Money and Banking in a New Keynesian Model

Monika Piazzesi Ciaran Rogers Martin Schneider
Stanford Stanford Stanford

Belgium, December 2019

Motivation

- Standard New Keynesian model
 - ► central bank controls short rate in household stochastic discount factor
 - ► short rate = return on savings & investment
- This paper: New Keynesian model with banking sector
 - central bank controls interest rate on fed funds or reserves
 - households do not hold these assets directly
 - banks hold these assets to back inside money
 - \rightarrow disconnect between policy rate & short rate
- Central bank operating procedures:
 - chooses regime/reserve supply: scarce vs ample
 - matters for effectiveness of monetary policy

Corridor system with scarce reserves

- monetary policy targets fedfunds rate, sets reserve rate
- trading desk supplies reserves elastically to meet target
- banks' cost of liquidity > 0, rises if central bank tightens

Floor system with ample reserves

- monetary policy sets reserve rate & quantity of reserves
- banks' cost of liquidity zero, remains zero if central bank tightens

Implications

- Standard NK model
 - ▶ interest rate is all that matters, plumbing & quantities not important
- Banking & short rate disconnect: plumbing & quantities matter
 - ► floor system: interest rate policy only affects banks' cost of safety
 - higher reserve rate, cheaper safe collateral to back inside money, lower cost of liquidity for households, not banks, policy weaker
 - quantity of reserves is independent policy tool
 - corridor system: interest rate policy also affects banks' cost of liquidity
 - higher interbank rate, implemented with lower reserves (not indep.)
 - higher cost of liquidity for households & banks, stronger policy
 - both systems
 - less scope for multiple equilibria with short-rate disconnect (savings rate adjusts to inflation even if e.g. policy rate at peg)
 - nominal assets held by banks matter for output & inflation (banks' cost of safety depends on all collateral, not just reserves)

Plan for talk

- Transmission in minimal model with disconnect
 - ► Households make payments with CBDC (no banks)
- Introduce banks that provide inside money for payments
 - ► Government supplies ample reserves (floor system)
 - Scarce reserves (corridor system)

Literature

- NK models with financial frictions & banking
 - Bernanke-Gertler-Gilchrist 99, Cúrdia-Woodford 10, Gertler-Karadi 11, Gertler-Kiyotaki-Queralto 11, Christiano-Motto-Rostagno 12, Del Negro-Eggertson-Ferrero-Kiyotaki 17, Diba-Loisel 17, Arce-Nuño-Thaler-Thomas 19
- Convenience yields on bonds Patinkin 56, Tobin 61, Bansal-Coleman 96, Krishnamurthy-Vissing-Jorgensen 12, Andolfatto-Williamson 14, Nagel 15, Hagedorn 18, Michaillat-Saez 19
- Convenience yield on assets that back medium of exchange Kiyotaki-Moore 05, Williamson 12, Venkateswaran-Wright 13, Lenel-Piazzesi-Schneider 19
- Bank competition Yankov 12, Driscoll-Judson 13, Brunnermeier-Sannikov 14,
 Duffie-Krishnamurthy 16, Bianchi-Bigio 17, Egan, Hortacsu-Matvos 17,
 Drechsler-Savov-Schnabl 17, DiTella-Kurlat 17
- Recent work on dynamics of the New Keynesian model at ZLB information frictions, bounded rationality, fiscal theory, incomplete markets

Minimal model with short rate disconnect (no banks)

- Representative household
 - ► utility separable in labor + CES bundle of consumption & money
 - \bullet $\sigma = IES$ for bundles, $\eta = interest$ elasticity of money demand
 - lacktriangleright for now, separable in consumption & money: $\eta=\sigma$
 - later consider complementarity: $\eta < \sigma$
- Firms
 - ► consumption goods = CES aggregate of intermediates
 - ► intermediate goods made 1-1 from labor, Calvo price setting
- Government: central bank digital currency
 - ▶ path or feedback rule for money supply D_t
 - path or feedback rule for *policy rate* i_t^D = interest rate on money
 - ► lump sum taxes adjust to satisfy budget constraint
- Market clearing: goods, money, labor
 - $ightharpoonup i_t^S = ext{short rate in household SDF adjusts endogenously}$

Linear dynamics

- Steady state with zero inflation
- Standard NK Phillips curve & Euler equation, $\kappa = \lambda \left(\varphi + \frac{1}{\sigma} \right)$

$$\begin{split} \Delta \hat{\rho}_t &= \beta \Delta \hat{\rho}_{t+1} + \kappa \hat{y}_t \\ \hat{y}_t &= \hat{y}_{t+1} - \sigma \left(i_t^S - \Delta \hat{\rho}_{t+1} - \delta \right) \end{split}$$

Households' money demand

$$\hat{d}_t - \hat{p}_t = \hat{y}_t - \frac{\eta}{\delta - r^D} \left(i_t^S - i_t^D - \left(\delta - r^D \right) \right)$$

Why money does not matter in the standard NK model

$$\begin{split} \Delta \hat{\rho}_t &= \beta \Delta \hat{\rho}_{t+1} + \kappa \hat{y}_t \\ \hat{y}_t &= \hat{y}_{t+1} - \sigma \left(i_t^S - \Delta \hat{\rho}_{t+1} - \delta \right) \\ \hat{d}_t - \hat{\rho}_t &= \hat{y}_t - \frac{\eta}{\delta - r^D} \left(i_t^S - i_t^D - \left(\delta - r^D \right) \right) \end{split}$$

- Solve for $(\hat{p}_t, \hat{y}_t, i_t^S, i_t^D, \hat{d}_t)$ given initial condition \hat{p}_0
- Standard model
 - ▶ add 2 policy rules: Taylor rule for i_t^S , peg for $i_t^D = 0$
 - ightharpoonup quantity of money \hat{d}_t endogenous, adjusts to implement policy rule
 - \rightarrow policy rate = short rate
 - ▶ money does not matter, system is block recursive: solve for (\hat{p}_t, \hat{y}_t) given i_t^S , $i_t^D = 0$ and initial condition \hat{p}_0

Why money matters in CBDC model

$$\begin{split} \Delta \hat{\rho}_t &= \beta \Delta \hat{\rho}_{t+1} + \kappa \hat{y}_t \\ \hat{y}_t &= \hat{y}_{t+1} - \sigma \left(i_t^S - \Delta \hat{\rho}_{t+1} - \delta \right) \\ \hat{d}_t - \hat{\rho}_t &= \hat{y}_t - \frac{\eta}{\delta - r^D} \left(i_t^S - i_t^D - \left(\delta - r^D \right) \right) \end{split}$$

- CBDC model
 - ▶ adds 2 policy rules: interest on money i_t^D , quantity of money D_t
 - \blacktriangleright short rate i_t^D endogenous, satisfies Euler equation
 - \rightarrow disconnect: policy rate \neq short rate
 - ▶ money matters, system no longer block recursive: solve for $(\hat{p}_t, \hat{y}_t, i_t^S)$ given policy rules i_t^D and D_t
 - familiar special case: NK model with money growth rule & peg $i_t^D=0$

Disconnect and role of money with banks

- standard model: policy rate = short rate, money does not matter
- CBDC model: policy rate ≠ short rate, money matters
- banking model with floor system works like CBDC model
 - ▶ rules for reserve rate i_t^M , quantity of reserves M_t
 - ► short rate disconnect: households do not hold reserves
- banking model with corridor system
 - rules for fed funds rate i_t^F , peg for reserve rate $i_t^M = 0$
 - ▶ reserves endogenously adjust to implement policy rule
 → closer to standard model
 - ▶ but still short rate disconnect: households do not hold fed funds

Interest rate policy

• Standard model: short rate $i_t^S = \text{policy rate}$

Transmission of interest rate policy

• Money supplied elastically to implement i_t^S , fix $i_t^D = 0$

Interest rate policy

CBDC model: convenience yield is endogenous wedge

$$i_t^S - \delta = i_t^D - r^D + \frac{\delta - r^D}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$
 policy rate convenience yield, increasing in velocity = spending / money

Transmission of interest rate policy

⇒ convenience yield dampens effect

Local determinacy with interest rate peg

- Standard model: many bounded solutions to difference equation
- When do we get multiple bounded equilibrium paths?

- ullet Taylor principle: policy reacts aggressively to high inflation ullet high real rate on savings
- CBDC model: savings rate = policy rate + convenience yield higher convenience yield → higher real rate on savings
- ullet generalized Taylor principle: LR of savings rate to inflation > 1

When do we get local determinacy with separable utility?

- Taylor rule $i_t^D = r^D + \phi_\pi \Delta \hat{p}_t + \phi_y \hat{y}_t + v_t$
- Money supply rule $D_t = \mu D_{t-1} + P_t G$, $\mu \leq 1$
 - ightharpoonup choose μ , G, r^D to achieve zero inflation in steady state
 - with $\mu=1,~G=0 o$ constant money supply, nominal anchor
 - with $\mu < 1$, no nominal anchor: continuum of st.st. price levels
- Unique bounded solution iff

$$LR(i^{S}, \Delta \hat{\rho}) = \frac{\delta - r^{D}}{\eta} \left(\frac{\mu}{1 - \mu} + \frac{1 - \beta}{\kappa} \right) + \phi_{\pi} + \phi_{y} \frac{1 - \beta}{\kappa} > 1$$

- Less scope for multiple equilibria if
 - lower semielasticity of money demand $\eta/(\delta-r^D)$
 - \blacktriangleright more nominal asset rigidity in balance sheet: higher μ
 - \blacktriangleright prices more sticky: lower λ
 - more aggressive inflation response: higher ϕ_{π}

Cost channel

- Consumption & money complements in utility
 - ▶ nonseparable utility with $\eta < \sigma$
 - ▶ higher cost of liquidity $i_t^S i_t^D$ makes shopping less attractive
 - → reduce consumption, increase leisure/decrease labor
 - \rightarrow lower output, higher inflation
- Effect of higher policy rate on cost of liquidity $i_t^S i_t^D$
 - ▶ standard model: higher i_t^S with fixed $i_t^D \rightarrow$ higher cost
 - ullet CBDC model: higher i_t^D + imperfect pass-through o lower cost
- Numerical example
 - $\delta = 4\%$, $r^D = 1.6\%$, $\sigma = 1$, $\eta = .2$, standard cost & Calvo pars
 - constant money supply
 - ► Taylor rule with coefficient 1.5 on inflation, .5 on past short rate
 - ► compare impulse responses to 25*bp* monetary policy shock

IRFs to 25 bp monetary policy shock: standard model

IRFs to 25 bp monetary policy shock: standard vs CBDC

IRFs to 25 bp monetary policy shock: standard vs CBDC

NK Model with Banks

- central bank provides ample reserves ("floor system")
 - ► reserves are special as collateral, not needed for liquidity
 - monetary policy targets reserve rate

Banking sector

Balance sheet

Assets		Liabilities	
M	Reserves	Money	D
A	Other assets	Equity	

Shareholders maximize present value of cash flows

$$M_{t-1}\left(1+i_{t-1}^{M}\right)-M_{t}+A_{t-1}\left(1+i_{t-1}^{A}\right)-A_{t}-D_{t-1}\left(1+i_{t-1}^{D}\right)+D_{t}$$

- Costless adjustment of equity
- Leverage constraint: $D_t \le \ell \left(M_t + \rho A_t \right)$
 - m
 ho < 1 other assets are lower quality collateral to back (inside) money

Bank optimization: perfect competition

- Nominal rate of return on equity = i_t^S
 - **b** banks equate returns on assets & liabilities to cost of capital i_t^S
 - γ_t = multiplier on leverage constraint
- Optimal portfolio choice: assets valued as collateral

$$i_{t}^{S} = i_{t}^{M} + \ell \gamma_{t} \left(1 + i_{t}^{S} \right)$$
$$i_{t}^{S} = i_{t}^{A} + \rho \ell \gamma_{t} \left(1 + i_{t}^{S} \right)$$

Optimal money creation: money requires leverage cost

$$i_t^S = i_t^D + \gamma_t \left(1 + i_t^S \right)$$

⇒ Marginal cost pricing of liquidity

$$i_t^S - i_t^D = \frac{1}{\ell} \left(i_t^S - i_t^M \right)$$

Bank market power

- Many monopolistically competitive banks
- Households care about CES bundle of deposit varieties

$$D_t = \left(\int \left(D_t^i
ight)^{1-rac{1}{\eta_b}}
ight)^{rac{1}{1-rac{1}{\eta_b}}}$$

- η_b = elasticity of substitution between bank accounts
- ⇒ Constant markup over marginal cost

$$i_t^S - i_t^D = \frac{\eta_b}{\eta_b - 1} \frac{1}{\ell} \left(i_t^S - i_t^M \right)$$

Equilibrium with ample reserves

- Government: floor system with ample reserves
 - ▶ path or rule for supply of reserves M_t
 - ▶ path or rule for interest rate on reserves i_t^M
- Market clearing for reserves & other bank assets
 - exogenous path A_t^r of real assets, so $A_t = P_t A_t^r$
 - ► stands in for borrowing by firms or against housing
- Characterizing equilibrium
 - ► NK Phillips curve & Euler equation unchanged

Dynamics with ample reserves

Interest rate pass-through: reserve rate to short rate

$$i_t^S - \delta = i_t^M - r^M + \frac{\delta - r^M}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$

- ► reserves back inside money, inherit convenience yield of deposits
- Money supply

$$\hat{d}_t = \frac{M}{M + \rho A} \hat{\mathbf{m}}_t + \frac{\rho A}{M + \rho A} \hat{a}_t$$

- ► reserves a separate policy instrument: QE stimulates economy!
- other bank assets also matter: bad loan shocks contractionary
- \Rightarrow Works like CBDC model, but coefficients depend on banking system

Banking with scarce reserves

- Banks manage liquidity
 - deposit outflow/inflow $\tilde{\lambda}D_t$ to/from other banks
 - ightharpoonup iid liquidity shock $\tilde{\lambda}$ has mean zero, cdf G with bounded support
 - satisfy leverage constraint after deposit inflow/outflow
 - ightharpoonup borrow/lend in competitive fed funds market at rate i^F
- Assets valued as collateral, reserves also for liquidity
- Government:
 - ▶ path or rule for fed funds rate i_t^F , reserve rate i_t^M ; here $i_t^M = 0$
 - reserve supply adjusts to meet interest rate targets
- Market clearing for reserves, Fed funds
 - ► reserves scarce: quantity small relative to support of liquidity shocks
 - otherwise $i^F = i^M$ & no active Fed funds market, back to floor
 - ► government selects type of equilibrium

Dynamics with scarce reserves

Interest rate pass-through: fed funds rate to short rate

$$i_t^S - \delta = i_t^F - r^M + \frac{\delta - r^M}{\eta} \left(\hat{\rho}_t + \hat{y}_t - \hat{d}_t \right)$$

ullet Inside money in reserveless limit: share of reserves in bank assets o 0

$$\hat{d}_{t} = \frac{\eta}{\eta + \varepsilon} \hat{a}_{t} + \frac{\varepsilon}{\eta + \varepsilon} \left(\hat{p}_{t} + \hat{y}_{t} - \frac{\eta}{r^{F}} \left(i_{t}^{F} - r^{F} \right) \right)$$

- ε = function of bank technology parameters
- ⇒ Works like CBDC model with more elastic money supply
 - Numerical example to compare floor & corridor system

25bp increase in policy rate: corridor vs floor systems

Conclusion

- Disconnect between policy rate and short rate
 - convenience yield is endogenous wedge, changes transmission
 - ► less scope for multiple equilibria, even without Taylor principle
 - policy weaker if more nominal rigidities in balance sheets
- Bank models vs CBDC model
 - ► same basic transmission mechanism
 - difference to standard model depends on details of banking system:
 - ★ nominal rigidities in bank balance sheets, bank market power
 - ★ liquidity management & elasticity of deposit supply
- Corridor vs floor system
 - ► with cost channel, significant differences in IRFs
 - corridor system closer to standard model than floor system