Tractable Term Structure Models and the Zero Lower Bound

Bruno Feunou, Jean-Sébastien Fontaine, Anh Le, Chris Lundblad

National Bank of Belgium
October, 2018
Motivation

One-month interest rate

Feunou, Fontaine, Le, Lundblad
Tractable Term Structure Models
October 2018
Motivation

Consider the Gaussian models:

\[M_{t+1} = e^{-\left(\delta_0 + \delta_1' X_t\right)} e^{-\frac{1}{2} \lambda'_t \lambda_t - \lambda'_t \epsilon_{t+1}} \]

where

\[X_{t+1} = K_0 + K_1 X_t + \Sigma \epsilon_{t+1}, \]

\[\epsilon_{t+1} \sim N(0, I), \]

\[\lambda_t = \lambda_0 + \lambda_1 X_t, \]

\[r_t \approx 0, \]

are tractable:

\[y_{nt}, \]

but problematic:

\[r_{t+1} \]

because when \(r_t \approx 0 \), model says 50% chance \(r_{t+1} \) will be negative.

Consider the Black's models:

\[M_{t+1} = e^{-\max \left(\delta_0 + \delta_1' X_t, 0\right)} e^{-\frac{1}{2} \lambda'_t \lambda_t - \lambda'_t \epsilon_{t+1}} \]

where

\[X_{t+1} = K_0 + K_1 X_t + \Sigma \epsilon_{t+1}, \]

\[\epsilon_{t+1} \sim N(0, I), \]

are no longer tractable:

\[y_{nt}, \]

but receive more attention:

\[y_{nt} \geq 0, \]
Motivation

Consider the Gaussian models:

\[
M_{t+1} = e^{-\left(\delta_0 + \delta'_1 X_t\right)} - \frac{1}{2} \lambda'_t \lambda_t - \lambda'_t \epsilon_{t+1},
\]

\[
\lambda_t = \lambda_0 + \lambda_1 X_t,
\]

\[
X_{t+1} = K_0 + K_1 X_t + \Sigma \epsilon_{t+1},
\]

\[
\epsilon_{t+1} \sim N(0, I),
\]

are tractable:

\[
y_{n,t} = A_n + B_n X_t;
\]
Motivation

Consider the Gaussian models:

\[
M_{t+1} = e^{\left(\delta_0 + \delta_1 X_t\right)} - \frac{1}{2} \lambda_t' \lambda_t - \lambda_t' \epsilon_{t+1},
\]

\[
\lambda_t = \lambda_0 + \lambda_1 X_t,
\]

\[
X_{t+1} = K_0 + K_1 X_t + \Sigma \epsilon_{t+1},
\]

\[
\epsilon_{t+1} \sim N(0, I),
\]

- are tractable:

\[
y_{n,t} = A_n + B_n X_t;
\]

- but problematic: because when

\[
r_t \approx 0, \text{ model says 50\% chance } \]

\[
r_{t+1} \text{ will be negative.}
\]
Motivation

Consider the Gaussian models:

\[M_{t+1} = e^{-\left(\delta_0 + \delta'_1 X_t\right) - \frac{1}{2} \lambda'_t \lambda_t - \lambda'_t \epsilon_{t+1}} \]
\[\lambda_t = \lambda_0 + \lambda_1 X_t, \]
\[X_{t+1} = K_0 + K_1 X_t + \Sigma \epsilon_{t+1}, \]
\[\epsilon_{t+1} \sim N(0, I), \]

• are tractable:

\[y_{n,t} = A_n + B_n X_t; \]

• but problematic: because when \(r_t \approx 0 \), model says 50% chance \(r_{t+1} \) will be negative.

Consider the Black’s models:

\[M_{t+1} = e^{-\max(\delta_0 + \delta'_1 X_t, 0) - \frac{1}{2} \lambda'_t \lambda_t - \lambda'_t \epsilon_{t+1}} \]
\[\lambda_t = \lambda_0 + \lambda_1 X_t, \]
\[X_{t+1} = K_0 + K_1 X_t + \Sigma \epsilon_{t+1}, \]
\[\epsilon_{t+1} \sim N(0, I), \]
Motivation

Consider the Gaussian models:

\[M_{t+1} = e^{-(\delta_0 + \delta'_1 X_t)} - \frac{1}{2} \lambda'_t \lambda_t - \lambda'_t \epsilon_{t+1} \]

\[\lambda_t = \lambda_0 + \lambda_1 X_t, \]

\[X_{t+1} = K_0 + K_1 X_t + \Sigma \epsilon_{t+1}, \]

\[\epsilon_{t+1} \sim N(0, I), \]

- **are tractable:**

\[y_{n,t} = A_n + B_n X_t; \]

- **but problematic:** because when

\[r_t \approx 0, \] model says 50% chance \[r_{t+1} \] will be negative.

Consider the Black’s models:

\[M_{t+1} = e^{\max(\delta_0 + \delta'_1 X_t, 0)} - \frac{1}{2} \lambda'_t \lambda_t - \lambda'_t \epsilon_{t+1} \]

\[\lambda_t = \lambda_0 + \lambda_1 X_t, \]

\[X_{t+1} = K_0 + K_1 X_t + \Sigma \epsilon_{t+1}, \]

\[\epsilon_{t+1} \sim N(0, I), \]

- **are no longer tractable:**

\[y_{n,t}'s \] are no longer closed-form
Motivation

Consider the Gaussian models:

$$M_{t+1} = e^{-\left(\delta_0 + \delta'_1 X_t\right)} - \frac{1}{2} \lambda'_t \lambda_t - \lambda'_t \epsilon_{t+1},$$

$$\lambda_t = \lambda_0 + \lambda_1 X_t,$$

$$X_{t+1} = K_0 + K_1 X_t + \Sigma \epsilon_{t+1},$$

$$\epsilon_{t+1} \sim N(0, I),$$

- **are tractable:**
 $$y_{n,t} = A_n + B_n X_t;$$

- **but problematic:** because when $$r_t \approx 0$$, model says 50% chance $$r_{t+1}$$ will be negative.

Consider the Black’s models:

$$M_{t+1} = e^{-\max(\delta_0 + \delta'_1 X_t, 0)} - \frac{1}{2} \lambda'_t \lambda_t - \lambda'_t \epsilon_{t+1},$$

$$\lambda_t = \lambda_0 + \lambda_1 X_t,$$

$$X_{t+1} = K_0 + K_1 X_t + \Sigma \epsilon_{t+1},$$

$$\epsilon_{t+1} \sim N(0, I),$$

- **are no longer tractable:**
 $$y_{n,t}$$’s are no longer closed-form

- **but receive more attention:**
 $$y_{n,t} \geq 0$$
Motivation

More generally, in constructing no-arbitrage term structure models, we are often constrained by tractability considerations:

- We tend to focus on a subset of sdfs $M_t > 0$ such that:

 $$P_{1,t} = E_t[M_{t+1}] \text{ is closed form},$$
 $$P_{2,t} = E_t[M_{t+1}M_{t+2}] \text{ is closed form},$$
 $$\ldots,$$
 $$P_{n,t} = E_t[M_{t+1}M_{t+2}\ldots M_{t+n}] \text{ is closed form}$$

- Focusing on this subset of sdf’s may restrict our ability to explore more realistic models
Motivation

More generally, in constructing no-arbitrage term structure models, we are often constrained by tractability considerations:

- We tend to focus on a subset of sdf's $M_t > 0$ such that:

\[
P_{1,t} = E_t[M_{t+1}] \text{ is closed form},
\]
\[
P_{2,t} = E_t[M_{t+1}M_{t+2}] \text{ is closed form},
\]
\[
...
\]
\[
P_{n,t} = E_t[M_{t+1}M_{t+2}...M_{t+n}] \text{ is closed form}
\]

- Focusing on this subset of sdf's may restrict our ability to explore more realistic models

Question: Can we explore more realistic models yet maintaining tractability in pricing?
Summary of our approach

- We do not start from any explicit sdf M_t,

...,
Summary of our approach

- We do not start from any explicit sdf M_t,
- Instead, we specify bond prices directly:

\[
P_{1,t} = p_1(X_t), \text{ for some analytical function } p_1(.) \\
P_{2,t} = p_2(X_t), \text{ for some analytical function } p_2(.) \\
\vdots \\
P_{n,t} = p_n(X_t), \text{ for some analytical function } p_n(.)
\]

With this, we are guaranteed to have pricing tractability
Summary of our approach

- We do not start from any explicit sdf M_t,
- Instead, we specify bond prices directly:

\[
P_{1,t} = p_1(X_t), \text{ for some analytical function } p_1(.)\]
\[
P_{2,t} = p_2(X_t), \text{ for some analytical function } p_2(.)\]
\[...\]
\[
P_{n,t} = p_n(X_t), \text{ for some analytical function } p_n(.)\]

With this, we are guaranteed to have pricing tractability

- Importantly, we choose $p_1, p_2, ..., p_n$ such that we come VERY close to ruling out arbitrage opportunities
Summary of our approach

- **Our approach is highly flexible:** researchers have complete freedom in specifying the one-period bond price:

 \[P_{1,t} = p_1(X_t) \]

- Imposing a lower bound on the short rate is straightforward: choose \[P_{1,t} = p_1(X_t) < 1 \] for all \(X_t \)

- We can generate a wide range of tractable nonlinear term structure models
Our approach is highly flexible: researchers have complete freedom in specifying the one-period bond price:

\[P_{1,t} = p_1(X_t) \]

any \(P_{1,t} = p_1(X_t) \) will work

- Imposing a lower bound on the short rate is straightforward:

\[P_{1,t} = p_1(X_t) < 1 \text{ for all } X_t \]
Summary of our approach

- **Our approach is highly flexible:** researchers have complete freedom in specifying the one-period bond price:

 \[P_{1,t} = p_1(X_t) \]

 any \(P_{1,t} = p_1(X_t) \) will work

- Imposing a lower bound on the short rate is straightforward:

 choose \(P_{1,t} = p_1(X_t) < 1 \) for all \(X_t \)

- We can generate a wide range of tractable nonlinear term structure models
Summary of our approach

- Despite potential nonlinearity, our models can be extremely fast to estimate
Summary of our approach

- Despite potential nonlinearity, our models can be extremely fast to estimate.

- The key intuition: with certain parameterizations, we can "undo" the nonlinearity and translate our models back to the linear space:

\[f_{\text{linear}}(t) = \left(A_n + B_n X_t \right)^3 \rightarrow \left(f_{\text{linear}}(t) \right)^{1/3} = A_n + B_n X_t. \]
Summary of our approach

- Despite potential nonlinearity, **our models can be extremely fast to estimate**

- **The key intuition:** with certain parameterizations, we can ”undo” the nonlinearity and translate our models back to the linear space:
 - For example, for the sake of intuition:
 \[f_{n,t} = (A_n + B_nX_t)^3 \rightarrow f_{n,t}^{1/3} = A_n + B_nX_t. \]
 We can proceed with estimation of a linear model as in JSZ with the observed data being \(f_t^{1/3} \).
Summary of our approach

- Despite potential nonlinearity, **our models can be extremely fast to estimate**

- **The key intuition:** with certain parameterizations, we can ”undo” the nonlinearity and translate our models back to the linear space:
 - For example, for the sake of intuition:
 \[
 f_{n,t} = (A_n + B_n X_t)^3 \rightarrow f_{n,t}^{1/3} = A_n + B_n X_t.
 \]
 We can proceed with estimation of a linear model as in JSZ with the observed data being \(f_t^{1/3} \).
 - More generally, under certain reasonable parameterizations, we have:
 \[
 f_{n,t} = m(A_n + B_n X_t) \rightarrow m^{-1}(f_{n,t}) = A_n + B_n X_t.
 \]
 The outcome: instantaneous convergence with guaranteed global estimates.
Outline

1. Our construction of bond prices
2. How close are we to no arbitrage?
3. Closed form yields and forwards
4. Examples
5. Time series dynamics
6. Empirical Illustrations
1. Our construction of bond prices

- The n-period zero-coupon bond price P_n is given recursively by

\[
P_0(X_t) \equiv 1, \tag{1}
\]
\[
P_n(X_t) = P_{n-1}(g(X_t)) \times \exp(-m(X_t)), \tag{2}
\]

for some functions $m(\cdot)$ and $g(\cdot)$.
1. Our construction of bond prices

- The n-period zero-coupon bond price P_n is given recursively by

$$P_0(X_t) \equiv 1,$$

$$P_n(X_t) = P_{n-1}(g(X_t)) \times \exp(-m(X_t)),$$ \hspace{1cm} (1) (2)

for some functions $m(\cdot)$ and $g(\cdot)$.

- Example 1:

$$P_1(X_t) = P_0(g(X_t)) \times \exp(-m(X_t)) = \exp(-m(X_t))$$ \hspace{1cm} (3)

- $m(\cdot)$ gives the one-period rate
1. Our construction of bond prices

- The n-period zero-coupon bond price P_n is given recursively by

\[
P_0(X_t) \equiv 1, \\
P_n(X_t) = P_{n-1}(g(X_t)) \times \exp(-m(X_t)),
\]

for some functions $m(\cdot)$ and $g(\cdot)$.

- Example 1:

\[
P_1(X_t) = P_0(g(X_t)) \times \exp(-m(X_t)) = \exp(-m(X_t))
\]

▶ $m(\cdot)$ gives the one-period rate

- Example 2:

\[
P_2(X_t) = P_1(g(X_t)) \times \exp(-m(X_t))
\]

\[
= \exp(-m(g(X_t)))) \times \exp(-m(X_t))
\]

▶ $g(\cdot)$ allows us to go recursively from $P_{n-1}(\cdot)$ to $P_n(\cdot)$.
2. How close are we to no arb?

Two relevant concepts:

1. **No dominant trading strategies:**
 a portfolio with **strictly positive** payoffs must have a strictly positive price
2. How close are we to no arb?

Two relevant concepts:

1. **No dominant trading strategies:**
 a portfolio with strictly positive payoffs must have a strictly positive price

2. **No arbitrage opportunities:**
 a portfolio with non-negative payoffs must have a strictly positive price
 - non-negative payoffs \equiv strictly positive payoffs for some positive probability and zero payoffs otherwise
2. How close are we to no arb?

Theorem 1: Our bond price construction allows no dominant trading strategies
2. How close are we to no arb?

Theorem 1: Our bond price construction allows no dominant trading strategies

Proof.

1. Consider a portfolio: investment in n-period bond is w_n (in face value)

\[
\text{Price of portfolio} = \sum w_n P_n(X_t), \quad (5)
\]

\[
= \sum w_n \exp(-m(X_t)) P_{n-1}(g(X_t)), \quad (6)
\]

\[
\geq 0 \quad (7)
\]
2. How close are we to no arb?

Theorem 1: Our bond price construction allows no dominant trading strategies

Proof.

1. Consider a portfolio: investment in \(n \)-period bond is \(w_n \) (in face value)
 - the price this period: \(\sum_n w_n P_n(X_t) \),
2. How close are we to no arb?

Theorem 1: Our bond price construction allows no dominant trading strategies

Proof.

1. Consider a portfolio: investment in n-period bond is w_n (in face value)
 - the price this period: $\sum_n w_n P_n(X_t)$,
 - the payoff next period: $\sum_n w_n P_{n-1}(X_{t+1}) > 0$ for all $X_{t+1} \in X$

2. The question: can we show the price of this portfolio:
 $\sum_n w_n P_n(X_t) > 0$
2. How close are we to no arb?

Theorem 1: Our bond price construction allows no dominant trading strategies

Proof.

1. Consider a portfolio: investment in \(n\)-period bond is \(w_n\) (in face value)
 - the price this period: \(\sum_n w_n P_n(X_t)\),
 - the payoff next period: \(\sum_n w_n P_{n-1}(X_{t+1}) > 0\) for all \(X_{t+1} \in X\)

2. The question: can we show the price of this portfolio:
 \[\sum_n w_n P_n(X_t) > 0\]

 \[
 \text{Price of portfolio} = \sum_n w_n P_n(X_t), \quad (5)
 \]

 \[
 = \sum_n w_n \exp(-m(X_t)) P_{n-1}(g(X_t)), \quad (6)
 \]

 \[
 = \exp(-m(X_t)) \sum_n w_n P_{n-1}(g(X_t)) \quad (7)
 \]

 \(> 0\)
2. How close we are to ruling out no arb opportunities?

Theorem 2: Our bond price construction ensures that bond portfolios with strictly non-negative payoffs cannot admit strictly negative prices.

Figure: Prices of portfolios with strictly non-negative payoffs
3. Closed form yields and forwards

The n-period yields and forward rates are given by

\[y_{n,t} = \frac{1}{n} \sum_{i=0}^{n-1} m(g^{\circ i}(X_t)) \quad (8) \]

\[f_{n,t} \equiv (n + 1)y_{n+1,t} - ny_{n,t} = m(g^{\circ n}(X_t)). \quad (9) \]

\[g^{\circ n}(X_t) \] denotes \[g(g(....g(X_t)...)) \] (n times),
3. Closed form yields and forwards

- The n-period yields and forward rates are given by

\[
y_{n,t} = \frac{1}{n} \sum_{i=0}^{n-1} m(g^i(X_t))
\]

\[
f_{n,t} \equiv (n + 1)y_{n+1,t} - ny_{n,t} = m(g^{\circ n}(X_t)).
\]

- \(g^{\circ n}(X_t)\) denotes \(g(g(\ldots g(X_t)\ldots))\) \((n\ \text{times})\),

- For example, if \(g(X_t) = K_1X_t\), then \(g^{\circ n}(X_t) = K_1^nX_t\). With this choice:

\[
f_{n,t} = m(K_1^nX_t),
\]

thus the nonlinearity can be “undone” by inverting the \(m(\cdot)\) function.
4. Examples: the linear case

\[g(X) = kX \quad m(X) = \delta_0 + \delta_1' X, \]

(10)
4. Examples: the linear case

\[g(X) = KX \quad m(X) = \delta_0 + \delta'_1 X, \quad (10) \]

\[\Rightarrow \]

\[y_{n,t} = A_n + (B_n/n)X_t, \]

with

\[A_n = \delta_0 \]

\[B_n = B_{n-1}K + \delta'_1. \quad (11) \]
4. Examples: the linear case

\[
g(X) = KX \\ m(X) = \delta_0 + \delta_1 X,
\]

\(\Rightarrow\)

\[y_{n,t} = A_n + (B_n/n)X_t,
\]

with

\[
A_n = \delta_0 \\
B_n = B_{n-1}K + \delta_1.
\]

This is (essentially) the Nelson-Siegel model!
4. Examples: the linear case

\[g(X) = KX \quad m(X) = \delta_0 + \delta_1 X, \tag{10} \]

\[\Rightarrow \]

\[y_{n,t} = A_n + (B_n/n)X_t, \]

with

\[A_n = \delta_0 \]

\[B_n = B_{n-1}K + \delta'_1. \tag{11} \]

This is (essentially) the Nelson-Siegel model!

Compare with the standard Gaussian no-arbitrage DTSM:

\[nA_n = (n - 1)A_{n-1} + \delta_0 - \frac{1}{2}B_{n-1}\Sigma B'_{n-1} \]

\[B_n = B_{n-1}K^Q_1 + \delta'_1. \tag{12} \]
4. Examples: the Nelson-Siegel model

Proposition 1: Suppose $X_t \in \mathbb{R}^3$, with $m(\cdot)$ and $g(\cdot)$ given by

\[
m(X_t) = \begin{bmatrix} 1 & \frac{1-e^{-\lambda}}{\lambda} & \frac{1-e^{-\lambda}}{\lambda} - e^{-\lambda} \end{bmatrix} X_t, \tag{13}
\]

\[
g(X_t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{-\lambda} & \lambda e^{-\lambda} \\ 0 & 0 & e^{-\lambda} \end{bmatrix} X_t, \tag{14}
\]

then, our bond prices construction implies yields with Nelson-Siegel loadings.

Proof.

Direct computation of $y_{t,n} = (1/n) \sum_{i=0}^{n-1} m(g^{\circ i})$ yields the result.
4. The Nelson-Siegel model

- Bjork and Christensen (1999) and Filipovic (1999) show theoretically that the N-S model does not preclude all arbitrage opportunities.

- Despite this short-coming, the N-S model has been highly popular!
4. The Nelson-Siegel model

- Bjork and Christensen (1999) and Filipovic (1999) show theoretically that the N-S model does not preclude all arbitrage opportunities.

- Despite this short-coming, the N-S model has been highly popular!

- Christensen, Diebold and Rudebusch (2010) argue that the N-S model is “almost” arbitrage free
 - Theoretically, Krippner (2013) show that the N-S model can be seen as a low-order Taylor approximation of certain no-arb Gaussian affine models
 - Empirically, Coroneo et. a. (2011) find N-S models parameters are not significantly different from those of corresponding no-arb models
4. The Nelson-Siegel model

- Bjork and Christensen (1999) and Filipovic (1999) show theoretically that the N-S model does not preclude all arbitrage opportunities.

- Despite this short-coming, the N-S model has been highly popular!

- Christensen, Diebold and Rudebusch (2010) argue that the N-S model is “almost” arbitrage free
 - Theoretically, Krippner (2013) show that the N-S model can be seen as a low-order Taylor approximation of certain no-arb Gaussian affine models
 - Empirically, Coroneo et. a. (2011) find N-S models parameters are not significantly different from those of corresponding no-arb models

- Our analysis focuses on no-dominance trading strategies and is applicable more generally.
4. Examples: the linear-quadratic case

\[g(X) = KX \quad m(X) = \delta_0 + \delta_1' X + X' \delta_2 X \]

(15)
4. Examples: the linear-quadratic case

\[g(X) = KX \quad m(X) = \delta_0 + \delta'_1 X + X'\delta_2 X \] \quad (15)

\[\Rightarrow \text{quadratic yield coefficients: } y_{n,t} = A_n + (B_n/n)X_t + X'_t(C_n/n)X_t \]

\[A_n = \delta_0 \]
\[B_n = B_{n-1}K + \delta'_1 \]
\[C_n = K'C_{n-1}K + \delta_2, \] \quad (16)
4. Examples: the linear-quadratic case

\[g(X) = KX \quad m(X) = \delta_0 + \delta'_1 X + X'\delta_2 X \]
\[\Rightarrow \text{quadratic yield coefficients: } y_{n,t} = A_n + (B_n/n)X_t + X'_t(C_n/n)X_t \]

\[A_n = \delta_0 \]
\[B_n = B_{n-1}K + \delta'_1 \]
\[C_n = K'C_{n-1}K + \delta_2, \] \[(16) \]

Compare with the standard Gaussian-quadratic no-arbitrage DTSM:

\[nA_n = (n - 1)A_{n-1} + \delta_0 - \frac{1}{2} \log|\Omega_{n-1}| - \frac{1}{2} B_{n-1} \Omega_{n-1} \Sigma B_{n-1} \]
\[B_n = B_{n-1} \Omega_{n-1} K_1^Q + \delta'_1 \]
\[C_n = K_1^{Q'} C_{n-1} \Omega_{n-1} K_1^Q + \delta_2, \] \[(17) \]

with \(\Omega_{n-1} \equiv (I_N - 2\Sigma C_{n-1})^{-1}. \)
4. Examples: Black-style models

- Recall that the main idea here is to guarantee the positivity of yields.
- In Black’s models, this is achieved by \(r_t = \max(0, \delta_0 + \delta'_1 X_t) \).
4. Examples: Black-style models

- Recall that the main idea here is to guarantee the positivity of yields.
- In Black’s models, this is achieved by \(r_t = \max(0, \delta_0 + \delta'_1 X_t) \)

Within our framework:

- We choose the same \(g(X) = KX \)
- We choose a generalized logistic transformation for the short rate function:

\[
m(X) = \theta \log \left(1 + \exp \left(\frac{\delta_0 + \delta'_1 X}{\theta} \right) \right),
\]

- We can think about \(\delta_0 + \delta'_1 X_t \) as a shadow rate which can be negative but the short rate is always positive after the \(m(.) \) transformation.
4. Examples: Black-style models

Our choice of $m(X)$ captures the spirit of the $\max(0, \delta_0 + \delta_1 X_t)$ transformation (to guarantee positivity) in Black’s models:
4. Examples: Black-style models

- We deliver analytical yields/ forwards:
 \[
 f_{n,t} = u(\theta, \delta_0 + \delta_1 K^n X_t) \tag{18}
 \]
 where \(u(\theta, s) \) captures the logistic transformation:
 \[
 u(\theta, s) = \theta \log(1 + \exp(s/\theta)).
 \]

- This means that we can work with transformed forwards
 \[
 \tilde{f}_{n,t} \equiv u^{-1}(\theta, f_{n,t}) = \delta_0 + \delta_1 K^n X_t. \tag{19}
 \]
 and we are back to the linear space!
5. Time series dynamics

- We have not touched time series dynamics
- This means that virtually any time series dynamics is acceptable in our framework and will not affect any of our proofs earlier.
5. Time series dynamics

- We have not touched time series dynamics
- This means that virtually any time series dynamics is acceptable in our framework and will not affect any of our proofs earlier.
- Thus, we are flexible enough to accommodate:
 - GARCH-like or stochastic volatility
 - Unspanned factors
 - Long or infinite lag structure
 - Shifting endpoints and unit roots.
5. Time series dynamics

- We have not touched time series dynamics

- This means that virtually any time series dynamics is acceptable in our framework and will not affect any of our proofs earlier.

- Thus, we are flexible enough to accommodate:
 - GARCH-like or stochastic volatility
 - Unspanned factors
 - Long or infinite lag structure
 - Shifting endpoints and unit roots.
6. Empirical Illustrations

- We focus on the no-dominance (ND) versions of two Black’s style models:
 - $Black_{ND}$: A model in which the states follow a Gaussian VAR(1). This is a close analogue to the traditional Black’s model.
6. Empirical Illustrations

- We focus on the no-dominance (ND) versions of two Black’s style models:
 1. **Black\textsubscript{ND}**: A model in which the states follow a Gaussian VAR(1). This is a close analogue to the traditional Black’s model.
 2. **SV-Black\textsubscript{ND}**: A model in which the states dynamics features stochastic volatility (SV) (in a GARCH style).
6. Empirical Illustrations

- We focus on the no-dominance (ND) versions of two Black's style models:
 1. $Black_{ND}$: A model in which the states follow a Gaussian VAR(1). This is a close analogue to the traditional Black’s model.
 2. $SV-Black_{ND}$: A model in which the states dynamics features stochastic volatility (SV) (in a GARCH style).

- For comparison purposes, we consider two no-arbitrage models:
 1. $Gaussian_{NA}$: the standard no-arbitrage affine Gaussian term structure models
 2. $Black_{NA}$: the traditional no-arbitrage Black’s model

- All models considered are three-factor models.
6. Empirical Illustrations

- We focus on the no-dominance (ND) versions of two Black’s style models:
 - $Black_{ND}$: A model in which the states follow a Gaussian VAR(1). This is a close analogue to the traditional Black’s model.
 - $SV-Black_{ND}$: A model in which the states dynamics features stochastic volatility (SV) (in a GARCH style).

- For comparison purposes, we consider two no-arbitrage models:
 - $Gaussian_{NA}$: the standard no-arbitrage affine Gaussian term structure models
 - $Black_{NA}$: the traditional no-arbitrage Black’s model

- All models considered are three-factor models.
- Analysis is done in two ways: 1) through a simulated environment; 2) using the US yields data;
6. Empirical Illustrations – a Simulated Environment

We use the linear rational model of Filipovic, Larson, and Trolle (JF 2017) as a DGP to generate 100 samples of yields data that exhibit:

- Salient features of the yield data in the U.S., such as bond returns predictability, the shapes of the yield curve, time-varying volatility etc.
- Binding ZLB

Our plan is straightforward:

- We estimate the four models under consideration using each of the 100 data samples
- We then compare the model-implied forecasts (yield, volatility, Sharpe ratio) to the true forecasts

Main advantage of a simulation environment:

- We do know the true forecasts
6. Empirical Illustrations – a Simulated Environment

- We use the linear rational model of Filipovic, Larson, and Trolle (JF 2017) as a DGP to generate 100 samples of yields data that exhibit:
 - salient features of the yield data in the U.S., such as bond returns predictability, the shapes of the yield curve, time-varying volatility etc.
6. Empirical Illustrations – a Simulated Environment

- We use the linear rational model of Filipovic, Larson, and Trolle (JF 2017) as a DGP to generate 100 samples of yields data that exhibit:
 - salient features of the yield data in the U.S., such as bond returns predictability, the shapes of the yield curve, time-varying volatility etc.
 - binding ZLB
6. Empirical Illustrations – a Simulated Environment

- We use the linear rational model of Filipovic, Larson, and Trolle (JF 2017) as a DGP to generate 100 samples of yields data that exhibit:
 - salient features of the yield data in the U.S., such as bond returns predictability, the shapes of the yield curve, time-varying volatility etc.
 - binding ZLB

- Our plan is straightforward:
 - We estimate the four models under consideration using each of the 100 data samples
 - We then compare the model-implied forecasts (yield, volatility, Sharpe ratio) to the true forecasts
6. Empirical Illustrations – a Simulated Environment

- We use the linear rational model of Filipovic, Larson, and Trolle (JF 2017) as a DGP to generate 100 samples of yields data that exhibit:
 - salient features of the yield data in the U.S., such as bond returns predictability, the shapes of the yield curve, time-varying volatility etc.
 - binding ZLB

- Our plan is straightforward:
 - We estimate the four models under consideration using each of the 100 data samples
 - We then compare the model-implied forecasts (yield, volatility, Sharpe ratio) to the **true forecasts**

- Main advantage of a simulation environment:
 - We do know the **true forecasts**
6. Empirical Illustrations – a Simulated Environment

(a) Simulated yields

(b) Average Means and Vols of Simulated Yields

Figure: Statistics of simulated yields. Sample #1
Table: Bond Yield Forecast Errors

The symbol * indicates the best performance for each forecast horizon h and yield maturity mat.

<table>
<thead>
<tr>
<th>h</th>
<th>mat</th>
<th>$Gaussian_{NA}$</th>
<th>$Black_{NA}$</th>
<th>$Black_{ND}$</th>
<th>$SV-Black_{ND}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-m</td>
<td>1-m</td>
<td>10.8</td>
<td>0.91</td>
<td>0.96</td>
<td>0.75*</td>
</tr>
<tr>
<td>3-m</td>
<td>2-yr</td>
<td>8.0</td>
<td>0.96</td>
<td>0.93</td>
<td>0.81*</td>
</tr>
<tr>
<td></td>
<td>5-yr</td>
<td>7.9</td>
<td>1.00</td>
<td>0.90</td>
<td>0.82*</td>
</tr>
<tr>
<td></td>
<td>10-yr</td>
<td>7.8</td>
<td>1.00</td>
<td>0.97</td>
<td>0.75*</td>
</tr>
<tr>
<td>1-yr</td>
<td>1-m</td>
<td>27.5</td>
<td>0.94</td>
<td>0.92</td>
<td>0.82*</td>
</tr>
<tr>
<td></td>
<td>2-yr</td>
<td>26.1</td>
<td>0.97</td>
<td>0.91</td>
<td>0.77*</td>
</tr>
<tr>
<td></td>
<td>5-yr</td>
<td>27.8</td>
<td>1.00</td>
<td>0.91</td>
<td>0.72*</td>
</tr>
<tr>
<td></td>
<td>10-yr</td>
<td>26.9</td>
<td>1.01</td>
<td>0.96</td>
<td>0.75*</td>
</tr>
</tbody>
</table>
6. Empirical Illustrations – a Simulated Environment

<table>
<thead>
<tr>
<th>h</th>
<th>mat</th>
<th>(Gaussian_{NA})</th>
<th>(Black_{NA})</th>
<th>(Black_{ND})</th>
<th>(SV-Black_{ND})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-m</td>
<td>7.8</td>
<td>0.69</td>
<td>0.58*</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>2-yr</td>
<td>7.5</td>
<td>0.76</td>
<td>0.49*</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>5-yr</td>
<td>7.2</td>
<td>1.01</td>
<td>0.74</td>
<td>0.62*</td>
<td></td>
</tr>
<tr>
<td>10-yr</td>
<td>6.8</td>
<td>0.91</td>
<td>0.91</td>
<td>0.65*</td>
<td></td>
</tr>
<tr>
<td>1-m</td>
<td>24.0</td>
<td>0.67</td>
<td>0.47*</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>2-yr</td>
<td>23.4</td>
<td>0.87</td>
<td>0.66</td>
<td>0.54*</td>
<td></td>
</tr>
<tr>
<td>5-yr</td>
<td>24.1</td>
<td>0.97</td>
<td>0.81</td>
<td>0.61*</td>
<td></td>
</tr>
<tr>
<td>10-yr</td>
<td>21.3</td>
<td>1.00</td>
<td>1.04</td>
<td>0.70*</td>
<td></td>
</tr>
</tbody>
</table>

Table: **Bond Yield Forecast Errors** The symbol * indicates the best performance for each forecast horizon \(h \) and yield maturity \(mat \).

6. Empirical Illustrations – a Simulated Environment

<table>
<thead>
<tr>
<th>h</th>
<th>mat</th>
<th>Full-Sample</th>
<th></th>
<th></th>
<th></th>
<th>ZLB Sample</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G_{NA}</td>
<td>B_{NA}</td>
<td>B_{ND}</td>
<td>SV-B_{ND}</td>
<td>G_{NA}</td>
<td>B_{NA}</td>
<td>B_{ND}</td>
<td>SV-B_{ND}</td>
</tr>
<tr>
<td>1-m</td>
<td>3-m</td>
<td>54.3</td>
<td>0.30</td>
<td>0.51</td>
<td>0.29*</td>
<td>68.9</td>
<td>0.15</td>
<td>0.14*</td>
<td>0.15</td>
</tr>
<tr>
<td>2-yr</td>
<td>5-yr</td>
<td>30.9</td>
<td>0.50</td>
<td>0.63</td>
<td>0.34*</td>
<td>36.8</td>
<td>0.34</td>
<td>0.18*</td>
<td>0.20</td>
</tr>
<tr>
<td>5-yr</td>
<td>10-yr</td>
<td>19.4</td>
<td>0.76</td>
<td>0.74</td>
<td>0.48*</td>
<td>25.2</td>
<td>0.42</td>
<td>0.42</td>
<td>0.29*</td>
</tr>
<tr>
<td>10-yr</td>
<td>1-yr</td>
<td>15.0</td>
<td>0.62</td>
<td>0.94</td>
<td>0.59*</td>
<td>20.1</td>
<td>0.28*</td>
<td>0.76</td>
<td>0.45</td>
</tr>
</tbody>
</table>

1-m	1-yr	63.6	0.72	0.53	0.42*	67.0	0.67	0.34*	0.38
2-yr		39.9	1.04	0.61	0.46*	39.8	1.07	0.39*	0.40
5-yr		27.9	1.20	0.63	0.58*	29.8	1.16	0.49	0.44*
10-yr		18.6	1.23	0.86	0.76*	22.3	0.93	0.69	0.56*

Table: Bond Yield Volatility Forecast Errors The symbol * indicates the best performance.
6. Empirical Illustrations – a Simulated Environment

<table>
<thead>
<tr>
<th>h</th>
<th>mat</th>
<th>Full-Sample</th>
<th>ZLB Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G_{NA}</td>
<td>B_{NA}</td>
</tr>
<tr>
<td>3-m</td>
<td>6-m</td>
<td>0.2</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td>2-yr</td>
<td>0.5</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td>5-yr</td>
<td>0.8</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>9-yr</td>
<td>1.2</td>
<td>1.24</td>
</tr>
<tr>
<td>1-yr</td>
<td>6-m</td>
<td>0.2</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td>2-yr</td>
<td>0.3</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>5-yr</td>
<td>0.6</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>9-yr</td>
<td>0.9</td>
<td>1.24</td>
</tr>
</tbody>
</table>

Table: Bond Sharpe Ratio Forecast Errors The symbol * indicates the best performance.
6. Empirical Illustrations – a Simulated Environment

<table>
<thead>
<tr>
<th>h</th>
<th>mat</th>
<th>G_{NA}</th>
<th>B_{NA}</th>
<th>B_{ND}</th>
<th>SV-B_{ND}</th>
<th>G_{NA}</th>
<th>B_{NA}</th>
<th>B_{ND}</th>
<th>SV-B_{ND}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6m-9y</td>
<td>0.5</td>
<td>1.63</td>
<td>1.01</td>
<td>0.77*</td>
<td></td>
<td>0.7</td>
<td>1.04</td>
<td>0.49</td>
<td>0.45*</td>
</tr>
<tr>
<td>3-m</td>
<td>0.8</td>
<td>1.46</td>
<td>0.98</td>
<td>0.74*</td>
<td></td>
<td>1.0</td>
<td>1.10</td>
<td>0.73</td>
<td>0.49*</td>
</tr>
<tr>
<td>5y-9y</td>
<td>1.0</td>
<td>1.33</td>
<td>0.93</td>
<td>0.71*</td>
<td></td>
<td>1.2</td>
<td>1.04</td>
<td>0.76</td>
<td>0.52*</td>
</tr>
<tr>
<td>6m-9y</td>
<td>0.4</td>
<td>1.61</td>
<td>1.01</td>
<td>0.76*</td>
<td></td>
<td>0.4</td>
<td>1.39</td>
<td>0.72</td>
<td>0.52*</td>
</tr>
<tr>
<td>1-yr</td>
<td>0.7</td>
<td>1.42</td>
<td>0.99</td>
<td>0.67*</td>
<td></td>
<td>0.7</td>
<td>1.24</td>
<td>0.79</td>
<td>0.53*</td>
</tr>
<tr>
<td>5y-9y</td>
<td>0.8</td>
<td>1.31</td>
<td>0.97</td>
<td>0.64*</td>
<td></td>
<td>0.8</td>
<td>1.27</td>
<td>0.95</td>
<td>0.58*</td>
</tr>
</tbody>
</table>

Table: Bond Portfolio Sharpe Ratio Forecast Errors The symbol * indicates the best performance.

Figure: U.S. 1-month rate and 1-month shadow rate over sample period 1970:Jan - 2015:Dec

Figure: U.S. 1-month rate and 1-month shadow rate over sample period 2008:Jan - 2015:Dec

Figure: Forecasts of 1-m yields over sample period 2008:Jan - 2015:Dec

(a) 3-month forecast horizon

(b) 12-month forecast horizon

Figure: Volatility forecasts of 120-m yields over sample period 1970:Jan - 2015:Dec

<table>
<thead>
<tr>
<th></th>
<th>Entire Sample</th>
<th>ZLB Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B_{NA}</td>
<td>B_{ND}</td>
</tr>
<tr>
<td>3-m Average</td>
<td>25.02</td>
<td>0.75</td>
</tr>
<tr>
<td>12-m Average</td>
<td>45.81</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Table: RMSE (in basis points) btw RV and volatility forecasts

<table>
<thead>
<tr>
<th></th>
<th>Entire Sample</th>
<th>ZLB Sample</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B_{NA}</td>
<td>B_{ND}</td>
<td>$SV-B_{ND}$</td>
<td>B_{NA}</td>
</tr>
<tr>
<td>3-m Average</td>
<td>0.26</td>
<td>0.25</td>
<td>0.79*</td>
<td>0.67</td>
</tr>
<tr>
<td>12-m Average</td>
<td>0.25</td>
<td>0.24</td>
<td>0.79*</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Table: Correlation between volatility forecasts and RV

Figure: EH component of 120-m yields over sample period 1970:Jan - 2015:Dec

Figure: EH component of 120-m yields, relative to Gaussian model, over sample period 1970:Jan - 2015:Dec
Propose an alternative approach to designing new tractable term structure models:

1. We specify bond prices directly without going through any sdf.
2. We then verify that these prices are free of dominant trading strategies.

Imposition of lower bounds on yields is straightforward yet maintaining tractability and ease of implementation

Simulation exercises show that our models can be at least comparable to some existing popular ZLB models