Payments, Credit & Asset Prices

Monika Piazzesi Martin Schneider Stanford, NBER, CEPR Stanford, NBER, CEPR

National Bank of Belgium, December 2019

U.S. dollar payments; quarterly data at annual rates

Simple model of payments & asset pricing

- End users = households & institutional investors
 - ▶ pay for goods & assets with payment instruments = inside money
 - payment instruments = deposits, MMF shares, credit lines
- Banks handle payment instructions by end users
 - make interbank payments with reserves = outside money
 - liquidity management: hold reserves or rely on interbank credit?
 - capital structure: how much leverage?
- Two key features typically absent from monetary models
 - layered payment system: end users, banks
 - money demand from institutional investors
- \Rightarrow Questions
 - how does monetary policy affect asset & goods prices?
 - how do asset markets & payment system interact?

Implications

- Baseline: Lucas 1980
 - quantity equation connects outside money, output
 - asset prices reflect representative agent marginal utility
- This paper
 - quantity equation connects inside money, output + asset volume
 - intermediary asset pricing
 - banks value assets as collateral to inside back money
 - institutional investors value inside money to trade assets
- Asset prices, inside money supply & inflation jointly determined
 - \blacktriangleright asset market shocks \rightarrow nominal price level
 - money supply: value of bank assets $\downarrow,$ money multiplier $\downarrow,$ deflationary
 - money demand from asset markets $\downarrow \sim$ velocity \uparrow , inflationary
 - monetary policy ightarrow (real) asset prices
 - supply: asset purchases make bank assets more scarce, prices \uparrow
 - demand: asset purchases increase cost of liquidity, prices \downarrow

Related Literature

- asset pricing with constrained investors
 Lucas 90, Kiyotaki-Moore 97, Geanakoplos 00, He-Krishnamurthy 12,
 Buera-Nicolini 14, Lagos-Zhang 14, Bocola 14, Moreira-Savov 14
- monetary policy & financial frictions
 Bernanke-Gertler-Gilchrist 99, Curdia-Woodford 10, Gertler-Karadi 11,
 Gertler-Kiyotaki-Queralto 11, Christiano-Motto-Rostagno 12,
 Brunnermeier-Sannikov 14, Jakab-Kumhof 15, Diamond 17
- banks & liquidity shocks
 Diamond-Dybvig 83, Bhattacharya-Gale 87, Allen-Gale 94,
 Holmstrom-Tirole 98, Bianchi-Bigio 14, Drechsler-Savov-Schnabl 14
- multiple media of exchange
 Freeman 96, Williamson 12, 14, Rocheteau-Wright-Xiao 14,
 Andolfatto-Williamson 14, Chari-Phelan 14, Lucas-Nicolini 15, Nagel 15
- interest on reserves
 Sargent-Wallace 85, Hornstein 10, Kashyap-Stein 12, Woodford 12, Ireland 13, Cochrane 14, Ennis 14

Model: only goods transactions require inside money

Model

- Constant aggregate output Y
 - ▶ bank trees yield fruit $x^b \leq Y$, can be held by banks
- Households
 - infinite horizon, linear utility, discount rate δ
 - can invest in trees, deposits, short bonds, bank equity
 - cannot borrow or hold reserves (= numeraire)
- Payments
 - consumption s.t. deposit-in-advance constraint $PC \leq D$
 - equilibrium deposit rate i^D low enough so constraint binds
- Flexible prices
- Many competitive banks
 - owned by households, maximize shareholder value
 - costless adjustment of equity

Banking sector overview

- Bank technology with constant returns to scale
- Payment system characterized by
 - 1. collateral ratio $\kappa =$ risk-weighted assets / inside money
 - $\rightarrow\,$ price of safe assets held by banks: short (real) interest rate more collateral, assets less scarce, prices lower, interest rates higher
 - 2. liquidity ratio λ = reserves / inside money
 - ightarrow money multiplier 1/ λ , price level; lower λ , more broad money, inflation
 - both ratios lower end users' cost of liquidity
- Equilibrium balance sheet ratios lie on two curves
 - 1. liquidity management curve = banks' money demand schedule
 - hi $\kappa,$ hi interest rate, opp cost of reserves, lower λ
 - 2. capital structure curve: ratios connected via accounting identities
 - e.g. narrow banks: assets = reserves, $\kappa = \lambda$

Bank balance sheet and cash flow

Assets		Liabilities	
М F+ В Q ^b θ	Reserves Fed funds lending Govmt bonds Bank trees	Deposits Fed funds borrowing Equity	D F ⁻

• Bank cash flow

$$M(1 + i_R) - M' +F^+(1 + i) - F^{+\prime} +B(1 + i) - B' +(Q^b + Px^b)\theta - Q^b\theta'$$

$$-D(1+i_D) + D' -F^{-}(1+i) + F^{-\prime}$$

$$-c(\kappa)(D+F^{-})$$

Leverage cost

Assets		Liabilities	
M F ⁺ B	Reserves Fed funds lending Govmt bonds	Deposits Fed funds borrowing Equity	D F
$Q^{\nu}\theta$	Bank trees		

Bank cash flow

$$\begin{split} & M(1+i_R) - M' - D (1+i_D) + D' \\ & + (F^+ + B - F^-)(1+i) - (F^{+\prime} + B' - F^{-\prime}) \\ & + (Q^b + Px^b)\theta - Q^b\theta' - c (\kappa) (D + F^-) \end{split}$$

• Leverage cost c decreasing & convex in collateral ratio

$$\kappa = \frac{M + F^+ + B + \rho Q^b \theta}{D + F^-}$$

ightarrow assets valued as collateral, debt more costly as leverage \uparrow

Liquidity constraint

osits D funds borrowing F ⁻ ty
) (

- Liquidity shocks
 - ▶ bank enters period with reserves *M*, deposits *D*
 - $\tilde{\lambda}D$ = net funds sent to other banks (or received if $\tilde{\lambda} < 0$)
 - $\tilde{\lambda}$ iid across banks with $E\left[\tilde{\lambda}
 ight]=$ 0, $\tilde{\lambda}\leq \bar{\lambda}$
- Bank liquidity constraint

$$\tilde{\lambda} D \leq M + F^{-\prime}$$

- Liquidity management
 - liquidity ratio $\lambda := M/D$
 - ▶ ex post: borrow only if liquidity ratio too low: $\lambda < \tilde{\lambda}$
 - \blacktriangleright ex ante: reserves provide liquidity benefit if $\lambda<\bar{\lambda}$

Equilibrium

Government

- ▶ path of nominal liabilities M_g , B_g and reserve rate i_R
- Iump sum transfers adjust to satisfy budget constraint
- ▶ leverage costs depend on $(M_g + B_g)$ / tax base
- Market clearing: goods, reserves, overnight credit, deposits, trees
- Steady state
 - ▶ constant output Y, growth rate of M_g , B_g = inflation π
 - after unanticipated shock, new steady state reached after one period

Characterizing steady state equilibrium

- Bank optimization
 - choose positions to equate MC equity = MB assets = MC debt
 - only liquidity & collateral ratios determinate, same for all banks
 - \rightarrow summarize role of payment system by (λ, κ)
- Nominal price level: quantity equation with money multiplier $1/\lambda$

$$PY = D = \frac{M}{\lambda}$$

- Prices of assets held by banks
 - related to κ by bank first order conditions
- Determination of equilibrium λ , κ
 - from bank FOC & balance sheet identities

Valuation of collateral benefits

• Bank FOC for short bonds

$$\delta = i - \pi + mb(\kappa)$$
return on equity collateral benefit

- ▶ marginal benefit of more collateral is positive $mb(\kappa) = -c'(\kappa) > 0$
- diminishing as more collateral gets added $mb'(\kappa) < 0$
- lower real interest rate on bonds: banks choose lower collateral ratio, increase leverage to maintain ROE

 \rightarrow real interest rate $i - \pi$ and collateral ratio κ comove

- Intermediary asset pricing
 - standard Euler equation does not hold
 - banks value short bonds as collateral, households don't
 - endogenous market segmentation: all bonds held inside bank

Valuation of liquidity benefits

• Bank FOCs for short bonds, reserves

$$\delta = i - \pi + mb(\kappa)$$

$$\delta = i_R - \pi + mb(\kappa) + \operatorname{Prob}(\tilde{\lambda} > \lambda)mcl(\kappa)$$

- $i i_R$ = liquidity benefit = exp. marginal cost of overnight borrowing
- ▶ more collateral lowers marginal cost: $mcl'(\kappa) < 0$
- Since upper bound on liquidity shock, two regions in (λ, κ) plane
 - $\lambda < \bar{\lambda} \Rightarrow$ positive liquidity benefit
 - $\lambda \geq \bar{\lambda} \Rightarrow i i_R = 0$, reserves and bonds perfect substitutes for banks

Scarce vs abundant reserves

• Plot liquidity and collateral ratio

Valuation of liquidity benefits

• Bank FOCs for short bonds, reserves

$$\delta = i - \pi + mb(\kappa)$$

$$\delta = i_R - \pi + mb(\kappa) + \operatorname{Prob}(\tilde{\lambda} > \lambda) \operatorname{mcl}(\kappa)$$

liquidity benefit

- Liquidity management curve in (λ, κ) plane
 - "how many reserves are optimal given collateral κ "
 - ▶ slopes down: low collateral ratio $\kappa \Rightarrow$ high overnight borrowing costs \Rightarrow high λ (won't borrow as often)
 - flat when reserves are abundant: banks are indifferent between reserves and bonds

Liquidity management curve

• How many reserves are optimal given collateral ratio κ ?

Capital structure curve

- Balance sheet relates liquidity ratio λ and collateral ratio κ
 - given other collateral available to banks, what λ needed to achieve κ ?
 - curve slopes up: to get more collateral, add reserves

Equilibrium

- Intersection of curves delivers steady state (λ, κ)
 - reserves can be scarce or abundant

Tighter money: central bank asset sale

- Sell bonds to banks in exchange for reserves
- CS shifts left: lower λ needed to maintain any collateral ratio κ

bank ratios

- higher κ , real rate
- inflation
 - lower reserves
 - higher money multiplier
 - \rightarrow overall deflationary
- financial structure
 - sale large enough to move to scarcity? if not, counteracting forces cancel
 - less netting helps

Tighter money: higher interest on reserves

- LM shifts up: banks hold more collateral at any λ
- here: same short rate as after bond sale, but higher λ

- bank ratios
 - higher κ , real rate
- inflation
 - Iower money multiplier
 - reserves unchanged
 - \rightarrow deflationary
- financial structure
 - more nominal collateral, steeper CS curve, less impact

Asset trades also require inside money

Active traders

- Households averse to Knightian uncertainty (ambiguity)
 - behave as if tree dividends drop by s percent next period
 - Ist order effects of uncertainty in steady state (llut et al. 2016)
- Active traders = competitive firms owned by household
 - issue equity, invest in deposits & subset of trees
 - each firm has favorite tree, identity changes every period
 - ▶ households perceive dividend drop $\hat{s} < s$ iff firm holds favorite tree
 - all trades must be paid with deposits or intraday credit
- Clearing and settlement with intraday netting
 - liquidity constraint

$$\hat{Q} heta_t = I_t + \hat{D}_{t-1}$$

limit on intraday credit

$$I_t \leq \hat{\gamma} \hat{D}_{t-1}$$

▶ limit binds if $i_D - \pi < \delta$, works like deposit-in-advance constraint

Equilibrium with active traders

• Value of tree traded by active traders

$$\hat{Q} = u\left(\hat{s}
ight)rac{P\hat{x}}{\delta+rac{\delta-(i_D-\pi)}{1+\hat{\gamma}}}; \qquad u\left(\hat{s}
ight) < 1$$

- uncertainty premium $u(\hat{s}) < 1$ times present value of dividends
- discount at higher rate if
 - ★ higher opportunity cost of deposits $\delta (i_D \pi)$
- Share of inside money absorbed by active traders

$$\alpha(\kappa,\lambda) = \frac{Q\hat{1} + \hat{\gamma}}{PY + \hat{Q}/(1 + \hat{\gamma})}$$

- higher if trees more valuable; decreasing in uncertainty \hat{s}
- decreasing in opportunity cost of deposits \rightarrow increasing in κ , λ

Asset prices & inflation with active traders

- Price level depends on institutional investors' money demand
 - Iower if larger share of money absorbed by active traders

$$PY = \frac{M}{\lambda} \left(1 - \alpha \left(\kappa, \lambda \right) \right)$$

• $1 - \alpha$ = velocity of inside money; moves with uncertainty \hat{s} \rightarrow Lower inflation in asset price booms!

- Flatter capital structure curve
 - before: upward slope since banks want higher κ , need more λ
 - now also more deposit demand from active traders
 - even more λ needed \rightarrow money multiplier drops more
 - $\rightarrow\,$ increase in reserve rate more deflationary

Extension: "carry traders" borrow from banks, hold trees

Bad shock to broker dealers

- Increase in leverage cost or uncertainty of trees
- CS shifts right: higher λ needed to maintain any collateral ratio κ

- \bullet dealer borrowing \downarrow
- less bank collateral
- $\bullet\,$ need more λ
- $\bullet \ \ \text{money multiplier} \ \downarrow \\$
- \rightarrow deflationary!

Summary of implications

- Baseline: Lucas 1980
 - quantity equation connects outside money, output
 - asset prices reflect representative agent marginal utility
- This paper
 - quantity equation connects inside money, output + asset volume
 - intermediary asset pricing
 - banks value assets as collateral to inside back money
 - institutional investors value inside money to trade assets
- Asset prices, inside money supply & inflation jointly determined
 - asset market shocks \rightarrow nominal price level
 - money supply: value of bank assets $\downarrow,$ money multiplier $\downarrow,$ deflationary
 - money demand from asset markets $\downarrow \sim$ velocity $\uparrow,$ inflationary
 - monetary policy \rightarrow (real) asset prices
 - supply: asset purchases make bank assets more scarce, prices \uparrow
 - demand: asset purchases increase cost of liquidity, prices \downarrow