The Reanchoring Channel of QE The ECB's Asset Purchase Programme and Long-Term Inflation Expectations

Philippe Andrade Johannes Breckenfelder Fiorella De Fiore Peter Karadi Oreste Tristani

European Central Bank*

March 2017

^{*}The views expressed are those of the authors, and do not necessarily reflect the official position of the ECB or the Eurosystem.

- ► Large-scale asset purchases (LSAP)
 - ▶ Key policy tool of all major central banks
 - ► Substitute for interest rates stuck at their effective lower bound (ZLB)

- ► Large-scale asset purchases (LSAP)
 - ▶ Key policy tool of all major central banks
 - ► Substitute for interest rates stuck at their effective lower bound (ZLB)
- ▶ In a frictionless world, LSAP no impact (Curdia and Woodford, 2011)

- ► Large-scale asset purchases (LSAP)
 - Key policy tool of all major central banks
 - ► Substitute for interest rates stuck at their effective lower bound (ZLB)
- ▶ In a frictionless world, LSAP no impact (Curdia and Woodford, 2011)
- ▶ In practice, significant announcement effects (Krishnamurthy and Vissing-Jorgensen, 2011; Altavilla, Carboni and Motto, 2015)

- ► Large-scale asset purchases (LSAP)
 - Key policy tool of all major central banks
 - Substitute for interest rates stuck at their effective lower bound (ZLB)
- ▶ In a frictionless world, LSAP no impact (Curdia and Woodford, 2011)
- ▶ In practice, significant announcement effects (Krishnamurthy and Vissing-Jorgensen, 2011; Altavilla, Carboni and Motto, 2015)
- ► Our focus: Impact on long-term inflation expectations at the ZLB (EA)
 - ► Adverse shocks at the ZLB led to some deanchoring in 2013-2014 in EA
 - ► Initial LSAP announcement in 2015:1 contributed to reanchoring

This paper

- ► Event-study evidence on ECB's LSAP (APP) announcements on inflation expectations
 - Unconventional easing leads to subsequent rise in 5-year-ahead inflation expectations

This paper

- ► Event-study evidence on ECB's LSAP (APP) announcements on inflation expectations
 - Unconventional easing leads to subsequent rise in 5-year-ahead inflation expectations
- ▶ DSGE model with
 - ▶ Balance-sheet constrained financial intermediaries
 - ▶ Binding effective lower bound
 - ▶ Imperfect information about CB's target

This paper

- ► Event-study evidence on ECB's LSAP (APP) announcements on inflation expectations
 - Unconventional easing leads to subsequent rise in 5-year-ahead inflation expectations
- ▶ DSGE model with
 - ▶ Balance-sheet constrained financial intermediaries
 - ▶ Binding effective lower bound
 - ▶ Imperfect information about CB's target
- ▶ Calibrated to the euro area
 - Quantifies the importance of the reanchoring channel of APP
 - ▶ Shock w/o policy action: downturn and deanchoring
 - ▶ APP stimulates the economy and leads to reanchoring

Findings

- ► Reanchoring channel is potent
 - ► Explains 1/3 of the inflation impact of APP
 - ► Amplified impact on short-term inflation
 - ▶ Mechanism (ZLB and financial accelerator):
 - ► Higher target implies easier policy
 - ► Leads to higher expected inflation
 - Implies lower real rates now (ZLB, even though earlier liftoff)
 - Raises asset prices, eases financial constraints in a positive feedback loop

Findings

- ▶ Reanchoring channel is potent
 - ► Explains 1/3 of the inflation impact of APP
 - ► Amplified impact on short-term inflation
 - ▶ Mechanism (ZLB and financial accelerator):
 - ► Higher target implies easier policy
 - ► Leads to higher expected inflation
 - Implies lower real rates now (ZLB, even though earlier liftoff)
 - Raises asset prices, eases financial constraints in a positive feedback loop
- Implications
 - ▶ Target uncertainty renders policy passivity costly
 - ▶ Makes credible policy signals powerful

Reanchoring Channel: Related Literature

- ► Event-study evidence on QE
 - Broad asset-price impact (Rogers, Scotti and Wright, 2014; Swanson, 2015)
 - Scarce evidence on impact on long-term inflation expectations
 - Market expectations (Krishnamurthy and Vissing-Jorgensen, 2011; Altavilla, Carboni and Motto, 2015): premium component

Reanchoring Channel: Related Literature, cont.

- ► Information in introducing QE
 - ▶ Related to signalling at ZLB (Bhattarai, Eggertsson and Gafarov, 2015)
 - ▶ There: QE helps commitment of discretionary CB
 - Here: QE reveals information about policy rule (Gürkaynak, Sack and Swanson, 2005; Gürkaynak, Levin and Swanson, 2010)
 - Complements 'asset-revaluation' channels (Gertler and Karadi, 2013; Del Negro, Eggertsson, Ferrero and Kiyotaki, 2010; Chen, Cúrdia and Ferrero, 2012)

Reanchoring Channel: Related Literature, cont.

- ► Information in introducing QE
 - ▶ Related to signalling at ZLB (Bhattarai, Eggertsson and Gafarov, 2015)
 - ▶ There: QE helps commitment of discretionary CB
 - Here: QE reveals information about policy rule (Gürkaynak, Sack and Swanson, 2005; Gürkaynak, Levin and Swanson, 2010)
 - Complements 'asset-revaluation' channels (Gertler and Karadi, 2013; Del Negro, Eggertsson, Ferrero and Kiyotaki, 2010; Chen, Cúrdia and Ferrero, 2012)
- ► Amplification at the ZLB
 - ▶ QE more powerful at ZLB: monetary policy does not offset its impact (Gertler and Karadi, 2011; Del Negro, Eggertsson, Ferrero and Kiyotaki, 2010)
 - ► Impact on long-term expectations is also amplified (see also Eggertsson and Pugsley, 2006)

EA event study

- ► ECB press conferences
 - ▶ January 2013 June 2016
 - Special ECB: IR announcements separate from press conferences
 - ▶ Press conferences (36)
 - ▶ Robustness: exclude 3 with key FG announcements (June 5, 2014; October 22, 2015; March 10, 2016)

EA event study

- ► ECB press conferences
 - ▶ January 2013 June 2016
 - ▶ Special ECB: IR announcements separate from press conferences
 - ▶ Press conferences (36)
 - ▶ Robustness: exclude 3 with key FG announcements (June 5, 2014; October 22, 2015; March 10, 2016)
- ▶ Measurement of the monetary policy indicator
 - ▶ 5-year German bund yield
 - Market price: average of the best bid and ask quotes, from the last 5
 - ► Surprise: price change between 10 minutes before, 80 minutes after the start of the press conference
 - ► Cumulated over each quarter

EA event study, cont

- ▶ Inflation expectations
 - ▶ 5-year ahead inflation expectations in the SPF
 - ▶ Robustness: 5-year inflation swap yields 5-year-ahead

EA event study, cont

- ▶ Inflation expectations
 - ▶ 5-year ahead inflation expectations in the SPF
 - ▶ Robustness: 5-year inflation swap yields 5-year-ahead
- ► Methodology: Quarterly regressions **EA**

$$\Delta y_t = \alpha + \beta \tilde{\Delta} x_{t-1} + \varepsilon_t,$$

Impact on 5-year inflation expectations

	(1)	(2)	(3)	(4)
	Post 2013	Pre 2013	APP	APP, No FG
	Change in 5-year-ahead inflation expectations			
5-year German yield	-0.599***	0.0932	-0.583**	-0.508***
surprise	(-4.392)	(1.551)	(-3.151)	(-3.960)
Sample	2013q1-2016q2	2001q1-2012q4	2014q2-2016q2	2014q2-2016q2
Observations	15	47	10	10
R-squared	0.523	0.051	0.457	0.539

Robust t-statistics in parentheses *** p<0.01, ** p<0.05, * p<0.1

- ► Easing yields to reanchoring
- ► Robustness: □LS

- ▶ Quantitative DSGE model
 - ► Representative family with Households
 - ► Consumption habits
 - Monopolistically competitive labor market; staggered wage setting
 - ► Portfolio adjustment costs HH assets
 - ► Intermediate good producers with 'working capital constraint' Intermediate
 - ► Capital producers with investment adjustment costs (Q)

 Capital
 - ► Monopolistically competitive retailers with staggered price setting Retailers

- ► Quantitative DSGE model
 - ► Representative family with Households
 - Consumption habits
 - Monopolistically competitive labor market; staggered wage setting
 - ► Portfolio adjustment costs HH assets
 - ► Intermediate good producers with 'working capital constraint' Intermediate
 - ► Capital producers with investment adjustment costs (Q)

 Capital
 - ► Monopolistically competitive retailers with staggered price setting Retailers
- Balance sheet constrained financial intermediaries

- ► Quantitative DSGE model
 - ► Representative family with Households
 - ► Consumption habits
 - Monopolistically competitive labor market; staggered wage setting
 - ► Portfolio adjustment costs HH assets
 - ► Intermediate good producers with 'working capital constraint' Intermediate
 - ► Capital producers with investment adjustment costs (Q)

 Capital
 - ► Monopolistically competitive retailers with staggered price setting Retailers
- ▶ Balance sheet constrained financial intermediaries
- ▶ Central bank with uncertain inflation target

- ► Representative family
 - f bankers, 1 f workers
 - ▶ Perfect consumption insurance

- ► Representative family
 - ▶ f bankers, 1 f workers
 - ▶ Perfect consumption insurance
- ▶ With iid. probability 1σ , a banker becomes a worker. (Limits bankers' ability to save themselves out of the financial constraints)

- ► Representative family
 - \blacktriangleright f bankers, 1-f workers
 - ▶ Perfect consumption insurance
- ▶ With iid. probability 1σ , a banker becomes a worker. (Limits bankers' ability to save themselves out of the financial constraints)
- ▶ Each period, $(1 \sigma)f$ workers randomly become bankers

- ► Representative family
 - f bankers, 1 f workers
 - ▶ Perfect consumption insurance
- ▶ With iid. probability 1σ , a banker becomes a worker. (Limits bankers' ability to save themselves out of the financial constraints)
- ▶ Each period, $(1 \sigma)f$ workers randomly become bankers
- ▶ New banker receives a start-up fund from the family

Asset Returns

▶ Return on capital (state-contingent debt)

$$R_{kt+1} = \frac{Z_{t+1} + Q_{t+1}}{Q_t}$$

Asset Returns

▶ Return on capital (state-contingent debt)

$$R_{kt+1} = \frac{Z_{t+1} + Q_{t+1}}{Q_t}$$

► Return on long term gov't bonds

$$R_{bt+1} = \frac{\Xi/P_t + q_{t+1}}{q_t}$$

Financial Intermediaries

▶ Intermediary Balance Sheet

$$Q_t s_t + q_t b_t = n_t + d_t$$

Financial Intermediaries

▶ Intermediary Balance Sheet

$$Q_t s_t + q_t b_t = n_t + d_t$$

Evolution of net worth

$$n_t = R_{kt}Q_{t-1}s_{t-1} + R_{bt}q_{t-1}b_{t-1} - R_td_{t-1}$$

Financial Intermediaries

▶ Intermediary Balance Sheet

$$Q_t s_t + q_t b_t = n_t + d_t$$

Evolution of net worth

$$n_t = R_{kt}Q_{t-1}s_{t-1} + R_{bt}q_{t-1}b_{t-1} - R_td_{t-1}$$

► FI's objective

$$V_t = E_t \sum_{i=1}^{\infty} (1 - \sigma) \sigma^{i-1} \Lambda_{t,t+i} n_{t+i}$$
 (1)

Limits to Arbitrage

- ► Agency problem: banker can divert
 - the fraction θ of loans and
 - $\Delta\theta$ of gov't bonds, with $0 \le \Delta \le 1$.

Limits to Arbitrage

- ► Agency problem: banker can divert
 - \blacktriangleright the fraction θ of loans and
 - ▶ $\Delta\theta$ of gov't bonds, with $0 \le \Delta \le 1$.
- ▶ Lenders can recover the residual funds and shut the bank down.

Limits to Arbitrage

- ► Agency problem: banker can divert
 - \blacktriangleright the fraction θ of loans and
 - $\Delta\theta$ of gov't bonds, with $0 \le \Delta \le 1$.
- ▶ Lenders can recover the residual funds and shut the bank down.
- ▶ Incentive constraint

$$V_t \ge \theta Q_t s_t + \Delta \theta q_t b_t. \tag{2}$$

Implications Solution

▶ 'Risk-adjusted' leverage constraint

$$Q_t s_t + \Delta q_t b_t = \phi_t n_t$$

where ϕ_t is an endogenous leverage ratio.

Implications Solution

▶ 'Risk-adjusted' leverage constraint

$$Q_t s_t + \Delta q_t b_t = \phi_t n_t$$

where ϕ_t is an endogenous leverage ratio.

▶ 'Arbitrage' between corporate and sovereign bonds

$$\Delta E_t \beta \tilde{\Omega}_{t+1} (R_{kt+1} - R_{t+1}) = E_t \beta \tilde{\Omega}_{t+1} (R_{bt+1} - R_{t+1}),$$

where $\tilde{\Omega}_{t+1}$ the FI's discount factor.

Aggregation

► Aggregate leverage

$$Q_t S_{pt} + \Delta q_t B_{pt} \le \phi_t N_t$$

Aggregation

► Aggregate leverage

$$Q_t S_{pt} + \Delta q_t B_{pt} \le \phi_t N_t$$

► Aggregate net worth

$$N_t = \sigma \left[(R_{kt} - R_t)Q_{t-1}S_{pt-1} + (R_{bt} - R_t)q_{t-1}B_{pt-1} + R_tN_{t-1} \right] + X.$$

Credit Policy

- ▶ Central bank: Less efficient in providing credit
 - ightharpoonup au efficiency cost

Credit Policy

- ▶ Central bank: Less efficient in providing credit
 - ightharpoonup au efficiency cost
- ▶ Not balance sheet constrained

Credit Policy

- ► Central bank: Less efficient in providing credit
 - $\triangleright \tau$ efficiency cost
- ▶ Not balance sheet constrained
- Asset purchases
 - ▶ Gov't: Reducing the supply of long-term assets
 - ▶ Private: Direct credit to the private sector

Credit Policy, cont.

▶ Composition of Assets between banks and central bank

$$S_t = S_{pt} + S_{gt}$$
$$B_t = B_{pt} + B_{gt}$$

Credit Policy, cont.

▶ Composition of Assets between banks and central bank

$$S_t = S_{pt} + S_{gt}$$
$$B_t = B_{pt} + B_{gt}$$

Private Securities Demand

$$Q_t S_t = \phi_t N_t + Q_t S_{gt} + \Delta q_t (B_{gt} - B_t)$$

$$E_t \tilde{\Omega}_{t+1} (R_{bt+1} - R_{t+1}) = \Delta E_t \tilde{\Omega}_{t+1} (R_{kt+1} - R_{t+1})$$

Credit Policy, cont.

▶ Composition of Assets between banks and central bank

$$S_t = S_{pt} + S_{gt}$$
$$B_t = B_{pt} + B_{gt}$$

Private Securities Demand

$$Q_t S_t = \phi_t N_t + Q_t S_{gt} + \Delta q_t (B_{gt} - B_t)$$

$$E_t \tilde{\Omega}_{t+1} (R_{bt+1} - R_{t+1}) = \Delta E_t \tilde{\Omega}_{t+1} (R_{kt+1} - R_{t+1})$$

- ▶ Purchases of gov't bonds have:
 - ▶ Weaker effects on private vs. gov't securities demand
 - Stronger effects on excess returns of private vs. gov't sec.

Resource Constraint and Government Policy

► Resource constraint

$$Y_t = C_t + I_t + f\left(\frac{I_t}{I_{t-1}}\right)I_t + G + \Phi_t$$

where Φ_t is the portfolio transactions costs.

Resource Constraint and Government Policy

► Resource constraint

$$Y_t = C_t + I_t + f\left(\frac{I_t}{I_{t-1}}\right)I_t + G + \Phi_t$$

where Φ_t is the portfolio transactions costs.

► Central bank balance sheet

$$Q_t S_{gt} + q_t B_{gt} = D_{gt}$$

Resource Constraint and Government Policy

► Resource constraint

$$Y_t = C_t + I_t + f\left(\frac{I_t}{I_{t-1}}\right)I_t + G + \Phi_t$$

where Φ_t is the portfolio transactions costs.

► Central bank balance sheet

$$Q_t S_{gt} + q_t B_{gt} = D_{gt}$$

► Gov't budget constraint

$$G = T_t + (R_{kt} - R_t - \tau)S_{qt-1} + (R_{bt} - R_t)B_{qt-1}$$

Central Bank

- ► LSAP: $\Psi_t = (Q_t S_{gt} + \Delta q_t B_{gt})/4\bar{Y}$
 - ► Follows a second order autoregressive process

Central Bank

- ► LSAP: $\Psi_t = (Q_t S_{gt} + \Delta q_t B_{gt})/4\bar{Y}$
 - ▶ Follows a second order autoregressive process
- ▶ Interest rate policy with ZLB: i_t

$$i_{t} = \max(0, i_{t}^{*})$$

$$i_{t}^{*} = \rho_{i} i_{t-1} + (1 - \rho_{i}) \left[\pi_{t}^{*} + \kappa_{\pi} (\pi_{t} - \pi_{t}^{*}) + \kappa_{y} y_{t} \right] + \kappa_{\Delta \pi} (\pi_{t} - \pi_{t-1}) + \kappa_{\Delta y} (y_{t} - y_{t-1}) + \varepsilon_{t}$$

$$\pi_{t}^{*} = \rho_{\pi} \pi_{t-1}^{*} + \varepsilon_{t}^{\pi}$$

Central Bank

- LSAP: $\Psi_t = (Q_t S_{gt} + \Delta q_t B_{gt})/4\bar{Y}$
 - ▶ Follows a second order autoregressive process
- ▶ Interest rate policy with ZLB: i_t

$$\begin{split} i_t &= \max(0, i_t^*) \\ i_t^* &= \rho_i i_{t-1} + (1 - \rho_i) \left[\pi_t^* + \kappa_\pi (\pi_t - \pi_t^*) + \kappa_y y_t \right] + \\ & \kappa_{\Delta\pi} (\pi_t - \pi_{t-1}) + \kappa_{\Delta y} (y_t - y_{t-1}) + \varepsilon_t \\ \pi_t^* &= \rho_\pi \pi_{t-1}^* + \varepsilon_t^\pi \end{split}$$

- Conventional and unconventional policies are substitutes
 - ▶ Effective lower bound on the interest rate
 - ► LSAP unconstrained

▶ Imperfect information: π_t^*, ε_t are unobserved

- ▶ Imperfect information: π_t^*, ε_t are unobserved
- ▶ Learning rule,

$$\pi_{t+1}^{*e} = \rho_{\pi^{*e}} \pi_t^{e^*} - \xi \left\{ s_t - s_t^e \right\}$$

$$s_t = i_t - \varsigma \Psi_t - \left[(1 - \rho_i) \kappa_\pi + \kappa_{\Delta \pi} \right] \pi_t - \left[(1 - \rho_i) \kappa_y + \kappa_{\Delta y} \right] y_t$$

$$s_t^e = \tilde{E}_{t-1} \left[s_t \right]$$

- Imperfect information: π_t^*, ε_t are unobserved
- ► Learning rule,

$$\pi_{t+1}^{*e} = \rho_{\pi^{*e}} \pi_t^{e^*} - \xi \left\{ s_t - s_t^e \right\}$$

$$s_t = i_t - \varsigma \Psi_t - \left[(1 - \rho_i) \kappa_\pi + \kappa_{\Delta \pi} \right] \pi_t - \left[(1 - \rho_i) \kappa_y + \kappa_{\Delta y} \right] y_t$$

$$s_t^e = \tilde{E}_{t-1} \left[s_t \right]$$

- ▶ Idea
 - ▶ Motivated by constant gain (κ) learning
 - ▶ Agents assume LSAP substitutes IRs at the ZLB, $i_t^S = i_t \varsigma \Psi_t$

- ▶ Imperfect information: π_t^*, ε_t are unobserved
- ▶ Learning rule,

$$\pi_{t+1}^{*e} = \rho_{\pi^{*e}} \pi_t^{e^*} - \xi \left\{ s_t - s_t^e \right\}$$

$$s_t = i_t - \varsigma \Psi_t - \left[(1 - \rho_i) \kappa_\pi + \kappa_{\Delta \pi} \right] \pi_t - \left[(1 - \rho_i) \kappa_y + \kappa_{\Delta y} \right] y_t$$

$$s_t^e = \tilde{E}_{t-1} \left[s_t \right]$$

- ▶ Idea
 - ▶ Motivated by constant gain (κ) learning
 - Agents assume LSAP substitutes IRs at the ZLB, $i_t^S = i_t \varsigma \Psi_t$
- Reanchoring
 - At ZLB $i_t = i_t^e$ w/o LSAP, low inflation leads to deanchoring
 - ▶ LSAP: $\Psi_t > \Psi_t^e$ leads to reanchoring

Solution

- ► Learning equilibrium
 - ▶ Agents optimize, learn about CB target
 - ▶ CB sets LSAP policy and interest rates s.t. ZLB
 - ▶ All markets clear

Solution

- ► Learning equilibrium
 - ▶ Agents optimize, learn about CB target
 - ▶ CB sets LSAP policy and interest rates s.t. ZLB
 - ▶ All markets clear
- ▶ First-order appr. solution: impulse response analysis
 - Optimality conditions loglinearized around a non-stochastic steady state
 - ► Shocks hit in period 1
 - ► Inflation target stays unchanged (unknown to agents)
 - ► ZLB binds endogenously (non-linearity)

Solution

- ► Learning equilibrium
 - ▶ Agents optimize, learn about CB target
 - ▶ CB sets LSAP policy and interest rates s.t. ZLB
 - ▶ All markets clear
- ► First-order appr. solution: impulse response analysis
 - Optimality conditions loglinearized around a non-stochastic steady state
 - ▶ Shocks hit in period 1
 - ► Inflation target stays unchanged (unknown to agents)
 - ► ZLB binds endogenously (non-linearity)
- ▶ Algorithm: solution over the impulse response space
 - ▶ Each period: Update expectations about the inflation target
 - ► Forecast perceived responses (including the length ZLB is expected to bind)
 - ▶ Consume, work, save, invest, set prices, wages now
 - ▶ IR policy is set according to a constant inflation target
 - ▶ Repeat each period until steady state reached

Calibration

- ► Tightness of credit conditions
 - ► Average credit spreads
 - ▶ Private: 2.45% (LT CCB Eonia)
 - ► Sovereign: 2.1% (EA 10-year yield Eonia)
 - ► FI leverage: 6
 - ► Assets over equity of FIs, NFCs in EA SA

Calibration

- ► Tightness of credit conditions
 - ► Average credit spreads
 - ▶ Private: 2.45% (LT CCB Eonia)
 - ► Sovereign: 2.1% (EA 10-year yield Eonia)
 - ► FI leverage: 6
 - ► Assets over equity of FIs, NFCs in EA SA
- ► Learning rule
 - ▶ 15bps decline in LT expectations before APP ($\xi = 0.062$)
 - Similar impact of APP and 1.1% monpol shock ($\varsigma = 0.068$)
 - 9bps increase on APP announcement (consistent with SPF change between 2015Q1-Q3)

Calibration, cont.

- ► Conventional parameters
 - ► Price- and wage stickiness, consumption habits, investment adjustment costs, policy rule Parameters
 - ► As estimated in NAWM (Christoffel et al., 2008) Monpol
 - ► High nominal stickiness

Calibration, cont.

- Conventional parameters
 - ▶ Price- and wage stickiness, consumption habits, investment adjustment costs, policy rule Parameters
 - ▶ As estimated in NAWM (Christoffel et al., 2008) Monpol
 - ▶ High nominal stickiness
- ► APP
 - ▶ 11% of GDP, maturity: 8, 9% in ten-year equivalents
 - ▶ Hump-shaped pattern
 - ▶ Calibrated to reach peak in 2 years, exit as bonds mature

Results

- ► Stylized demand shock Level
 - ▶ Persistent shock to savings preference
 - ▶ Inflation: -2.4%, Output -7%, 10-year rate -100bps
 - ▶ Deanchoring: perceived target −15 bps, expected liftoff: 7 quarters

Results

- Stylized demand shock Level
 - ▶ Persistent shock to savings preference
 - ▶ Inflation: -2.4%, Output -7%, 10-year rate -100bps
 - ▶ Deanchoring: perceived target −15 bps, expected liftoff: 7 quarters
- ► APP Impact
 - ▶ Peak effects: inflation 40bps, output: 1.1%
 - ► Important channel: reanchoring (1/3 of inflation effect)

 Reanchoring
 - ► Equivalent to a −1.1% monpol shock Monpol

Results

- ► Stylized demand shock Level
 - ▶ Persistent shock to savings preference
 - ▶ Inflation: -2.4%, Output -7%, 10-year rate -100bps
 - ▶ Deanchoring: perceived target −15 bps, expected liftoff: 7 quarters
- ► APP Impact
 - ▶ Peak effects: inflation 40bps, output: 1.1%
 - ► Important channel: reanchoring (1/3 of inflation effect)

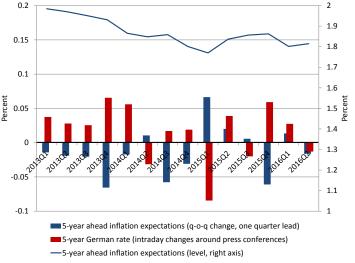
 Reanchoring
 - ► Equivalent to a −1.1% monpol shock Monpol
- Raising efficiency
 - Maturity extension (from 8 to 11, +10bps inflation effect)
 - ► Forward guidance (+5 bps inflation effect) Forward guidance

Other channels

► Duration channel Figure

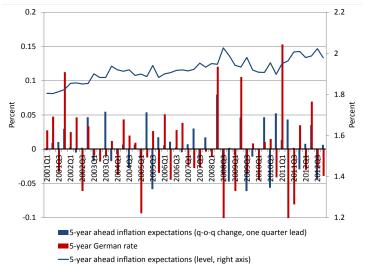
Other channels

- ► Duration channel Figure
- ► "Stealth recapitalization" (Recapitalization)


Conclusion

- ▶ Inflation-expectation reanchoring: key channel
 - ► Event-study evidence
 - ▶ Quantified in a DSGE macromodel

Conclusion


- ▶ Inflation-expectation reanchoring: key channel
 - ► Event-study evidence
 - Quantified in a DSGE macromodel
- ► Policy conclusions
 - ► Inactivity particularly costly with deanchoring
 - ▶ Reanchoring enhances policy effectiveness
 - ▶ Duration of targeted assets should be maximized
 - ▶ Forward guidance reinforces the effectiveness of APP

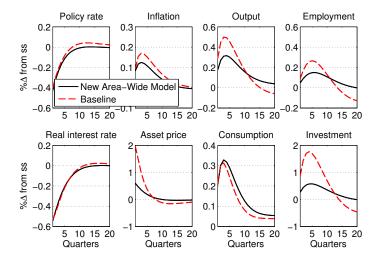
Euro Area Inflation Expectations

Source: ECB, Survey of Professional Forecasters.

Euro Area Inflation Expectations

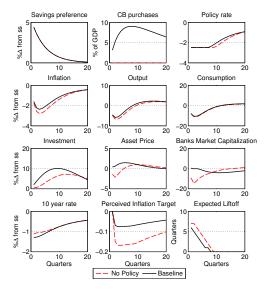
Source: ECB, Survey of Professional Forecasters.

Impact on 5x5 inflation-linked swap rates

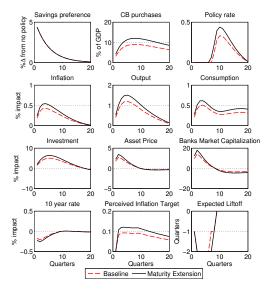

-	(1)	(2)	(3)	(4)
	Post 2013	Pre 2013	APP	APP, No FG
	Change in 5x5 inflation-linked swap yields			
5-year German yield	-1.222**	0.571***	-1.533**	-1.189**
surprise	(-2.754)	(4.303)	(-2.592)	(-2.571)
Sample	2013q1-2016q2	2004q1-2012q4	2014q2-2016q2	2014q2-2016q2
Observations	15	34	10	10
R-squared	0.315	0.176	0.426	0.399

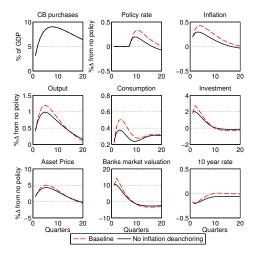
*** p<0.01, ** p<0.05, * p<0.1

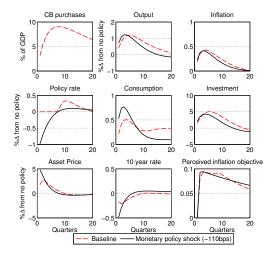
► Easing yields to reanchoring

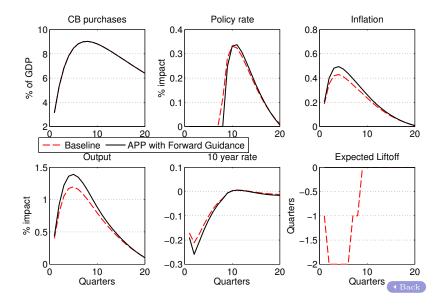


Impact of an interest rate innovation




Demand shock and APP


APP and maturity extension


APP with and without reanchoring channel

APP and monetary policy shock

APP and forward guidance

References I

- Altavilla, Carlo, Giacomo Carboni, and Roberto Motto (2015) "Asset Purchase Programmes and Financial Markets:
 Evidence from the Euro Area," ECB working paper no 1864.
- Bhattarai, Saroj, Gauti Eggertsson, and Bulat Gafarov (2015) "Time Consistency and the Duration of Government Debt: A Signalling Theory of Quantitative Easing," NBER Working Paper 21336, Board of Governors of the Federal Reserve System (U.S.).
- Chen, Han, Vasco Cúrdia, and Andrea Ferrero (2012) "The Macroeconomic Effects of Large-scale Asset Purchase Programmes," *The Economic Journal*, Vol. 122, pp. 289–315.

References II

Christoffel, Kai, Guenter Coenen, and Anders Warne (2008) "The New Area-Wide Model of the Euro Area: A Micro-Founded Open-Economy Model for Forecasting and Policy Analysis," Working Paper Series 0944, European Central Bank.

- Curdia, Vasco and Michael Woodford (2011) "The Central Bank Balance Sheet as an Instrument of Monetary Policy," Journal of Monetary Economics, Vol. 58, pp. 54–79.
- Del Negro, Marco, Gauti Eggertsson, Andrea Ferrero, and Nobuhiro Kiyotaki (2010) "The Great Escape? A Quantitative Evaluation of the Fed's Non-Standard Policies," unpublished, Federal Reserve Bank of New York.
- Eggertsson, Gauti and Benjamin Pugsley (2006) "The Mistake of 1937: A General Equilibrium Analysis," *Monetary and Economic Studies*, Vol. 24, pp. 151–190.

References III

- Gertler, Mark and Peter Karadi (2011) "A Model of Unconventional Monetary Policy," *Journal of Monetary Economics*, Vol. 58, pp. 17–34.
- ———— (2013) "QE 1 vs. 2 vs. 3...: A Framework for Analyzing Large-Scale Asset Purchases as a Monetary Policy Tool," *International Journal of Central Banking*, Vol. 9, pp. 5–53.
- Gürkaynak, Refet S, Andrew Levin, and Eric Swanson (2010) "Does Inflation Targeting Anchor Long-Run Inflation Expectations? Evidence from the U.S., UK, and Sweden," *Journal of the European Economic Association*, Vol. 8, pp. 1208–1242.
- Gürkaynak, Refet S, Brian Sack, and Eric Swanson (2005) "The Sensitivity of Long-Term Interest Rates to Economic News: Evidence and Implications for Macroeconomic Models," *American Economic Review*, pp. 425–436.

References IV

- Krishnamurthy, Arvind and Annette Vissing-Jorgensen (2011) "The Effects of Quantitative Easing on Interest Rates," Brookings Papers on Economic Activity.
- Rogers, John H, Chiara Scotti, and Jonathan H Wright (2014) "Evaluating asset-market effects of unconventional monetary policy: a multi-country review," *Economic Policy*, Vol. 29, pp. 749–799.
- Swanson, Eric T (2015) "Measuring the Effects of Unconventional Monetary Policy on Asset Prices," Technical report, National Bureau of Economic Research.

► Maximize utility

$$E_t \sum_{i=0}^{\infty} \beta^i \left[\ln(C_{t+i} - hC_{t+i-1}) - \frac{\chi}{1+\varphi} L_{t+i}^{1+\varphi} \right]$$

subject to

$$C_t + D_{ht+1} = W_t L_t + \Pi_t + T_t + R_t D_t$$

- where
 - $ightharpoonup D_{ht}$: short term debt (deposits and government debt)
 - $ightharpoonup \Pi_t$: payouts to the household from firm ownership net the transfers it gives to the bankers

Wage setting

▶ Labor supply is a composite of heterogeneous labor services

$$N_{t} = \left[\int_{0}^{1} N_{ft} \frac{\varepsilon^{W} - 1}{\varepsilon^{W}} df \right]^{\frac{\varepsilon^{W}}{\varepsilon^{W} - 1}}$$
(3)

where N_{ft} is the supply of labor service f.

Wage setting

▶ Labor supply is a composite of heterogeneous labor services

$$N_{t} = \left[\int_{0}^{1} N_{ft} \frac{\varepsilon^{W} - 1}{\varepsilon^{W}} df \right]^{\frac{\varepsilon^{W}}{\varepsilon^{W} - 1}}$$
(3)

where N_{ft} is the supply of labor service f.

▶ From cost minimization by firms:

$$N_{ft} = \left(\frac{W_{ft}}{W_t}\right)^{-\varepsilon^W} N_t \tag{4}$$

Wage setting

▶ Labor supply is a composite of heterogeneous labor services

$$N_t = \left[\int_0^1 N_{ft} \frac{\varepsilon^W - 1}{\varepsilon^W} df \right]^{\frac{\varepsilon^W}{\varepsilon^W - 1}}$$
 (3)

where N_{ft} is the supply of labor service f.

▶ From cost minimization by firms:

$$N_{ft} = \left(\frac{W_{ft}}{W_t}\right)^{-\varepsilon^W} N_t \tag{4}$$

- ▶ Staggered wage setting a la Calvo
 - Wages can be adjusted with probability $1 \gamma_W$
 - ▶ Indexation with probability γ_W (Π_t^{\dagger})

Wage Setting

► Optimal Wage Setting

$$\sum_{i=0}^{\infty} \gamma^{i} \beta^{i} \Lambda_{t+i} \left[\frac{W_{t}^{*} \Pi_{t,t+i}^{\dagger}}{P_{t+i}} - \mu_{W} N_{ft+i}^{\varphi} \right] N_{ft+i} = 0 \qquad (5)$$
 with $\mu_{W} = \frac{1}{1 - 1/\varepsilon_{W}}$.

Wage Setting

► Optimal Wage Setting

$$\sum_{i=0}^{\infty} \gamma^{i} \beta^{i} \Lambda_{t+i} \left[\frac{W_{t}^{*} \Pi_{t,t+i}^{\dagger}}{P_{t+i}} - \mu_{W} N_{ft+i}^{\varphi} \right] N_{ft+i} = 0 \qquad (5)$$
 with $\mu_{W} = \frac{1}{1 - 1/\varepsilon_{W}}$.

Wage Setting

► Optimal Wage Setting

$$\sum_{i=0}^{\infty} \gamma^i \beta^i \Lambda_{t+i} \left[\frac{W_t^* \Pi_{t,t+i}^{\dagger}}{P_{t+i}} - \mu_W N_{ft+i}^{\varphi} \right] N_{ft+i} = 0 \qquad (5)$$
with $\mu_W = \frac{1}{1 - 1/\varepsilon_W}$.

▶ From the law of large numbers,

$$W_{t} = \left[(1 - \gamma_{W})(W_{t}^{*})^{1 - \varepsilon_{W}} + \gamma_{W} (\Pi_{t-1}^{\gamma_{W_{i}}} \Pi_{t}^{*1 - \gamma_{W_{i}}} P_{t-1})^{1 - \varepsilon_{W}} \right]^{\frac{1}{1 - \varepsilon_{W}}}$$
(6)

Household Asset Holdings

- Households can directly hold private securities and long-term gov't bonds subject to transactions costs
 - Private: holding costs: $\frac{1}{2}\kappa(S_{ht}-\overline{S}_h)^2$ for $S_{ht}\geq \overline{S}_h$.
 - ▶ Gov't bonds: holding cost: $\frac{1}{2}\kappa(B_{ht} \overline{B}_h)^2$ for $B_{ht} \geq \overline{B}_h$

Household Asset Holdings

- Households can directly hold private securities and long-term gov't bonds subject to transactions costs
 - Private: holding costs: $\frac{1}{2}\kappa(S_{ht}-\overline{S}_h)^2$ for $S_{ht}\geq \overline{S}_h$.
 - ▶ Gov't bonds: holding cost: $\frac{1}{2}\kappa(B_{ht} \overline{B}_h)^2$ for $B_{ht} \geq \overline{B}_h$
- ► Household asset demands:

$$S_{ht} = \overline{S}_h + \frac{E_t \Lambda_{t,t+1} (R_{kt+1} - R_{t+1})}{\kappa}$$
$$B_{ht} = \overline{B}_h + \frac{E_t \Lambda_{t,t+1} (R_{bt+1} - R_{t+1})}{\kappa}$$

Household Asset Holdings

- Households can directly hold private securities and long-term gov't bonds subject to transactions costs
 - Private: holding costs: $\frac{1}{2}\kappa(S_{ht}-\overline{S}_h)^2$ for $S_{ht}\geq \overline{S}_h$.
 - ▶ Gov't bonds: holding cost: $\frac{1}{2}\kappa(B_{ht} \overline{B}_h)^2$ for $B_{ht} \geq \overline{B}_h$
- ► Household asset demands:

$$S_{ht} = \overline{S}_h + \frac{E_t \Lambda_{t,t+1} (R_{kt+1} - R_{t+1})}{\kappa}$$
$$B_{ht} = \overline{B}_h + \frac{E_t \Lambda_{t,t+1} (R_{bt+1} - R_{t+1})}{\kappa}$$

- ightharpoonup Elasticity κ
 - the excess returns go to zero as $\kappa \to 0$,
 - the quantities go to their frictionless values as $\kappa \to \infty$.

Credit policy with HH asset demand

► Composition of Assets

$$S_t = S_{pt} + S_{ht} + S_{gt}$$
$$B_t = B_{pt} + B_{ht} + B_{at}$$

Credit policy with HH asset demand

► Composition of Assets

$$S_t = S_{pt} + S_{ht} + S_{gt}$$
$$B_t = B_{pt} + B_{ht} + B_{gt}$$

Private Asset Demands

$$Q_t(S_t - \overline{S}_h) = \phi_t N_t + Q_t S_{gt} + \Delta q_t \left[B_{gt} - (B_t - \overline{B}_h) \right] + (Q_t + \Delta^2 q_t) \frac{E_t \Lambda_{t,t+1} (R_{kt+1} - R_{t+1})}{\kappa}$$

Credit policy with HH asset demand, cont.

- ▶ Relative effects of securities versus gov't bond purchases similar to before.
- ▶ Larger effects of purchases with fixed demand.
- Responses of household asset demands can moderate effects.
- Overall, need limits to arbitrage for bank and household asset demands.

- ► Representative family
 - ▶ f bankers, 1 f workers
 - ▶ Perfect consumption insurance

- ► Representative family
 - \blacktriangleright f bankers, 1-f workers
 - ▶ Perfect consumption insurance
- ▶ With iid. probability 1σ , a banker becomes a worker. (Limits bankers' ability to save themselves out of the financial constraints)

- ► Representative family
 - ▶ f bankers, 1 f workers
 - ▶ Perfect consumption insurance
- ▶ With iid. probability 1σ , a banker becomes a worker. (Limits bankers' ability to save themselves out of the financial constraints)
- ▶ Each period, $(1 \sigma)f$ workers randomly become bankers

- ► Representative family
 - ▶ f bankers, 1 f workers
 - ▶ Perfect consumption insurance
- ▶ With iid. probability 1σ , a banker becomes a worker. (Limits bankers' ability to save themselves out of the financial constraints)
- ▶ Each period, $(1 \sigma)f$ workers randomly become bankers
- ▶ New banker receives a start-up fund from the family

Assets

▶ Return on state-contingent debt (capital)

$$R_{kt+1} = \frac{Z_{t+1} + Q_{t+1}}{Q_t}$$

Assets

▶ Return on state-contingent debt (capital)

$$R_{kt+1} = \frac{Z_{t+1} + Q_{t+1}}{Q_t}$$

► Return on long term gov't bonds

$$R_{bt+1} = \frac{\Xi/P_t + q_{t+1}}{q_t}$$

Financial Intermediaries

▶ Intermediary Balance Sheet

$$Q_t s_t + q_t b_t = n_t + d_t$$

Financial Intermediaries

▶ Intermediary Balance Sheet

$$Q_t s_t + q_t b_t = n_t + d_t$$

▶ Evolution of net worth

$$n_t = R_{kt}Q_{t-1}s_{t-1} + R_{bt}q_{t-1}b_{t-1} - R_td_{t-1}$$

Financial Intermediaries

▶ Intermediary Balance Sheet

$$Q_t s_t + q_t b_t = n_t + d_t$$

Evolution of net worth

$$n_t = R_{kt}Q_{t-1}s_{t-1} + R_{bt}q_{t-1}b_{t-1} - R_td_{t-1}$$

FI's objective

$$V_t = E_t \sum_{i=1}^{\infty} (1 - \sigma) \sigma^{i-1} \Lambda_{t,t+i} n_{t+i}$$
 (7)

Limits to Arbitrage

- ► Agency problem: banker can divert
 - the fraction θ of loans and
 - $\Delta\theta$ of gov't bonds, with $0 \le \Delta \le 1$.

Limits to Arbitrage

- ► Agency problem: banker can divert
 - \blacktriangleright the fraction θ of loans and
 - ▶ $\Delta\theta$ of gov't bonds, with $0 \le \Delta \le 1$.
- ▶ Lenders can recover the residual funds and shut the bank down.

Limits to Arbitrage

- ► Agency problem: banker can divert
 - \blacktriangleright the fraction θ of loans and
 - $\Delta\theta$ of gov't bonds, with $0 \le \Delta \le 1$.
- ▶ Lenders can recover the residual funds and shut the bank down.
- ► Incentive constraint

$$V_t \ge \theta Q_t s_t + \Delta \theta q_t b_t. \tag{8}$$

Implications Solution

▶ 'Risk-adjusted' leverage constraint

$$Q_t s_t + \Delta q_t b_t = \phi_t n_t$$

where ϕ_t is an endogenous leverage ratio.

Implications Solution

▶ 'Risk-adjusted' leverage constraint

$$Q_t s_t + \Delta q_t b_t = \phi_t n_t$$

where ϕ_t is an endogenous leverage ratio.

▶ 'Arbitrage' between corporate and sovereign bonds

$$\Delta E_t \beta \tilde{\Omega}_{t+1} (R_{kt+1} - R_{t+1}) = E_t \beta \tilde{\Omega}_{t+1} (R_{bt+1} - R_{t+1}),$$

where $\tilde{\Omega}_{t+1}$ the FI's discount factor.

Aggregation

► Aggregate leverage

$$Q_t S_{pt} + \Delta q_t B_{pt} \le \phi_t N_t$$

Aggregation

► Aggregate leverage

$$Q_t S_{pt} + \Delta q_t B_{pt} \le \phi_t N_t$$

► Aggregate net worth

$$N_{t} = \sigma \left[(R_{kt} - R_{t})Q_{t-1}S_{pt-1} + (R_{bt} - R_{t})q_{t-1}B_{pt-1} + R_{t}N_{t-1} \right] + X$$

Resource Constraint and Government Policy

► Resource constraint

$$Y_t = C_t + I_t + f\left(\frac{I_t}{I_{t-1}}\right)I_t + G + \Phi_t$$

where Φ_t is the portfolio transactions costs.

Resource Constraint and Government Policy

► Resource constraint

$$Y_t = C_t + I_t + f\left(\frac{I_t}{I_{t-1}}\right)I_t + G + \Phi_t$$

where Φ_t is the portfolio transactions costs.

► Central bank balance sheet

$$Q_t S_{gt} + q_t B_{gt} = D_{gt}$$

Resource Constraint and Government Policy

► Resource constraint

$$Y_t = C_t + I_t + f\left(\frac{I_t}{I_{t-1}}\right)I_t + G + \Phi_t$$

where Φ_t is the portfolio transactions costs.

▶ Central bank balance sheet

$$Q_t S_{gt} + q_t B_{gt} = D_{gt}$$

► Gov't budget constraint

$$G = T_t + (R_{kt} - R_t - \tau)S_{qt-1} + (R_{bt} - R_t)B_{qt-1}$$

Financial Intermediaries' Problem

 \triangleright End-of-period value function V_t

$$V_{t-1}(s_{t-1}, b_{t-1}, n_{t-1}) = E_{t-1}\Lambda_{t-1,t}\{(1-\sigma)n_t + \sigma W_t(n_t)\}$$

Financial Intermediaries' Problem

 \triangleright End-of-period value function V_t

$$V_{t-1}(s_{t-1}, b_{t-1}, n_{t-1}) = E_{t-1}\Lambda_{t-1, t}\{(1 - \sigma)n_t + \sigma W_t(n_t)\}$$

 \triangleright Beginning-of-period value function W_t

$$W_t(n_t) = \max_{s_t, b_t} V_t(s_t, b_t, n_t)$$

subject to $[\lambda_t]$

$$V_t(s_t, b_t, n_t) \ge \theta Q_t s_t + \Delta \theta q_t b_t$$

Solution

► Conjecture: linear end-of-period value function

$$V_t = \mu_{st} Q_t s_t + \mu_{bt} q_t b_t + \nu_t n_t$$

Solution

▶ Conjecture: linear end-of-period value function

$$V_t = \mu_{st} Q_t s_t + \mu_{bt} q_t b_t + \nu_t n_t$$

▶ Beginning-of-period Lagrange function

$$(1 + \lambda_t)(\mu_{st}Q_ts_t + \mu_bq_tb_t + \nu_t n_t) - \lambda_t(\theta Q_ts_t + \Delta\theta q_tb_t)$$

ightharpoonup FONC: s_t

$$\mu_{st} = \frac{\lambda_t}{1 + \lambda_t} \theta$$

ightharpoonup FONC: b_t

$$\mu_{bt} = \Delta \frac{\lambda_t}{1 + \lambda_t} \theta$$
$$= \Delta \mu_{st}$$

▶ FONC: λ_t

$$(\mu_{st}Q_ts_t + \mu_{bt}q_tb_t + \nu_t n_t) - (\theta Q_ts_t + \Delta\theta q_tb_t) = 0$$

► Endogenous 'risk-adjusted' leverage constraint:

$$Q_t s_t + \Delta q_t b_t = \phi_t n_t$$

where ϕ_t is the leverage ratio:

$$\phi_t = \frac{\nu_t}{\theta - \mu_{st}}$$

► Endogenous 'risk-adjusted' leverage constraint:

$$Q_t s_t + \Delta q_t b_t = \phi_t n_t$$

where ϕ_t is the leverage ratio:

$$\phi_t = \frac{\nu_t}{\theta - \mu_{st}}$$

▶ Beginning-of-period value function

$$W_t(n_t) = \mu_{st} (Q_t s_t^* + \Delta q_t b_t^*) + \nu_t n_t$$
$$= (\mu_{st} \phi_t + \nu_t) n_t$$
$$= \theta \phi_t n_t$$

► End-of-period value function

$$\mu_{st-1}Q_{t-1}s_{t-1} + \mu_{bt-1}q_{t-1}b_{t-1} + \nu_{t-1}n_{t-1} = E_{t-1}\Lambda_{t-1,t}\{(1-\sigma)n_t + \sigma W_t(n_t)\},\$$

subject to

$$n_t = (R_{kt} - R_t)Q_{t-1}s_{t-1} + (R_{bt} - R_t)q_{t-1}b_{t-1} + R_t n_{t-1}$$

► End-of-period value function

$$\mu_{st-1}Q_{t-1}s_{t-1} + \mu_{bt-1}q_{t-1}b_{t-1} + \nu_{t-1}n_{t-1} = E_{t-1}\Lambda_{t-1,t}\{(1-\sigma)n_t + \sigma W_t(n_t)\},\$$

subject to

$$n_t = (R_{kt} - R_t)Q_{t-1}s_{t-1} + (R_{bt} - R_t)q_{t-1}b_{t-1} + R_t n_{t-1}$$

After substitution

$$\mu_{st-1}Q_{t-1}s_{t-1} + \mu_{bt-1}q_{t-1}b_{t-1} + \nu_{t-1}n_{t-1} = E_{t-1}\Lambda_{t-1,t}\{[(1-\sigma) + \sigma\theta\phi_t]$$

$$(R_{kt} - R_t)Q_{t-1}s_{t-1} + (R_{bt} - R_t)q_{t-1}b_{t-1} + R_tn_{t-1}\},$$

▶ Partial marginal values

$$\mu_{st} = E_t \tilde{\Omega}_{t+1} (R_{kt+1} - R_{t+1})$$

$$\mu_{bt} = E_t \tilde{\Omega}_{t+1} (R_{bt+1} - R_{t+1}) = \Delta \mu_{st}$$

$$\nu_t = E_t \tilde{\Omega}_{t+1} R_{t+1}$$

$$\tilde{\Omega}_t = \Lambda_{t,t+1} [1 - \sigma + \sigma \theta \phi_t]$$

where $\tilde{\Omega}_t > 1$ is the FI's discount factor.

Partial marginal values

$$\mu_{st} = E_t \tilde{\Omega}_{t+1} (R_{kt+1} - R_{t+1})$$

$$\mu_{bt} = E_t \tilde{\Omega}_{t+1} (R_{bt+1} - R_{t+1}) = \Delta \mu_{st}$$

$$\nu_t = E_t \tilde{\Omega}_{t+1} R_{t+1}$$

$$\tilde{\Omega}_t = \Lambda_{t,t+1} [1 - \sigma + \sigma \theta \phi_t]$$

where $\tilde{\Omega}_t > 1$ is the FI's discount factor.

► End-of-period value function is indeed linear.

Capital producers

▶ Profit Maximization

$$\max E_t \sum_{\tau=t}^{\infty} \beta^t \Lambda_{t,\tau} \left\{ (Q_{\tau} - 1)I_{\tau} - f\left(\frac{I_{\tau} + I}{I_{\tau-1}}\right)(I_{\tau}) \right\}$$
 where $f(1) = f'(1) = 0$ and $f''(1) > 0$.

Capital producers

▶ Profit Maximization

$$\max E_t \sum_{\tau=t}^{\infty} \beta^t \Lambda_{t,\tau} \left\{ (Q_{\tau} - 1)I_{\tau} - f\left(\frac{I_{\tau} + I}{I_{\tau-1}}\right)(I_{\tau}) \right\}$$
 where $f(1) = f'(1) = 0$ and $f''(1) > 0$.

ightharpoonup "Q" relation for investment:

$$Q_{t} = 1 + f(\cdot) + \frac{I_{t}}{I_{t-1}} f'(\cdot) - E_{t} \beta \Lambda_{t,t+1} \left(\frac{I_{t+1}}{I_{t}}\right)^{2} f'(\cdot) \quad (10)$$

Intermediate Goods Producer

Production

$$Y_t = A_t (K_t)^{\alpha} L_t^{1-\alpha} \tag{11}$$

Intermediate Goods Producer

▶ Production

$$Y_t = A_t (K_t)^{\alpha} L_t^{1-\alpha} \tag{11}$$

▶ Evolution of firm capital

$$K_{t+1} = [I_t + (1 - \delta)K_t]$$

Intermediate Goods Producer

▶ Production

$$Y_t = A_t (K_t)^{\alpha} L_t^{1-\alpha} \tag{11}$$

▶ Evolution of firm capital

$$K_{t+1} = [I_t + (1 - \delta)K_t]$$

▶ Share issue

$$S_t = K_{t+1}$$

Intermediate Goods Producers, cont.

► FONC labor:

$$P_{mt}(1-\alpha)\frac{Y_t}{L_t} = W_t, \tag{12}$$

 P_{mt} be the price of intermediate goods output

► Capital rental

$$Z_t = P_{mt} \alpha \frac{Y_{t+1}}{K_{t+1}} - \delta,$$

the replacement price of used capital is fixed at unity.

Retailers and price setting

▶ Final output as a composite of retail output

$$Y_t = \left[\int_0^1 Y_{ft} \frac{\varepsilon - 1}{\varepsilon} df \right]^{\frac{\varepsilon}{\varepsilon - 1}} \tag{13}$$

where Y_{ft} is output by retailer f.

Retailers and price setting

▶ Final output as a composite of retail output

$$Y_t = \left[\int_0^1 Y_{ft} \frac{\varepsilon - 1}{\varepsilon} df \right]^{\frac{\varepsilon}{\varepsilon - 1}} \tag{13}$$

where Y_{ft} is output by retailer f.

▶ From cost minimization by users of final output:

$$Y_{ft} = \left(\frac{P_{ft}}{P_t}\right)^{-\varepsilon} Y_t \tag{14}$$

Retailers and price setting

► Final output as a composite of retail output

$$Y_t = \left[\int_0^1 Y_{ft} \frac{\varepsilon - 1}{\varepsilon} df \right]^{\frac{\varepsilon}{\varepsilon - 1}}$$
 (13)

where Y_{ft} is output by retailer f.

From cost minimization by users of final output:

$$Y_{ft} = \left(\frac{P_{ft}}{P_t}\right)^{-\varepsilon} Y_t \tag{14}$$

- Staggered price setting a la Calvo
 - Price can be adjusted with probability $1-\gamma$
 - Indexation with probability γ
 - ▶ Partially $(1 \gamma_P)$ to target Π_t^* ,
 - ► Partially (γ_P) to past inflation Π_{t-1} ► $\Pi_t^{\dagger} = \Pi_t^{*1-\gamma_P} \Pi_{t-1}^{\gamma_P}$

Price Setting

▶ Price Setting Problem

$$\max \sum_{i=0}^{\infty} \gamma^{i} \beta^{i} \Lambda_{t,t+i} \left[\frac{P_{t}^{*} \Pi_{t,t+i}^{\dagger}}{P_{t+i}} - P_{mt+i} \right] Y_{ft+i}$$
 (15)

Price Setting

▶ Price Setting Problem

$$\max \sum_{i=0}^{\infty} \gamma^{i} \beta^{i} \Lambda_{t,t+i} \left[\frac{P_{t}^{*} \Pi_{t,t+i}^{\dagger}}{P_{t+i}} - P_{mt+i} \right] Y_{ft+i}$$
 (15)

▶ Optimal Price Setting

$$\sum_{i=0}^{\infty} \gamma^{i} \beta^{i} \Lambda_{t,t+i} \left[\frac{P_{t}^{*} \Pi_{t,t+i}^{\dagger}}{P_{t+i}} - \mu P_{mt+i} \right] Y_{ft+i} = 0$$
 (16)

with
$$\mu = \frac{1}{1-1/\varepsilon}$$
.

Price Setting

▶ Price Setting Problem

$$\max \sum_{i=0}^{\infty} \gamma^{i} \beta^{i} \Lambda_{t,t+i} \left[\frac{P_{t}^{*} \Pi_{t,t+i}^{\dagger}}{P_{t+i}} - P_{mt+i} \right] Y_{ft+i}$$
 (15)

▶ Optimal Price Setting

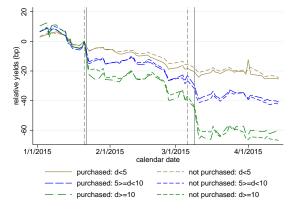
$$\sum_{i=0}^{\infty} \gamma^{i} \beta^{i} \Lambda_{t,t+i} \left[\frac{P_{t}^{*} \Pi_{t,t+i}^{\dagger}}{P_{t+i}} - \mu P_{mt+i} \right] Y_{ft+i} = 0$$
 (16)

with $\mu = \frac{1}{1-1/\varepsilon}$.

▶ From the law of large numbers,

$$P_{t} = \left[(1 - \gamma)(P_{t}^{*})^{1 - \varepsilon} + \gamma (\Pi_{t-1}^{\gamma_{P}} \Pi_{t}^{*1 - \gamma_{P}} P_{t-1})^{1 - \varepsilon} \right]^{\frac{1}{1 - \varepsilon}}$$
(17)

Parameters


Households							
β	0.994	Discount rate					
h	0.567	Habit parameter					
χ	20.758	Relative utility weight of labor					
B/Y	0.700	Steady state Treasury supply					
\bar{K}^h/K	0.000	Proportion of direct capital holdings of the HHs					
\bar{B}^h/B	0.750	Proportion of long term Treasury holdings of the HHs					
κ	1.000	Portfolio adjustment cost					
φ	2.000	Inverse Frisch elasticity of labor supply					
ϵ_W	4.333	Elasticity of labor substitution					
γ_W	0.765	Probability of keeping the wage constant					
$\gamma_{W,-1}$	0.635	Wage indexation parameter					
$\rho_{\pi}*p$	0.990	Persistence of a shock to the perceived inflation objective					
κ	0.0622	Kalman-gain					
ς	0.0683	Relative weight of APP surprise					
Financial Intermediaries							
θ	0.315	Fraction of capital that can be diverted					
Δ	0.840	Proportional advantage in seizure rate of government debt					
ω	0.0047	Proportional transfer to the entering bankers					
σ	0.925	Survival rate of the bankers					
	Intermediate good firms						
α	0.360	Capital share					
δ	0.025	Depreciation rate					

Parameters, cont.

Capital Producing Firms							
η_i	5.169	Inverse elasticity of net investment to the price of capital					
Retail Firms							
ϵ	3.857	Elasticity of substitution					
γ_P	0.920	Probability of keeping the price constant					
$\gamma_{P,-1}$	0.417	Price indexation parameter					
Government							
$\frac{G}{Y}$	0.200	Steady state proportion of government expenditures					
$\hat{\rho}_i$	0.865	Interest rate smoothing parameter					
κ_{π}	1.904	Inflation coefficient in the policy rule					
$\kappa_{d\pi}$	0.185	Inflation growth coefficient in the policy rule					
κ_{du}	0.147	Output growth coefficient in the policy rule					
$\rho_{i,zlb}$	0.500	Interest rate smoothing leaving the lower bound					
$\dot{\gamma}_{\psi}$	0.290	Share of private assets in the purchase program					
	Shocks						
ψ	0.018	Initial asset purchase shock					
$\rho_{1,\psi}$	1.700	First AR coefficient of the purchase shock					
$ ho_{2,\psi}$	-0.710	Second AR coefficient of the purchase shock					
e_{β}	0.044	Initial savings preference shock (\beta)					
ρ_{β}	0.815	Persistence of the savings preference shock (β)					

Bond yields around announcement and implementation

- Both announcement and implementation of the PSPP have sizable impact on yields
- ▶ High duration bonds are impacted significantly more
- ▶ Not only purchased bonds show lower yields (no scarcity channel)

Impact of purchases on bond yields

- No significant effect of individual trades on daily yield changes (excludes first two weeks)
- ▶ Three different setups: (i) simple panel, (ii) event study around the first purchase, (iii) black-out period
- No differential impact of trading intensity (several measures)
- ▶ Stringent controls: time FE, bond FE.

	Trading effect				First purchase effect		BLACKOUT PERIOD EFFECT
	purchase dummy		relative purchases				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
surchase effect	-0.021 (0.041)	(0.059	(0.019	-0.368 (0.327)	-0.045 (0.088)	(0.200)	0.862 (1.310)
urchase intensity (perc.25-50)	,	. ,	, ,			(0.255)	
urchase intensity (perc.50-75)						-0.278 (0.265)	
urchase intensity (perc.75-100)						-0.094 (0.265)	
urchase effect × April		(0.257)		0.446 (0.339)			
urchase effect × May		0.067 (0.110)		0.666* (0.362)			
urchase effect × June		(0.119)		(0.349)			
urchase effect × July		-0.481*** (0.114)		0.266 (0.342)			
urchase effect × Aug		0.105 (0.095)		0.363 (0.332)			
urchase effect × Sep		-0.278** (0.139)		(0.332)			
urchase effect × Oct		-0.216** (0.097)		(0.334)			
urchase effect × Nov		-0.285*** (0.099)		0.269 (0.335)			
urchase effect × Dec		(0.108)		0.166 (0.418)			
bservations -squared	913,091 0.0236	913,091 0.0236	913,044 0.0236	913,044 0.0236	774,051 0.0251	774,051 0.0251	434 0.6261
ond FE aily Time FE	YES YES	YES YES	YES YES	YES YES	YES YES	YES YES	YES YES
Cluster Bond	YES	YES	YES	YES	YES	YES	YES

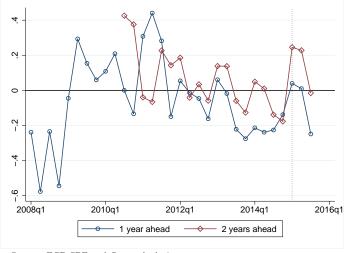
The impact of the PSPP on euro area banks

- ▶ QE as a form of bank capital relief: the larger the sovereign bonds holdings, the larger the benefits
- ▶ Event study: reaction of each bank's stock price to PSPP announcement. Focus on quoted banks with info on govt bond holdings (as of end-2014). SNL data, 150 banks.
- ▶ 2-day changes: January 21-23; March 4-6
- ▶ Need to control for:
 - Broader effects on discounted future profits through improvement in macroeconomic conditions
 - ▶ Proxy: increase in country's stock price index
 - ▶ Impact of flattened yield curve on interest rate margins
 - ▶ Proxy 1: change in 10-yrs govt yield
 - ▶ Proxy 2: dummy=1 if bank located in EA
- ▶ Support of bank capital relief in Jan 2015.

Equity price reactions between January 21 and 23, 2015 (SNL sample)

	(1)	(2)	(3)
constant	2.55***	2.09***	1.74***
	(4.38)	(3.81)	(3.21)
$\Delta ext{yield}$	15.67***	9.12***	8.76***
	(4.61)	(2.83)	(2.76)
$\Delta { m SM}$	0.39***	0.80^{***}	0.77^{***}
	(2.88)	(3.96)	(4.54)
EA bank (d)		-2.23***	-2.56***
		(-3.65)	(-4.69)
exposure			0.06***
			(2.73)
Adj. R^2	0.09	0.19	0.26
No. Obs.	150	150	120

(White robust t-statistics)

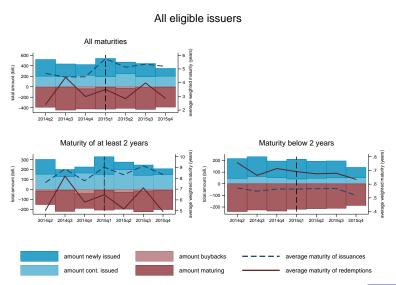


Signal of lower future policy rates

- ▶ Impact on average expectation from SPF
 - ▶ 2015Q1-2015Q3: MRO rate forecasts declined from 11 to 6bps for 2016 and from 43 to 31bps for 2017
- ▶ What do low interest rates mean? (Andrade et al., 2015)
 - ▶ Policy will be more accommodative
 - ▶ Outlook worse than thought: Trap will last longer
- ▶ Which one prevailed?
 - Estimate individual pre-crisis interest rate rule; panel regression over 1999Q1-2007Q4
 - Compare observed individual policy rate forecast with forecasts consistent with individual policy rule
 - On average APP associated with expected future accommodation

Expected deviations from normal times policy

Source: ECB SPF and Own calculations $\,$



Risk of reduced effectiveness of the APP

- ▶ Increased issuance of long-term bonds by national governments would raise investors' exposure to duration risk, offsetting the impact of APP.
- ▶ Following announcement of PSPP, average maturity of newly issued eligible bonds relative to maturing bonds rose by approx 2 yrs.
- ► Combined effect on duration risk is a reduction, over 2015Q1-Q4:
 - ► Govt issuance increased supply of 10-yrs equivalent debt by 1.9 percent of GDP.
 - ▶ PSPP reduced it by 4.5 percent of GDP.

Limits to the effectiveness

