Designing a Simple Loss Function for the Fed: Does the Dual Mandate Make Sense?

Davide Debortoli, Jinill Kim, Jesper Lindé and Ricardo Nunes

UCSD, KU & Federal Reserve Board

January, 2014
Motivation
Conduct of monetary policy delegated to central banks

- Variable and high rates of price inflation in the 1970s and 80s caused many economies to delegate the conduct of monetary policy to instrument independent central banks
Motivation

Conduct of monetary policy delegated to central banks

- Variable and high rates of price inflation in the 1970s and 80s caused many economies to delegate the conduct of monetary policy to instrument independent central banks.

- Advances in academic research — Rogoff (1985) and Persson and Tabellini (1993) — supported a strong focus on price stability.
Motivation
Conduct of monetary policy delegated to central banks

- Variable and high rates of price inflation in the 1970s and 80s caused many economies to delegate the conduct of monetary policy to instrument independent central banks.

- Advances in academic research — Rogoff (1985) and Persson and Tabellini (1993) — supported a strong focus on price stability.
 - As documented in Svensson (2010), many central banks became “inflation targeters” to strengthen credibility and facilitate accountability.
Motivation
Fed puts large weight on economic activity

- One exception to common central banking practice is the Fed’s “Dual Mandate” which stipulates it to “promote maximum employment in a context of price stability”
Motivation
Fed puts large weight on economic activity

- One exception to common central banking practice is the Fed’s “Dual Mandate” which stipulates it to “promote maximum employment in a context of price stability”
 - In January 2012, the Fed adopted an explicit inflation target and clarified its intention to keep a balanced approach to mitigate deviations of inflation from target and deviations of employment from its sustainable level.
Motivation
Fed puts large weight on economic activity

- One exception to common central banking practice is the Fed’s “Dual Mandate” which stipulates it to “promote maximum employment in a context of price stability”
 - In January 2012, the Fed adopted an explicit inflation target and clarified its intention to keep a balanced approach to mitigate deviations of inflation from target and deviations of employment from its sustainable level.

- However, from the point of view of maximizing the welfare of households inhabiting the economy, the large weight on resource utilization has little support, see e.g. the influential work of Woodford (2003) and EHL (2000)
Motivation
Fed puts large weight on economic activity

- One exception to common central banking practice is the Fed’s “Dual Mandate” which stipulates it to “promote maximum employment in a context of price stability”
 - In January 2012, the Fed adopted an explicit inflation target and clarified its intention to keep a balanced approach to mitigate deviations of inflation from target and deviations of employment from its sustainable level.

- However, from the point of view of maximizing the welfare of households inhabiting the economy, the large weight on resource utilization has little support, see e.g. the influential work of Woodford (2003) and EHL (2000)
 - But these papers were based on small calibrated models - what goes in estimated DSGE models?
Study the design of simple mandates (loss functions) within the context of an estimated medium-scale model of the U.S. economy – the workhorse Smets and Wouters (2007) model.
What we do

- Study the design of simple mandates (loss functions) within the context of an estimated medium-scale model of the U.S. economy – the workhorse Smets and Wouters (2007) model
- Specifically, we examine how to design simple objectives to maximize welfare of households

Assume Fed is able to commit to the simple mandate. We make this assumption since it is supported by the evidence in Bodenstein, Hebden and Nunes (2012) and Debortoli, Maih and Nunes (2012) and Ilbas (2012) it puts comparison of simple mandate on equal footing to Ramsey (which assumes commitment) it puts comparison of simple mandate on equal footing to simple interest rate rules (which assumes commitment)
What we do

- Study the design of simple mandates (loss functions) within the context of an estimated medium-scale model of the U.S. economy – the workhorse Smets and Wouters (2007) model
- Specifically, we examine how to design simple objectives to maximize welfare of households
 - For instance, does the Fed’s strong focus on resource utilization improve welfare relative to a simple mandate focused solely on inflation?
What we do

- Study the design of simple mandates (loss functions) within the context of an estimated medium-scale model of the U.S. economy – the workhorse Smets and Wouters (2007) model
- Specifically, we examine how to design simple objectives to maximize welfare of households
 - For instance, does the Fed’s strong focus on resource utilization improve welfare relative to a simple mandate focused solely on inflation?
- Assume Fed is able to commit to the simple mandate. We make this assumption since
What we do

- Study the design of simple mandates (loss functions) within the context of an estimated medium-scale model of the U.S. economy – the workhorse Smets and Wouters (2007) model

- Specifically, we examine how to design simple objectives to maximize welfare of households
 - For instance, does the Fed’s strong focus on resource utilization improve welfare relative to a simple mandate focused solely on inflation?

- Assume Fed is able to commit to the simple mandate. We make this assumption since
 - it is supported by the evidence in Bodenstein, Hebden and Nunes (2012) and Debortoli, Maih and Nunes (2012) and Ilbas (2012)
What we do

- Study the design of simple mandates (loss functions) within the context of an estimated medium-scale model of the U.S. economy – the workhorse Smets and Wouters (2007) model.
- Specifically, we examine how to design simple objectives to maximize welfare of households.
 - For instance, does the Fed’s strong focus on resource utilization improve welfare relative to a simple mandate focused solely on inflation?
- Assume Fed is able to commit to the simple mandate. We make this assumption since:
 1. it is supported by the evidence in Bodenstein, Hebden and Nunes (2012) and Debortoli, Maih and Nunes (2012) and Ilbas (2012)
 2. it puts comparison of simple mandate on equal footing to Ramsey (which assumes commitment)
What we do

- Study the design of simple mandates (loss functions) within the context of an estimated medium-scale model of the U.S. economy – the workhorse Smets and Wouters (2007) model.

- Specifically, we examine how to design simple objectives to maximize welfare of households.
 - For instance, does the Fed’s strong focus on resource utilization improve welfare relative to a simple mandate focused solely on inflation?

- Assume Fed is able to commit to the simple mandate. We make this assumption since:
 1. it is supported by the evidence in Bodenstein, Hebden and Nunes (2012) and Debortoli, Maih and Nunes (2012) and Ilbas (2012)
 2. it puts comparison of simple mandate on equal footing to Ramsey (which assumes commitment)
 3. it puts comparison of simple mandate on equal footing to simple interest rate rules (which assumes commitment)
Key findings

- A large weight on resource utilization is warranted
Key findings

- A large weight on resource utilization is warranted
 - For a standard inflation - output gap loss function, we find “lambda” about 1

Note: Absolute welfare gains/losses small (Lucas, 1987, and Otrok, 2001)

Results hold up when we introduce interest rate smoothing to capture the observed gradualism in policy behavior and ensure that the probability of FFR hitting ZLB is very low

Taylor (1993, 1999) rules do not mimic Ramsey policy well; but suitably designed simple interest rate rules do

Given the similarity of parameters in estimated models of other advanced economies, our results should be relevant for other CBs (e.g. ECB)
Key findings

- A large weight on resource utilization is warranted
 - For a standard inflation - output gap loss function, we find “lambda” about 1
 - More ad hoc utilization measures – like detrended output or output growth – also get a large weight

Note: Absolute welfare gains/losses small (Lucas, 1987, and Otrok, 2001)

Results hold up when we introduce interest rate smoothing to capture the observed gradualism in policy behavior and ensure that the probability of FFR hitting ZLB is very low

Taylor (1993, 1999) rules do not mimic Ramsey policy well; but suitably designed simple interest rate rules do

Given the similarity of parameters in estimated models of other advanced economies, our results should be relevant for other CBs (e.g. ECB)
Key findings

- A large weight on resource utilization is warranted
 - For a standard inflation - output gap loss function, we find “lambda” about 1
 - More ad hoc utilization measures – like detrended output or output growth – also get a large weight
 - Note: Absolute welfare gains/losses small (Lucas, 1987, and Otrok, 2001)
Key findings

- A large weight on resource utilization is warranted
 - For a standard inflation - output gap loss function, we find “lambda” about 1
 - More ad hoc utilization measures – like detrended output or output growth – also get a large weight
 - Note: Absolute welfare gains/losses small (Lucas, 1987, and Otrok, 2001)

- Results hold up when we introduce interest rate smoothing to capture the observed gradualism in policy behavior and ensure that the probability of FFR hitting ZLB is very low
Key findings

- A large weight on resource utilization is warranted
 - For a standard inflation - output gap loss function, we find “lambda” about 1
 - More ad hoc utilization measures – like detrended output or output growth – also get a large weight
 - Note: Absolute welfare gains/losses small (Lucas, 1987, and Otrok, 2001)

- Results hold up when we introduce interest rate smoothing to capture the observed gradualism in policy behavior and ensure that the probability of FFR hitting ZLB is very low

- Taylor (1993, 1999) rules do not mimic Ramsey policy well; but suitably designed simple interest rate rules do
Key findings

- A large weight on resource utilization is warranted
 - For a standard inflation-output gap loss function, we find “lambda” about 1
 - More ad hoc utilization measures – like detrended output or output growth – also get a large weight
 - Note: Absolute welfare gains/losses small (Lucas, 1987, and Otrok, 2001)

- Results hold up when we introduce interest rate smoothing to capture the observed gradualism in policy behavior and ensure that the probability of FFR hitting ZLB is very low
- Taylor (1993, 1999) rules do not mimic Ramsey policy well; but suitably designed simple interest rate rules do
- Given the similarity of parameters in estimated models of other advanced economies, our results should be relevant for other CBs (e.g. ECB)
Presentation outline

- Model and parameterization
- Our exercise
- Benchmark results
- Robustness of results
- Simple rule results
- Concluding remarks
Model

Key features of model structure

- We use the estimated SW07 model. This model features monopolistic competition in both goods and labour markets.

- Nominal price and wage stickiness:
 - Calvo price contracts, indexation of non-optimizers
 \[P_t^{NO} = \Pi_{t-1}^{\iota_p} \Pi^{1-\iota_p} P_{t-1}^{NO} \]
 - Calvo wage contracts, indexation of non-optimizers
 \[W_t^{NO} = \gamma \Pi_{t-1}^{\iota_w} \Pi^{1-\iota_w} W_{t-1}^{NO} \]
 - Kimball (1995) aggregator; lower slope of price and wage schedules for given Calvo parameter.

- Real rigidities as in CEE (2005):
 - External habit persistence in consumption
 - CEE type of investment adjustment costs
 - Variable capital utilization
Four structural shocks that we assume affect potential output:

- Total factor productivity (ε^a_t), Investment-specific (ε^i_t), Risk-shock on financial assets (ε^b_t), Government-NX (ε^g_t),

Two “inefficient” shocks:

- ε^p_t - “price markup” shock
- ε^w_t - “wage markup” shock

Pay particular attention to what extent the two cost-push shocks drive our results

SW also included a monetary policy shock, but we drop it here since we consider optimized simple mandates and rules
Parameterization
Parameters adopted from Smets and Wouters

- We use the posterior mode parameters from SW07 (Tables 1.A-B in their paper, Table 1 in our paper)
- Make assumptions on adjustment functions and how we introduce the shocks so that linearized representation of our model coincides exactly with SW07
Benigno and Woodford (2006) demonstrated that households utility function could be written as:

\[
\sum_{t=0}^{\infty} E_0 \left[\beta^t U(X_t) \right] \simeq \text{constant} - \sum_{t=0}^{\infty} E_0 \left[\beta^t X_t' W^{society} X_t \right], \quad (1)
\]
Benigno and Woodford (2006) demonstrated that households utility function could be written as:

\[
\sum_{t=0}^{\infty} E_0 [\beta^t U(X_t)] \simeq \text{constant} - \sum_{t=0}^{\infty} E_0 [\beta^t X_t' W^{society} X_t], \quad (1)
\]

- \(X_t' W^{society} X_t\) on the RHS is LQ approximation of the economy.
Benigno and Woodford (2006) demonstrated that households utility function could be written as:

\[
\sum_{t=0}^{\infty} E_0 \left[\beta^t U(X_t) \right] \approx \text{constant} - \sum_{t=0}^{\infty} E_0 \left[\beta^t X_t' W^{society} X_t \right],
\]

where \(X_t' W^{society} X_t \) on the RHS is LQ approximation of the economy. Define Ramsey policy as a policy which maximizes (1) subject to the \(N - 1 \) constraints of the economy.
Benigno and Woodford (2006) demonstrated that households utility function could be written as:

$$\sum_{t=0}^{\infty} E_0 \left[\beta^t U(X_t) \right] \approx \text{constant} - \sum_{t=0}^{\infty} E_0 \left[\beta^t X_t \right. W^{society} X_t \left. \right], \quad \text{(1)}$$

- $X_t \, W^{society} X_t$ on the RHS is LQ approximation of the economy
- Define Ramsey policy as a policy which maximizes (1) subject to the $N - 1$ constraints of the economy
- Do not allow for subsidies that undo the steady state distortions in the economy - our Ramsey policy is “second-best” as the LQ approximation is computed around an inefficient output level
Benigno and Woodford (2006) demonstrated that households utility function could be written as:

\[\sum_{t=0}^{\infty} E_0 [\beta^t U(X_t)] \sim constant - \sum_{t=0}^{\infty} E_0 [\beta^t X_t' W^{society} X_t], \quad (1) \]

- \(X_t' W^{society} X_t \) on the RHS is LQ approximation of the economy

Define Ramsey policy as a policy which maximizes (1) subject to the \(N - 1 \) constraints of the economy

- Do not allow for subsidies that undo the steady state distortions in the economy - our Ramsey policy is “second-best” as the LQ approximation is computed around an inefficient output level

- We adopt unconditional expectations operator for welfare evaluation, so the loss under Ramsey optimal policy is

\[Loss^{Ramsey} = E \left[\left(X_t^{Ramsey} (W^{society}) \right)' W^{society} \left(X_t^{Ramsey} (W^{society}) \right) \right] \]
Our Exercise
Simple Mandate approximation to policy behavior

We assume (arguably realistically) that the CB minimizes:

$$E_0 \sum \beta^t X'_t W^{CB} X_t,$$

where W^{CB} is a sparse matrix with many zeros.

Given W^{CB}, the expected loss for the society is

$$\text{Loss}_{\text{obj}} = E X_{\text{obj}}^t W^{CB} X_{\text{obj}}^t.$$

(2)

Measure welfare costs by comparing loss under mandate with Ramsey:

$$\text{CEV} = \frac{\text{Loss}_{\text{obj}}}{\bar{C} \left(\frac{\partial U}{\partial C} \right)}$$

(3)

where $\bar{C} \left(\frac{\partial U}{\partial C} \right)$ measures how welfare increases when consumption is increased 1%.

Hence, CEV is the increase in SS that make households in expectation equally well-off under simple mandate as under Ramsey policy.
Our Exercise
Simple Mandate approximation to policy behavior

- We assume (arguably realistically) that the CB minimizes:
 \[E_0 \sum \beta^t X_t' W^{CB} X_t, \]

- \(W^{CB} \) is a sparse matrix with many zeros
Our Exercise
Simple Mandate approximation to policy behavior

- We assume (arguably realistically) that the CB minimizes:
 \[E_0 \sum \beta^t X_t' W^{CB} X_t, \]

 - \(W^{CB} \) is a sparse matrix with many zeros
 - Given \(W^{CB} \), the expected loss for the society is
 \[Loss^{obj} = E \left[\left(X_t^{obj} (W^{CB}) \right)' W^{society} (X_t^{obj} (W^{CB})) \right]. \tag{2} \]
Our Exercise
Simple Mandate approximation to policy behavior

- We assume (arguably realistically) that the CB minimizes:
 \[E_0 \sum \beta^t X'_t W^{CB} X_t, \]
 - \(W^{CB} \) is a sparse matrix with many zeros
- Given \(W^{CB} \), the expected loss for the society is
 \[\text{Loss}^{obj} = E \left[\left(X^{obj}_t \left(W^{CB} \right) \right)' W^{society} \left(X^{obj}_t \left(W^{CB} \right) \right) \right]. \] (2)
- Measure welfare costs by comparing loss under mandate with Ramsey:
 \[\text{CEV} = 100 \left(\frac{\text{Loss}^{obj} - \text{Loss}^{Ramsey}}{\bar{C} \left(\frac{\partial U}{\partial C} \right|_{s.s.}} \right), \] (3)
 - \(\bar{C} (\partial U/\partial C) \) measures how welfare increases when consumption is increased 1%
Our Exercise
Simple Mandate approximation to policy behavior

- We assume (arguably realistically) that the CB minimizes:
 \[E_0 \sum \beta^t X'_t W^{CB} X_t, \]
 - \(W^{CB} \) is a sparse matrix with many zeros
 - Given \(W^{CB} \), the expected loss for the society is
 \[\text{Loss}^{obj} = E \left[\left(X^{obj}_t \left(W^{CB} \right) \right)' W^{society} \left(X^{obj}_t \left(W^{CB} \right) \right) \right]. \quad (2) \]

- Measure welfare costs by comparing loss under mandate with Ramsey:
 \[\text{CEV} = 100 \left(\frac{\text{Loss}^{obj} - \text{Loss}^{Ramsey}}{\overline{C} \left(\frac{\partial U}{\partial C} |_{s.s.} \right)} \right), \quad (3) \]

where \(\overline{C} \left(\frac{\partial U}{\partial C} \right) \) measures how welfare increases when consumption is increased 1%

- Hence, CEV is increase in SS \(C \) that make households in expectation equally well-off under simple mandate as under Ramsey policy
Our Exercise

Two alternative assumptions about mandate

- We will explore two alternative assumptions about the specificity of the law that governs the behavior of the central bank.
We will explore two alternative assumptions about the specificity of the law that governs the behavior of the central bank.

1. We assume that the law only specifies both the variables and weights. For example, the law could specify

\[L_t = (\pi_t - \pi^a)^2 + 0.25x_t^2 \]
Our Exercise
Two alternative assumptions about mandate

- We will explore two alternative assumptions about the specificity of the law that governs the behavior of the central bank.

1. We assume that the law only specifies both the variables and weights. For example, the law could specify

\[L_t = (\pi_t^a - \pi^a)^2 + 0.25x_t^2 \]

2. We assume the law specifies the objective function but not the weights; the central bank determines \(W_{CB} \) by maximizing welfare:

\[
W^* (\Omega) = \arg \min_{W_{CB} \in \Omega} \left[\left(X_{\text{optimal}} (W_{CB}) \right)' W^{\text{society}} \left(X_{\text{optimal}} (W_{CB}) \right) \right]
\]

where \(\Omega \) denotes the set of simple mandates consistent with the law. A simple example is

\[L_t = (\pi_t^a - \pi^a)^2 + \lambda^a x_t^2 \]
We start with a standard inflation-output based function

\[L_t = (\pi_t^a - \pi^a)^2 + \lambda^a x_t^2 \]
We start with a standard inflation-output based function

\[L_t = (\pi_t^a - \pi^a)^2 + \lambda^a x_t^2 \]

- \(\pi_t^a \) is annualized inflation \((4 \ln [P_t/P_{t-1}])\)
We start with a standard inflation-output based function

\[L_t = (\pi_t^a - \pi^a)^2 + \lambda^a x_t^2 \]

- \(\pi_t^a \) is annualized inflation \((4 \ln [P_t/P_{t-1}])\)

- Consider three alternative measures of \(x_t \): \(y_t - y_t^{pot} \), \(y_t - \bar{y}_t \) and \(4(y_t - y_{t-1}) \)
We start with a standard inflation-output based function

\[L_t = (\pi^a_t - \pi^a)^2 + \lambda^a x_t^2 \]

- \(\pi^a_t \) is annualized inflation (4 \(\ln \left[P_t / P_{t-1} \right] \))
- Consider three alternative measures of \(x_t \): \(y_t - y_t^{pot} \), \(y_t - \bar{y}_t \) and \(4 (y_t - y_{t-1}) \)
- CEV as function for \(\lambda^a \) for the alternate \(x_t \) measures are reported in Figure 1
Benchmark results

CEV for simple mandates with alternative utilization measures

Output Gap

Output

Output Growth (Annualized)

\(CEV \) as function of \(\lambda^0 \)

Optimized value
Benchmark results
Volatility trade-offs for alternative utilization measures

Output Gap in Loss Function
- Opt. value ($\lambda^a = 1.042$)
- $\lambda^a = 0.01$
- $\lambda^a = 5$

Output in Loss Function
- Opt. value ($\lambda^a = 0.542$)
- $\lambda^a = 0.01$
- $\lambda^a = 5$

Annualized Output Growth in Loss Function
- Opt. value ($\lambda^a = 2.943$)
- $\lambda^a = 0.01$
- $\lambda^a = 5$
Benchmark results
Drivers of our results

- Key findings:

- Optimal weight on resource utilization is about 1.05. This is substantially higher than Woodford's (2003) value of 0.048 and Yellen's (2012) value of 0.252.

- Important volatility trade-off between inflation and the output gap (at odds with Justiniano, Primiceri and Tambalotti, 2012).

Two questions:

1. Why do we get such a large λ?
2. Why do we get important volatility trade-offs?

Are the shocks or deep parameters driving our results?
Key findings:

- Optimal weight on resource utilization is about 1.05. This is substantially higher than Woodford's (2003) value of 0.048 and Yellen's (2012) value of 0.25.
Key findings:

1. Optimal weight on resource utilization is about 1.05. This is substantially higher than Woodford’s (2003) value of 0.048 and Yellen’s (2012) value of 0.25.

2. Important volatility trade-off between inflation and the output gap (at odds with Justiniano, Primiceri and Tambalotti, 2012)
Key findings:

1. Optimal weight on resource utilization is about 1.05. This is substantially higher than Woodford’s (2003) value of 0.048 and Yellen’s (2012) value of 0.25.

2. Important volatility trade-off between inflation and the output gap (at odds with Justiniano, Primiceri and Tambalotti, 2012)

Two questions:
Benchmark results

Drivers of our results

Key findings:

1. Optimal weight on resource utilization is about 1.05. This is substantially higher than Woodford’s (2003) value of 0.048 and Yellen’s (2012) value of 0.25.

2. Important volatility trade-off between inflation and the output gap (at odds with Justiniano, Primiceri and Tambalotti, 2012)

Two questions:

1. Why do we get such a large λ^a?
Benchmark results
Drivers of our results

- Key findings:
 1. Optimal weight on resource utilization is about 1.05. This is substantially higher than Woodford’s (2003) value of 0.048 and Yellen’s (2012) value of 0.25
 2. Important volatility trade-off between inflation and the output gap (at odds with Justiniano, Primiceri and Tambalotti, 2012)

- Two questions:
 1. Why do we get such a large λ^a?
 2. Why do we get important volatility trade-offs?
Key findings:

1. Optimal weight on resource utilization is about 1.05. This is substantially higher than Woodford’s (2003) value of 0.048 and Yellen’s (2012) value of 0.25.
2. Important volatility trade-off between inflation and the output gap (at odds with Justiniano, Primiceri and Tambalotti, 2012)

Two questions:

1. Why do we get such a large λ^a?
2. Why do we get important volatility trade-offs?

Are the shocks or deep parameters driving our results?
To understand the role of the parameters, we compute λ^a using Woodford’s (2003) formula

$$16 \frac{\kappa_x}{\theta_p}$$

in a variant of the model without capital and wage stickiness, and find that $\lambda^a = 0.87$
Benchmark results
Drivers of our results

- To understand the role of the parameters, we compute λ^a using Woodford’s (2003) formula
 \[16 \frac{\kappa_x}{\theta_p} \]
in a variant of the model without capital and wage stickiness, and find that $\lambda^a = 0.87$
 - This is higher than Woodford’s λ^a as he assumed firm-specific labor (which c.p. lowers κ_x) and a higher substitution elasticity (θ_p)

But this analysis is only indicative, as it omits several aspects of the fully-fledged model. Hence, we complement it by studying the influence of dynamic indexation and cost-push shocks.
Benchmark results
Drivers of our results

- To understand the role of the parameters, we compute λ^a using Woodford’s (2003) formula
 \[16 \frac{\kappa_x}{\theta_p}\]
in a variant of the model without capital and wage stickiness, and find that $\lambda^a = 0.87$
- This is higher than Woodford’s λ^a as he assumed firm-specific labor (which c.p. lowers κ_x) and a higher substitution elasticity (θ_p)
- But this analysis is only indicative, as it omits several aspects of the fully-fledged model
To understand the role of the parameters, we compute λ^a using Woodford’s (2003) formula

$$16\frac{\kappa_x}{\theta_p}$$

in a variant of the model without capital and wage stickiness, and find that $\lambda^a = 0.87$

- This is higher than Woodford’s λ^a as he assumed firm-specific labor (which c.p. lowers κ_x) and a higher substitution elasticity (θ_p)

- But this analysis is only indicative, as it omits several aspects of the fully-fledged model

- Hence, we complement it by studying the influence of dynamic indexation and cost-push shocks
Benchmark results
Drivers of our results

- To understand the role of the parameters, we compute λ^a using Woodford’s (2003) formula

$$16 \frac{\kappa_x}{\theta_p}$$

in a variant of the model without capital and wage stickiness, and find that $\lambda^a = 0.87$

- This is higher than Woodford’s λ^a as he assumed firm-specific labor (which c.p. lowers κ_x) and a higher substitution elasticity (θ_p)

- But this analysis is only indicative, as it omits several aspects of the fully-fledged model

- Hence, we complement it by studying the influence of dynamic indexation and cost-push shocks

 - λ^a above or close to unity even when either $\text{var}(\varepsilon^p_t)$ or $\text{var}(\varepsilon^w_t)$ is set to nil
Benchmark results

Drivers of our results

- To understand the role of the parameters, we compute λ^a using Woodford’s (2003) formula

$$16\frac{\kappa_x}{\theta_p}$$

in a variant of the model without capital and wage stickiness, and find that $\lambda^a = 0.87$

- This is higher than Woodford’s λ^a as he assumed firm-specific labor (which c.p. lowers κ_x) and a higher substitution elasticity (θ_p)

- But this analysis is only indicative, as it omits several aspects of the fully-fledged model

- Hence, we complement it by studying the influence of dynamic indexation and cost-push shocks

 - λ^a above or close to unity even when either $\text{var}(\varepsilon^p_t)$ or $\text{var}(\varepsilon^w_t)$ is set to nil

 - Find that dynamic indexation important; λ^a drops to 0.32 for y^gap_t when $\iota_p = \iota_w = 0$ – but still 6 times larger than Woodford
Benchmark results

Sensitivity of results w.r.t. parameters and shocks
We now turn to the second question, namely why we get an important trade-off between stabilizing the output gap and inflation.
Benchmark results

Drivers of our results

- We now turn to the second question, namely why we get an important trade-off between stabilizing the output gap and inflation.
- Justiniano, Primiceri and Tambalotti (2012) finds that the output gap can be stabilized without generating higher inflation volatility.
We now turn to the second question, namely why we get an important trade-off between stabilizing the output gap and inflation.

Justiniano, Primiceri and Tambalotti (2012) finds that the output gap can be stabilized without generating higher inflation volatility.

But, they consider a model without a wage markup shock (allow for labor supply shock and measurement errors in the wage series to fit the data).
We now turn to the second question, namely why we get an important trade-off between stabilizing the output gap and inflation. Justiniano, Primiceri and Tambalotti (2012) finds that the output gap can be stabilized without generating higher inflation volatility. But, they consider a model without a wage markup shock (allow for labor supply shock and measurement errors in the wage series to fit the data). Moreover, the JPT model features an inflation target shock as opposed to the SW price markup shock; this shock is removed in their policy analysis.
Benchmark results

Drivers of our results

- We now turn to the second question, namely why we get an important trade-off between stabilizing the output gap and inflation

- Justiniano, Primiceri and Tambalotti (2012) finds that the output gap can be stabilized without generating higher inflation volatility
 - But, they consider a model without a wage markup shock (allow for labor supply shock and measurement errors in the wage series to fit the data)
 - Moreover, the JPT model features an inflation target shock as opposed to the SW price markup shock; this shock is removed in their policy analysis

- Therefore, we study the influence of the price and wage markup shocks and our assumption of dynamic indexation in wage and price setting
Benchmark results

Variance frontiers for alternative calibrations
While we do not necessarily disagree with JPT, our analysis makes clear that their “no trade-off” result is a special case in the sense that it applies only if \textit{BOTH} price and wage markup shocks are irrelevant.
Robustness of results

- Importantly, we find that our results hold up when we put restrictions on std(r_t^a):

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>$\lambda^a - y_t^{gap}$</th>
<th>λ_r</th>
<th>CEV (%)</th>
<th>std(r_t^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodford</td>
<td>0.048</td>
<td>—</td>
<td>0.1381</td>
<td>8.92</td>
</tr>
<tr>
<td>Optimized</td>
<td>1.042</td>
<td>—</td>
<td>0.0128</td>
<td>9.00</td>
</tr>
<tr>
<td>Optimized*: $r_t^a - r^a$</td>
<td>1.161</td>
<td>0.0770*</td>
<td>0.0222</td>
<td>2.24</td>
</tr>
<tr>
<td>Optimized*: Δr_t^a</td>
<td>1.110</td>
<td>1.0000*</td>
<td>0.0246</td>
<td>2.04</td>
</tr>
</tbody>
</table>

- Obviously, commitment assumption important here
Robustness of results

- Also study the merits of an alternative mandate with nominal wage inflation and a labor market gap ($l_t - l_t^{pot}$):

\[L_t = (\Delta w_t^a - \Delta w^a)^2 + \lambda^a (l_t - l_t^{pot})^2 \]
Robustness of results

- Also study the merits of an alternative mandate with nominal wage inflation and a labor market gap \((l_t - l_t^{pot}) \):

\[
L_t = (\Delta w_t^a - \Delta w^a)^2 + \lambda^a (l_t - l_t^{pot})^2
\]

- Find that labor market variables warrant further attention; not surprising given that the model features labor market frictions (nominal wage frictions)
Robustness of results
On the importance of labor market variables
We also study the performance of simple rules on the form

\[r_t^a = (1 - \rho_r) \left[r^a + \varrho_\pi (\pi_t^a - \pi^a) + \varrho_y y_t^{gap} + \varrho_\Delta y y_t^{gap} \right] + \rho_r r_{t-1}^a \]

Look at Taylor (1993) and (1999) and coefficients that minimize CEV

<table>
<thead>
<tr>
<th>Parameterization</th>
<th>(\varrho_\pi)</th>
<th>(\varrho_y)</th>
<th>(\varrho_\Delta y)</th>
<th>(\rho_r)</th>
<th>CEV (%)</th>
<th>std((r_t^a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor (1993)</td>
<td>1.50</td>
<td>0.50</td>
<td>-</td>
<td>-</td>
<td>0.1170</td>
<td>5.43</td>
</tr>
<tr>
<td>Taylor (1999)</td>
<td>1.50</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
<td>0.2251</td>
<td>7.53</td>
</tr>
<tr>
<td>Optimized: (\varrho_\Delta y = 0)</td>
<td>11.78</td>
<td>5.76</td>
<td>-</td>
<td>0.99</td>
<td>0.0633</td>
<td>2.08</td>
</tr>
<tr>
<td>Optimized, uncon.</td>
<td>20.20</td>
<td>0.40</td>
<td>56.52</td>
<td>0.48</td>
<td>0.0097</td>
<td>7.81</td>
</tr>
<tr>
<td>Optimized, constr.</td>
<td>29.28</td>
<td>0.79</td>
<td>54.81</td>
<td>0.99</td>
<td>0.0239</td>
<td>2.08</td>
</tr>
</tbody>
</table>
We find that optimized rule is characterized by:

- High degree of interest rate smoothing (ρ_r)
- Large response coefficients for inflation (φ_π) and growth rate of the output gap ($\varphi_{\Delta y}$)
- Coefficient on the level of the output gap (φ_y)
- Substantially smaller CEV for optimized rule

So properly designed, simple mandates and rules appear to work about equally well.
Simple rule results

Interpretation of findings

- We find that optimized rule is characterized by
 - High degree of interest rate smoothing (ρ_r)
We find that optimized rule is characterized by

- High degree of interest rate smoothing \((\rho_r)\)
- Large response coefficients for inflation \((\zeta_\pi)\) and growth rate of the output gap \((\zeta_{\Delta y})\); coeff on the level of the output gap \((\zeta_y)\) substantially smaller

CEV for optimized rule \((4)\) is about the same as CEV for optimized simple mandate.

So properly designed, simple mandates and rules appear to work about equally well.
Simple rule results

Interpretation of findings

- We find that optimized rule is characterized by
 - High degree of interest rate smoothing (ρ_r)
 - Large response coefficients for inflation (ϱ_π) and growth rate of the output gap ($\varrho_{\Delta y}$); coeff on the level of the output gap (ϱ_y) substantially smaller

- CEV for optimized rule (4) is about the same as CEV for optimized simple mandate
We find that optimized rule is characterized by

- High degree of interest rate smoothing \((\rho_r)\)
- Large response coefficients for inflation \((\varrho_\pi)\) and growth rate of the output gap \((\varrho_{\Delta y})\); coeff on the level of the output gap \((\varrho_y)\) substantially smaller

CEV for optimized rule (4) is about the same as CEV for optimized simple mandate

- So properly designed, simple mandates and rules appear to work about equally well
Our analysis suggest that resource utilization should carry a large weight in formulation of monetary policy, consistent with the spirit of the dual mandate and recent papers by Reifschneider et al. (2013) and English et al. (2013).
Concluding remarks

- Our analysis suggest that resource utilization should carry a large weight in formulation of monetary policy, consistent with the spirit of the dual mandate and recent papers by Reifschneider et al. (2013) and English et al. (2013)
 - Weight on resource utilization also substantially higher than suggested by influential work im Woodford (2003)

- We study the robustness of our results in a number of directions; including price- and wage-level targeting, speed-limit policies etc. Find that our basic result of a strong response to economic activity holds up in all cases

- Our results warrant further work to check robustness in models with financial frictions, imperfect information, and plausible transmission lags of monetary policy
Concluding remarks

- Our analysis suggest that resource utilization should carry a large weight in formulation of monetary policy, consistent with the spirit of the dual mandate and recent papers by Reifschneider et al. (2013) and English et al. (2013)
 - Weight on resource utilization also substantially higher than suggested by influential work im Woodford (2003)
 - Benchmark calibration features a more prominent variance trade-off compared to Justiniano, Primiceri and Tambalotti (2012)

- We study the robustness of our results in a number of directions; including price- and wage-level targeting, speed-limit policies etc.
- Find that our basic result of a strong response to economic activity holds up in all cases
- Our results warrant further work to check robustness in models with financial frictions, imperfect information, and plausible transmission lags of monetary policy
Our analysis suggest that resource utilization should carry a large weight in formulation of monetary policy, consistent with the spirit of the dual mandate and recent papers by Reifschneider et al. (2013) and English et al. (2013)

- Weight on resource utilization also substantially higher than suggested by influential work im Woodford (2003)
- Benchmark calibration features a more prominent variance trade-off compared to Justiniano, Primiceri and Tambalotti (2012)

We study the robustness of our results in a number of directions; including price- and wage-level targeting, speed-limit policies etc.
Our analysis suggest that resource utilization should carry a large weight in formulation of monetary policy, consistent with the spirit of the dual mandate and recent papers by Reifschneider et al. (2013) and English et al. (2013)

- Weight on resource utilization also substantially higher than suggested by influential work in Woodford (2003)
- Benchmark calibration features a more prominent variance trade-off compared to Justiniano, Primiceri and Tambalotti (2012)

We study the robustness of our results in a number of directions; including price- and wage-level targeting, speed-limit policies etc.

- Find that our basic result of a strong response to economic activity holds up in all cases
Concluding remarks

- Our analysis suggest that resource utilization should carry a large weight in formulation of monetary policy, consistent with the spirit of the dual mandate and recent papers by Reifschneider et al. (2013) and English et al. (2013)
 - Weight on resource utilization also substantially higher than suggested by influential work im Woodford (2003)
 - Benchmark calibration features a more prominent variance trade-off compared to Justiniano, Primiceri and Tambalotti (2012)

- We study the robustness of our results in a number of directions; including price- and wage-level targeting, speed-limit policies etc.
 - Find that our basic result of a strong response to economic activity holds up in all cases

- Our results warrant further work to check robustness in models with financial frictions, imperfect information, and plausible transmission lags of monetary policy