

The impact of transition policies on innovation and TFP growth in the EA

Testing the Porter Hypothesis

NBB, 18/04/2024

Nicola Benatti (DGS), Martin Groiss, Paloma Lopez-Garcia, Petra Sarapatkova (DGE)

Motivation

- New EU Climate Laws → more ambitious objective of net zero GHG emissions by 2050
- Adoption of increasingly stringent environmental policies: 1) market (carbon pricing); 2) nonmarket (standards); and 3) technology support (subsidies)
- Silver lining of green transition: **the Porter Hypothesis** (Porter and van der Linde 1995): environmental policy might spur (green) innovation over the long-term and enhance profitability and productivity growth which might compensate possible short-term losses
 - Strong PH: more stringent environmental regulation increases productivity growth (benefits > costs)
 - Weak PH: more stringent environmental regulation increases innovation
 - Narrow PH: market-based regulation are less harmful than non-market measures for productivity
- Empirical evidence is yet inconclusive and faced with caveats: single reforms, country level analysis, (lack of) identification of causal impact, possible endogeneity

Research questions and contributions

Research questions:

- What are the effects of more stringent environmental policies on productivity (LP and TFP) growth and innovation at country and firm level?
- What type of policies are most effective?
- Are all firms affected in the same way by environmental policies?

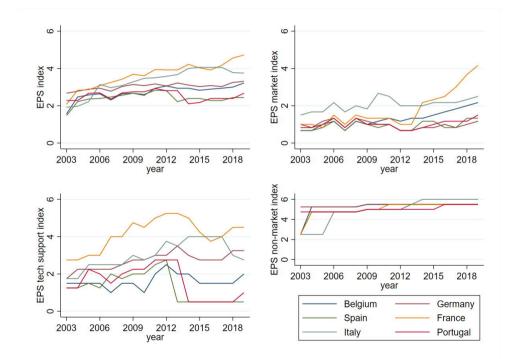
Key contributions

- Use of firm-level data for 6 EA countries between 2003-2019 to measure firm's performance
- Estimation of firm-level CO2 equivalent emissions to identify each firm's exposure to regulation
- Analysis of dynamic impacts over a 5-year horizon with local projections
- Comparison of impacts of different types of policy and impacts on different firms

Data

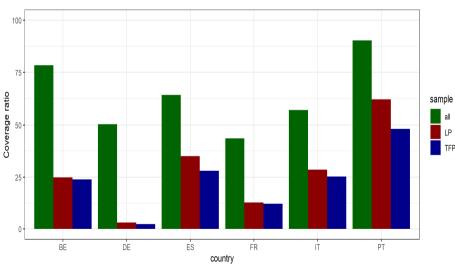
OECD Environmental Policy Stringency (EPS) indicator

- 24 OECD countries, 1990–2020 (Kruse et al., 2022)
- 3 sub-indicators: market, non-market, technnology support
- Range: 0 to 6 (very stringent)
- Focus on positive changes (more stringent regulation) and top 25% changes → stationary, not serially correlated



Orbis & iBACH: balance sheets

- Large firm-level dataset: Belgium, France, Germany, Italy, Portugal and Spain; 2003-2019
- Sample preparation following Kalemli-Ozcan et al. (2015) +
 - Firms with at least 1 employee and at least 2 consecutive observations
 - Nonfinancial and non-governmental sectors, without real estate and mining
 - Final sample includes 2.5 million firms (18 million observations)
- Total Factor Productivity: estimated a la Ackerberg et al. (2015)
- Labour productivity: real value added divided by number of employees



Coverage ratio

Patent data

- Data from Orbis IP database; aggregated to patent family level to avoid double-counting
- Cooperative Patent Classification (CPC) allows for a detailed technological disaggregation of innovation:
 - Clean innovations: climate change mitigation technologies
 - **Dirty innovations:** definition follows Dechezleprêtre et al. (2014) and includes e.g. fossil fuel energy generation or internal combustion engines
- Approx. 100,000 firm-year observations matched (only a minority of firms patent)

Share of clean and dirty innovations

Dirty innovations

CO₂ equivalent emissions of firms

- Urgentem data on CO₂ equivalent emissions (35k large firms), merged with ORBIS to get balance sheets of those firms
- Machine learning algorithm: Extreme Gradient Boosting (XGBoost)
 - Selects the regressors and finds the best non-linear patterns to estimate the dependent variable (CO₂)
- Estimation of CO₂ equivalent emission bins (0 low pollution – 9 high pollution)

Confusion matrix: actual vs estimated emission bins (test sample)

А	Re12									
	0	1	2	3	4	5	6	7	8	9
0	168	88	30	31	18	8	5	7	6	3
1	56	117	54	22	21	13	10	3		2
2	29	68	87	44	28	42	17	7	11	
3	11	28	57	65	62	49	28	7	10	1
4	13	14	51	55	72	53	28	27	26	9
5	6	21	21	45	47	72	35	29	22	9
6	8	10	15	20	39	57	61	64	21	5
7	4	2	5	9	25	32	72	96	69	29
8	2	6	4	6	7	13	38	39	99	42
9	3	1	1	2	4	6	4	27	58	202

Empirical Strategy

Empirical strategy

- i) Aggregate (country-level) analysis
- ii) Granular (firm-level) analysis incl. heterogeneity analysis

Local projections (Jordà, 2005)

- 1) Capturing dynamic effects
- 2) Less prone to miss-specification (than VARs)
- 3) Flexibility (to deal with endogeneity) \rightarrow fixed effects, interaction effects

Identification according to Rajan and Zingales (1998):

high exposed firms (highly polluting) are more affected by regulatory changes (more stringent policies)

Local projection specification

$$\ln(y_{f,t+h}) - \ln(y_{f,t-1}) = \beta_1^h EPS_{f,t} + \beta_2^h CO2_{i,t-1} + \beta_3^h (EPS_{i,t} * CO2_{f,t-1}) + \gamma_1^h X_{i,t} + \gamma_2^h Z_{f,t} + FE_i + FE_i + FE_i + FE_i + FE_f + \epsilon_{f,t+h}$$

$$h = 0, \dots, 5$$

y ... productivity (TFP, Labour productivity) of firm f in country i, and year t

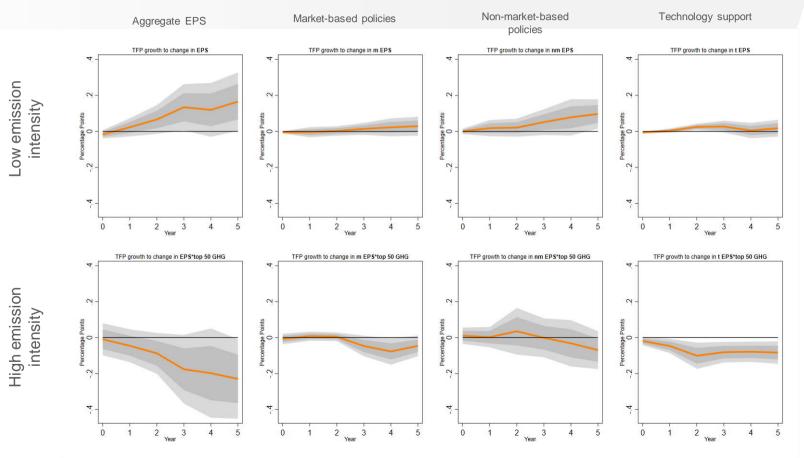
- *EPS* ... positive change (more stringent) in EPS index (sub-indicator) or = 1 if change in top 25% of change distribution
- CO2 ... = 1 if firm among top 6 emission bins (according to XGBoost)
- X ... country controls: cyclical position of the country, R&D expenditure, level of economic development labour and product market regulations (before reform)
- *Z* ... firm-level controls: age, size, ROA, distance to sector frontier and TFP growth of sector frontier (before reform)

Country and time FE in aggregate analysis + firm and sector FE in firm analysis

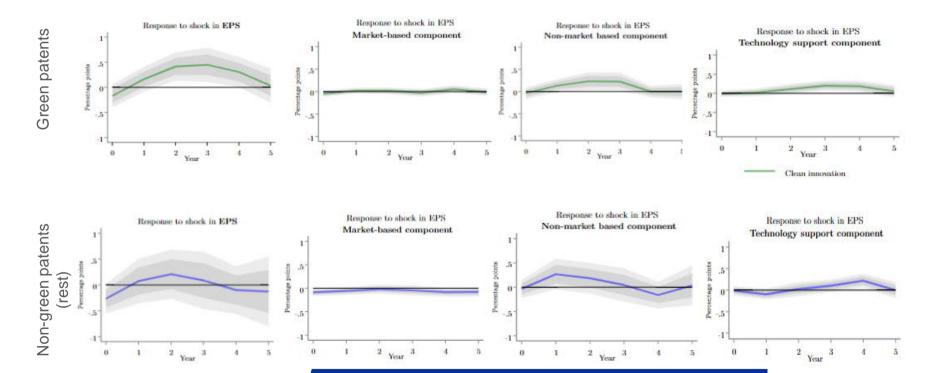
Robust (firm) clustered standard errors

Results

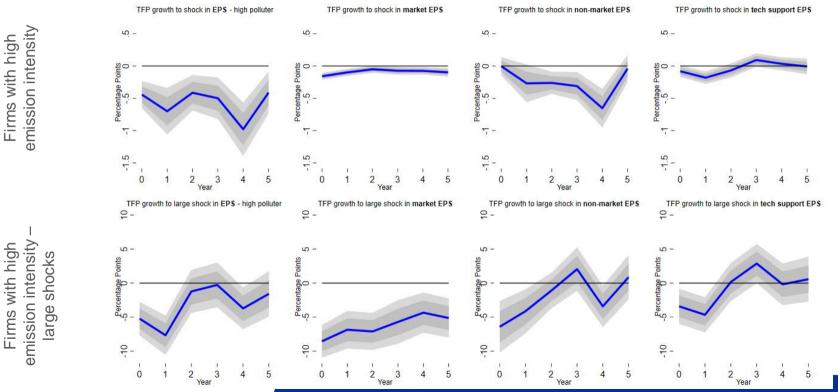
Aggregate results: impact on aggregate TFP growth



Firm-level results: Impact of a 1pp EPS tightening on patent applications (of polluting firms)



Firm-level results: Impact of a 1pp EPS tightening on TFP growth (of polluting firms)

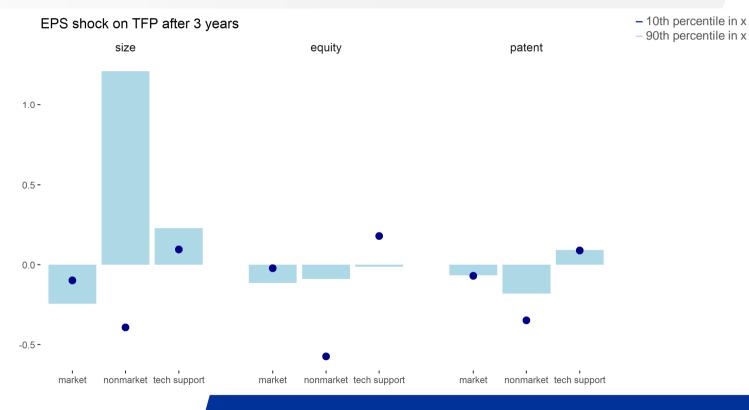


other polluting definition; Lprod results

15

www.ecb.europa.eu ©

Heterogeneity across polluting firms



www.ecb.europa.eu ©

Conclusions

Conclusions

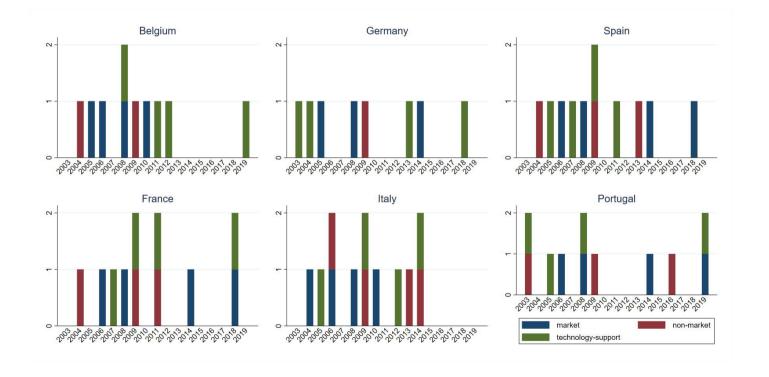
- More stringent environmental regulation incentives green innovation (without crowding out other innovation) → The weak PH holds
- But over the medium term (up to 5 years after regulatory change) stringent environmental regulation reduces TFP growth of polluting countries and firms
 → The strong PH does not hold over the medium-term, but it could do over the long-term
- Not all policies have the same effect: market based tools are less distorting than nonmarket ones, but they do no boost in innovation
 - The narrow PH holds partially
 - Impact of large changes in market policies are very negative for TFP growth
- Green R&D subsidies are preferred over market policies (innovation) and non-market policies (TFP growth)
- Access to finance and experience with patenting help mitigating TFP losses of polluting firms

Appendix

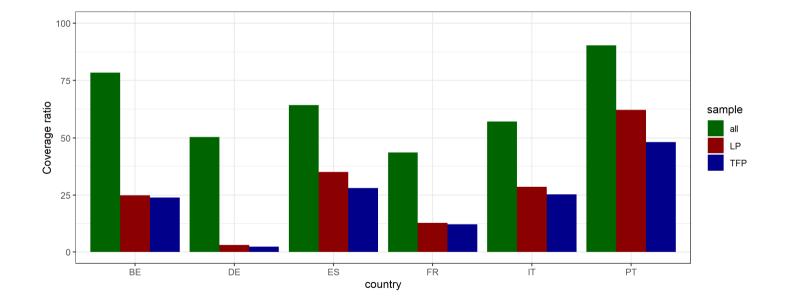
Literature Review

- Cohen and Tupp (2018) Meta analysis
 "The evidence presented is inconclusive both with regards to the significance and direction of the effect"
- Albrizio, Kozluk and Zipperer (2017)
 Panel regression, identification: industry pollution dependence
 Overall productivity increase, but "at the firm-level, only a minority of the firms register productivity gains after a tightening of environmental regulation"
- Hille and Möbius (2019)
 Dynamic panel regression, Arellano-Bond-estimator
 "After controlling for endogeneity [...] no support for the strong Porter Hypothesis can be found."
- Weak PH: What is the impact of environmental regulation on firm-level patenting activity? (2nd part of the project)

Large EPS shocks



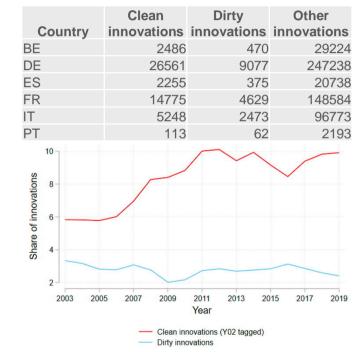
Orbis + iBACH firm data coverage



Patent data

- Data from Orbis IP database; aggregated to patent family level to avoid doublecounting
- Cooperative Patent Classification (CPC) allows for a detailed technological disaggregation of innovation:
 - **Clean innovations:** climate change mitigation technologies
 - **Dirty innovations:** definition follows Dechezleprêtre et al. (2014)
- Approx. 100,000 firm-year observations matched (only a minority of firms patent)

• Overview of matched sample:

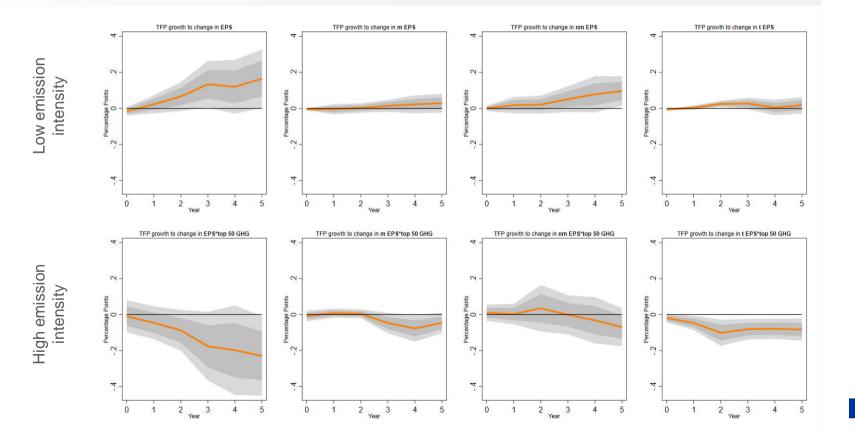


CO₂ equivalent emissions of firms

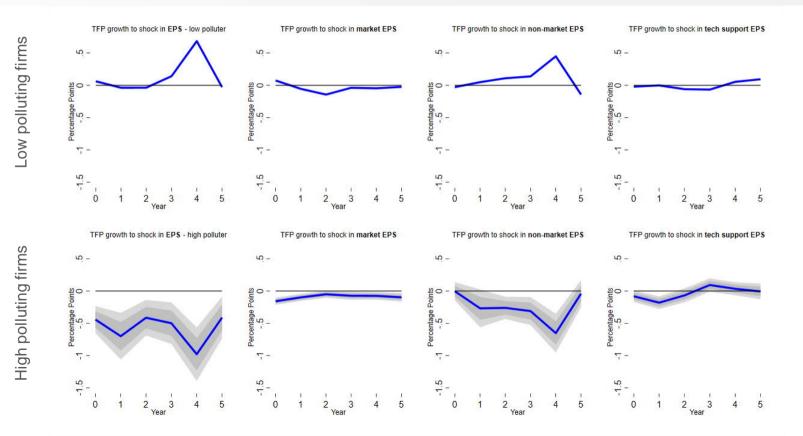
- Urgentem data on CO₂ equivalent emissions (35k large firms)
- Estimation of CO₂ equivalent emission bins (0 low pollution 9 high pollution)
- Machine learning algorithm: Extreme Gradient Boosting (XGBoost)
 - Selects the regressors and finds the best non-linear patterns to estimate the dependent variable (CO₂)
 - Confusion matrix: actual vs estimated emission bins (test sample)

A	Re 12										
	0	1	2	3	4	5	6	7	8	9	
0	168	88	30	31	18	8	5	7	6	3	
1	56	117	54	22	21	13	10	3		2	
2	29	68	87	44	28	42	17	7	11		
3	11	28	57	65	62	49	28	7	10	1	
4	13	14	51	55	72	53	28	27	26	9	
5	6	21	21	45	47	72	35	29	22	9	
6	8	10	15	20	39	57	61	64	21	5	
7	4	2	5	9	25	32	72	96	69	29	
8	2	6	4	6	7	13	38	39	99	42	
9	3	1	1	2	4	6	4	27	58	202	

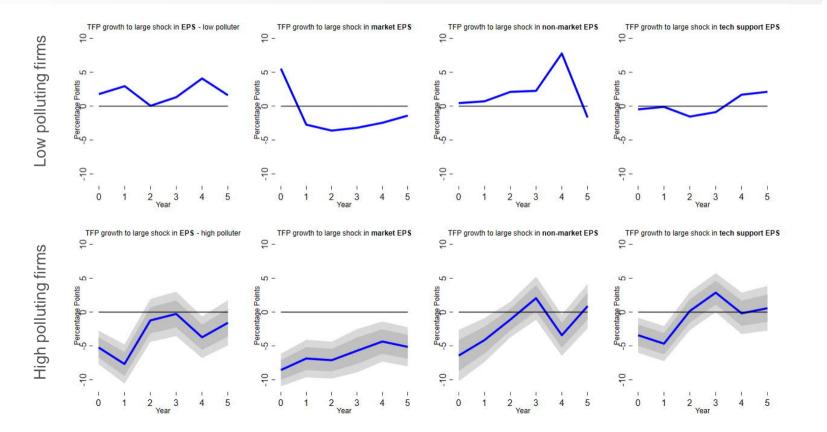
Aggregate productivity results



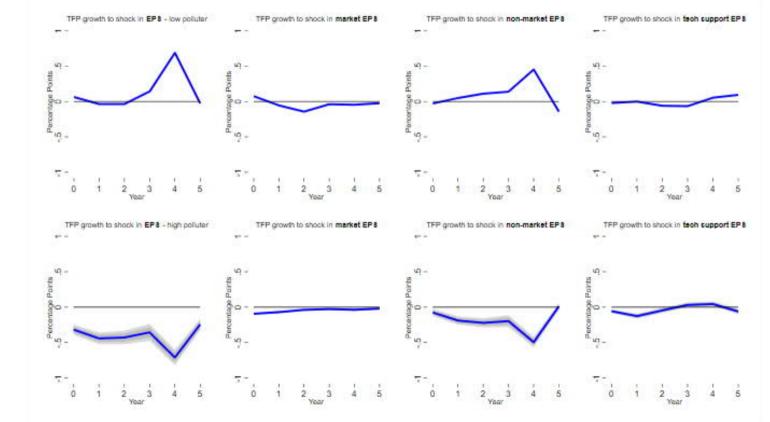
Firm-level productivity results -polluting and nonpolluting firms



Firm-level effects (large shocks) – polluting and nonpolluting firms



Firm-level effects (top 9 bins) – polluting and nonpolluting firms



Low polluting firms

High polluting firms

Firm-level effects (labour productivity)

