: Baseline Model

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1381.05%</td>
<td>190.38%</td>
<td>394.03%</td>
</tr>
<tr>
<td>Factor share (LF)</td>
<td>37.60%</td>
<td>16.57%</td>
<td>52.17%</td>
</tr>
<tr>
<td>Factor share (HF)</td>
<td>-1.89%</td>
<td>-5.23%</td>
<td>1.92%</td>
</tr>
<tr>
<td>Tax + Interest Share</td>
<td>0.49%</td>
<td>0.55%</td>
<td>0.54%</td>
</tr>
<tr>
<td>Risk premium</td>
<td>11.02%</td>
<td>4.75%</td>
<td>10.96%</td>
</tr>
<tr>
<td>Risk-free rate (LF)</td>
<td>2.47%</td>
<td>-8.91%</td>
<td>10.60%</td>
</tr>
<tr>
<td>Risk-free rate (HF)</td>
<td>0.09%</td>
<td>0.02%</td>
<td>0.12%</td>
</tr>
<tr>
<td>Real Output Growth</td>
<td>50.22%</td>
<td>92.25%</td>
<td>23.69%</td>
</tr>
</tbody>
</table>

Notes: The table presents the growth decompositions for the real value of market equity. The sample spans the period 1952:Q1-2017:Q4.
Parameter Estimates: Representative Agent

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter</th>
<th>Rep. Agent</th>
<th>Baseline Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Price Mean</td>
<td>\bar{x}</td>
<td>56.3120</td>
<td>4.4832</td>
</tr>
<tr>
<td>Risk Price Vol.</td>
<td>σ_x</td>
<td>47.8386</td>
<td>3.8086</td>
</tr>
<tr>
<td>Risk-Free Rate Mean</td>
<td>\bar{r}_f</td>
<td>0.0023</td>
<td>0.0023</td>
</tr>
<tr>
<td>Risk-Free (HF) Pers.</td>
<td>$\phi_{\delta, HF}$</td>
<td>0.1587</td>
<td>0.1587</td>
</tr>
<tr>
<td>Risk-Free (HF) Vol.</td>
<td>$\sigma_{\delta, HF}$</td>
<td>0.0019</td>
<td>0.0019</td>
</tr>
<tr>
<td>Risk-Free (LF) Pers.</td>
<td>$\phi_{\delta, LF}$</td>
<td>0.9321</td>
<td>0.9321</td>
</tr>
<tr>
<td>Risk-Free (LF) Vol.</td>
<td>$\sigma_{\delta, LF}$</td>
<td>0.0015</td>
<td>0.0680</td>
</tr>
<tr>
<td>Factor Share (HF) Pers.</td>
<td>$\phi_{s, HF}$</td>
<td>0.9250</td>
<td>0.9250</td>
</tr>
<tr>
<td>Factor Share (HF) Vol.</td>
<td>$\sigma_{s, HF}$</td>
<td>0.0680</td>
<td>0.0633</td>
</tr>
<tr>
<td>Factor Share (LF) Pers.</td>
<td>$\phi_{s, LF}$</td>
<td>0.9997</td>
<td>0.9997</td>
</tr>
<tr>
<td>Factor Share (LF) Vol.</td>
<td>$\sigma_{s, LF}$</td>
<td>0.0179</td>
<td>0.0179</td>
</tr>
<tr>
<td>Tax + Interest Share Pers.</td>
<td>ϕ_Z</td>
<td>0.9545</td>
<td>0.9545</td>
</tr>
<tr>
<td>Tax + Interest Vol.</td>
<td>σ_Z</td>
<td>0.0041</td>
<td>0.0041</td>
</tr>
<tr>
<td>Productivity Vol.</td>
<td>σ_a</td>
<td>0.0160</td>
<td>0.0160</td>
</tr>
</tbody>
</table>

Notes: The table reports parameter estimates from the posterior distribution. The sample spans the period 1952:Q1-2017:Q4.