Bank-Runs, Contagion and Credit Easing

Manuel Amador ¹ Javier Bianchi²

¹Federal Reserve Bank of Minneapolis University of Minnesota

²Reserve Bank of Minneapolis

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

Motivation

- Bank-runs are a common feature of financial crises
 - Friedman-Schwartz; Kindleberger; Bernanke; Gorton
- Central lesson from Diamond-Dybvig:
 - Solvent banks can be subject to self-fulfilling runs
- Banks-runs are typically not isolated events
 - Can be the outcome of general-equilibrium forces
 - ...and in turn, have aggregate general-equilibrium impact
- ★ General equilibrium model essential to understand feedback
 - What are the implications for government policy?

What we do

- Tractable dynamic general equilibrium model of bank-runs
 - Banks make dynamic portfolio, equity and default decisions
 - Asset values determined in general equilibrium
- Analytical characterization:
 - When a bank faces a run in partial equilibrium
 - Dynamics of asset prices and fraction of banks facing runs
 - Panic/systemic-run one possible outcome (Gertler-Kiyotaki)
- Normative analysis:
 - Study role of credit easing policies

Key Normative Result

Desirability of policies depend on whether crisis is driven by poor fundamentals or self-fulfilling runs

- If crisis driven by poor fundamentals
 - Credit easing is de-stabilizing and welfare reducing
- If crisis driven by self-fulfilling runs
 - Credit easing is stabilizing and welfare improving
- ★ Key distinction: repaying banks are *net buyers* when crises are driven by fundamentals but are *net sellers* when driven by runs

Outline of the Talk

- 1. Basic environment without runs
 - Bank problem in partial equilibrium
 - General equilibrium
- 2. Introduce bank-runs
- 3. Credit easing

Outline of the Talk

- 1. Basic environment without runs
 - Bank problem in partial equilibrium
 - General equilibrium
- 2. Introduce bank-runs
- 3. Credit easing

Environment

- Discrete time, infinite horizon, deterministic
- Continuum of banks, preferences $\sum_{t=0}^{\infty} \beta^t \log(c_t)$.
- Risk-neutral foreign creditors, discount rate R
 - Small open economy
- Technology
 - Production of consumption good: y = zk
 - Capital in fixed supply \overline{K}
- Competitive market for assets and deposits
- No commitment to repay deposits

Banks: budgets and decisions

• Banks starts period with deposits b and assets k

If repay:

• Budget constraint

$$c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_tk'.$$

where q is the price of deposits, p is the price of capital

Banks: budgets and decisions

• Banks starts period with deposits b and assets k

If repay:

Budget constraint

$$c = (\bar{z} + p_t)k - Rb + q_t(b', k')b' - p_tk'.$$

where q is the price of deposits, p is the price of capital

If default

- Productivity loss $y = \underline{z}k$ and permanent exclusion: b' = 0
- Budget constraint

$$c = (\underline{z} + p_t)k - p_t k'$$

Banks Optimization

$$V_t(b,k) = \max \left[V_t^R(b,k), V_t^D(k) \right]$$

Value of repayment:

$$V_t^R(b,k) = \max_{k',b',c} \log(c) + \beta V_{t+1}(b',k')$$
 subject to budget constraint & No-Ponzi

Value of default:

$$V_t^D(k) = \max_{k',c} \log(c) + \beta V_{t+1}^D(k')$$
 subject to budget constraint

Default Decision

The optimal default rule follows

$$d_t(b,k) = egin{cases} 1 & ext{if } V_t^R(b,k) < V_t^D(k), \ 0 & ext{if } V_t^R(b,k) > V_t^D(k), \end{cases}$$

Default Decision

The optimal default rule follows

$$d_t(b,k) = \begin{cases} 1 & \text{if } V_t^R(b,k) < V_t^D(k), \\ 0 & \text{if } V_t^R(b,k) > V_t^D(k), \\ 0 & \text{if } V_t^R(b,k) = V_t^D(k) \text{ for } t > 0, \end{cases}$$

Default Decision

The optimal default rule follows

$$d_t(b,k) = \begin{cases} 1 & \text{if } V_t^R(b,k) < V_t^D(k), \\ 0 & \text{if } V_t^R(b,k) > V_t^D(k), \\ 0 & \text{if } V_t^R(b,k) = V_t^D(k) \text{ for } t > 0, \end{cases}$$

• Equilibrium bond price is of the following form

$$q_t(b',k') = egin{cases} 0 & ext{if } b' > ar{b}_t(k') \ 1 & ext{if } b' \leq ar{b}_t(k') \end{cases}$$

The Value of Default

$$V_t^D(k) = A + \frac{1}{1-\beta} \log(k(\underline{z} + \rho_t)) + \frac{\beta}{1-\beta} \sum_{\tau > t} \beta^{\tau-t} \log\left(R_{\tau+1}^D\right),$$

where the return on capital under default

$$R_{t+1}^D = \frac{\underline{z} + p_{t+1}}{p_t}$$

Policy functions:

$$C_t^D(k) = (1 - \beta) (\underline{z} + p_t) k$$
$$K_{t+1}^D(k) = \beta \frac{(\underline{z} + p_t)k}{p_t},$$

The Value of Default

$$V_t^D(k) = A + \frac{1}{1-\beta} \log(k(\underline{z} + p_t)) + \frac{\beta}{1-\beta} \sum_{z \geq t} \beta^{\tau-t} \log\left(R_{\tau+1}^D\right),$$

where the return on capital under default

$$R_{t+1}^D = \frac{\underline{z} + p_{t+1}}{p_t}$$

Policy functions:

$$C_t^D(k) = (1 - \beta)(\underline{z} + p_t) k$$

$$\mathcal{K}_{t+1}^{D}(k) = \beta \frac{(\underline{z} + p_t)k}{p_t},$$

Evolution of capital

$$k' = \beta R_{t+1}^D k$$

The Value of Repayment: Prelude

• Define net worth:

$$n \equiv k(\bar{z} + p) - bR$$

Return on capital

$$R_{t+1}^k \equiv \frac{\bar{z} + p_{t+1}}{p_t}$$

• Guess a linear borrowing constraint $\overline{b}_t(k') = \gamma_t p_{t+1} k'$

Lemma. If $p_t < \gamma_t p_{t+1}$ and $R_{t+1}^k > R$, then $k_{t+1}' = \infty$ in period t for *any* level of networth (and so is its value function).

The Value of Repayment

$$V_t^R(n) = A + \frac{1}{1-\beta}\log(n) + \frac{\beta}{1-\beta}\sum_{\tau > t}^{\infty}\beta^{\tau-t}\log(R_{\tau+1}^e),$$

where the equity return is denoted by

$$R_{t+1}^{e} = R_{t+1}^{k} + (R_{t+1}^{k} - R) \frac{\gamma_{t} \rho_{t+1}}{\rho_{t} - \gamma_{t} \rho_{t+1}}$$

The Value of Repayment

$$V_t^R(n) = A + \frac{1}{1-\beta}\log(n) + \frac{\beta}{1-\beta}\sum_{i=1}^{\infty}\beta^{\tau-t}\log(R_{\tau+1}^e),$$

where the equity return is denoted by

$$R_{t+1}^e = R_{t+1}^k + (R_{t+1}^k - R) \frac{\gamma_t p_{t+1}}{p_t - \gamma_t p_{t+1}}$$

Policy functions:

$$\mathcal{C}_t^R(n) = (1 - \beta)n$$

For all $t \ge 0$ such that $R_{t+1}^k > R$.

$$\mathcal{B}_{t+1}^{R}(n) = \gamma_t p_{t+1} \mathcal{K}_{t+1}^{R}(n)$$
$$\mathcal{K}_{t+1}^{R}(n) = \frac{\beta n}{p_t - \gamma_t p_{t+1}}$$

Equilibrium Consistent Borrowing Limits

Proposition. A bank is indifferent between repayment and default at t+1 if $\{\gamma_t\}$ is such that:

$$\frac{\overline{z} + \rho_{t+1}(1 - \gamma_t R)}{\underline{z} + \rho_{t+1}} = \left(1 - \gamma_{t+1} \frac{\rho_{t+2}}{\rho_{t+1}}\right)^{\beta} \tag{G}$$

Definition. Given $\{p_t\}_{t=0}^{\infty}$, we say a sequence of borrowing limits $\{\gamma_t\}_{t=0}^{\infty}$ is equilibrium-consistent if (G) is satisfied for all $t \geq 0$.

- With a sequence of γ_t , we can then construct value functions and policy functions for any $n_0 \ge 0$
 - Next: how to find $\{\gamma_t\}$?

How to find $\{\gamma_t\}$?

For a constant price, borrowing limit satisfies

$$\gamma_{t+1} = 1 - \left(rac{R^k/R - \gamma_t}{R^D/R}
ight)^{rac{1}{eta}} \equiv H(\gamma_t)$$

How to find $\{\gamma_t\}$?

For a constant price, borrowing limit satisfies

$$\gamma_{t+1} = 1 - \left(\frac{R^k/R - \gamma_t}{R^D/R}\right)^{\frac{1}{\beta}} \equiv H(\gamma_t)$$

• If R^k is too high, no equilibrium borrowing limit

How to find $\{\gamma_t\}$?

For a constant price, borrowing limit satisfies

$$\gamma_{t+1} = 1 - \left(\frac{R^k/R - \gamma_t}{R^D/R}\right)^{\frac{1}{\beta}} \equiv H(\gamma_t)$$

- \bullet Two fixed points γ^{\star} but only smallest satisfies No-Ponzi
- Smallest fixed point unstable $\Rightarrow \gamma_t = \gamma^*$ for all t.

Comparative Statics

- Equilibrium γ is increasing in (β, \bar{z}) and decreasing in (R, \underline{z})
- ullet Equilibrium γ is also decreasing in ${\it p}$, reflecting two forces
 - Higher price reduces return under repayment and default
 - ...but ability to lever up under repayment implies that the value V^R is more sensitive than V^D

Outline of the Talk

- 1. Basic environment without runs
 - Bank problem in partial equilibrium
 - General equilibrium
- 2. Introduce bank-runs
- 3. Credit easing

General Equilibrium

- So far, individual bank problem in partial eqm. (given p_t)
- General eqm. requires market clearing for capital

Consider possibility that $\phi \in [0,1]$ banks default

 \bullet Fraction ϕ must be consistent with optimal default decision

$$\phi = \begin{cases} & 1 \text{ if } B_0 > \gamma_{-1} p_0 \bar{K}, \\ & 0 \text{ if } B_0 < \gamma_{-1} p_0 \bar{K}, \\ & \in [0, 1] \text{ otherwise.} \end{cases}$$

General Equilibrium

- So far, individual bank problem in partial eqm. (given p_t)
- General eqm. requires market clearing for capital

Consider possibility that $\phi \in [0,1]$ banks default

 \bullet Fraction ϕ must be consistent with optimal default decision

$$\phi = \begin{cases} & \text{1 if } B_0 > \gamma_{-1} p_0 \bar{K}, \\ & \text{0 if } B_0 < \gamma_{-1} p_0 \bar{K}, \\ & \in [0,1] \text{ otherwise.} \end{cases}$$

Market clearing

$$\phi K_t^D + (1 - \phi) K_t^R = \bar{K}$$

Definition of Equilibrium.

Given B_0 , an equilibrium is a sequence of $\{p_t\}_{t=0}^{\infty}, \{\gamma_t\}_{t=-1}^{\infty}$, aggregate debt and capital, $\{B_t, K_t^R, K_t^D\}_{t=0}^{\infty}$, and an initial share of defaulting banks, ϕ , such that

(i) Evolution of aggregate debt and capital levels consistent with bank optimality given $\{\gamma_t, p_t\}$

$$B_{t+1} = \mathcal{B}_{t+1}((\bar{z} + p_t)K_t^R - RB_t)$$

$$K_{t+1}^R = \mathcal{K}_{t+1}^R((\bar{z} + p_t)K_t^R - RB_t)$$

$$K_{t+1}^D = \mathcal{K}_{t+1}^D((\underline{z} + p_t)K_t^D)$$

- (ii) Borrowing limits are equilibrium consistent
- (iii) Market for capital clears
- (iv) ϕ is consistent with banks' optimal default decision

Stationary Equilibrium: Two Types

1. Default equilibrium:

$$p^{D} = \frac{\beta}{1 - \beta} \underline{z}$$
$$\gamma^{D} = H(\gamma^{D}, p^{D})$$

2. Repayment equilibrium:

$$p^{R} = \frac{\beta \bar{z}}{1 - \beta - (1 - \beta R)\gamma^{R}}$$
$$\gamma^{R} = H(\gamma^{R}, p^{R})$$

- Higher asset price under repayment
 - Higher dividend and higher "collateral" value

Transitional Dynamics: 3 Regions depending on B_0

 \overline{B}^R : threshold at which banks are indifferent while facing p^R

 \overline{B}^D : threshold at which banks are indifferent while facing p^D

Conjecture that
$$\overline{B}^D > \overline{B}^R$$

Transitional Dynamics: High B_0

No transition \Rightarrow economy converges immediately to (γ^D, p^D)

Transitional Dynamics: Low B_0

Transitional Dynamics: Intermediate B_0

- ullet Equilibrium must be non-degenerate $0<\phi<1$
 - A bank would find optimal to deviate under any equilibrium with all banks repaying or defaulting
 - Mixed equilibrium: some banks default and some banks repay

Transitional Dynamics: Intermediate B_0

Summary Transitions as a fraction of B_0

Outline of the Talk

- 1. Basic environment without runs
 - Bank problem in partial equilibrium
 - General equilibrium
- 2. Introduce bank-runs
- 3. Credit easing

Model with Runs

- Coordination problem between lenders a la Cole-Kehoe
 - Investors may panic and refuse to rollover deposits
- A bank choosing to repay in the event of a run solves

$$V_t^{Run}(n) = \max_{k' \geq 0, c \geq 0} \log(c) + V_{t+1}^{Safe} \left((\bar{z} + p_{t+1})k' \right)$$
 subject to: $c = \underbrace{(\bar{z} + p_t)k - bR}_{p_t} - p_t k'$

• Repayment of b must come from sales of k

Model with Runs

- Coordination problem between lenders a la Cole-Kehoe
 - Investors may panic and refuse to rollover deposits
- A bank choosing to repay in the event of a run solves

$$V_t^{Run}(n) = \max_{k' \geq 0, c \geq 0} \log(c) + V_{t+1}^{Safe} \left((\bar{z} + p_{t+1})k' \right)$$
 subject to: $c = \underbrace{(\bar{z} + p_t)k - bR}_{n} - p_t k'$

Repayment of b must come from sales of k

Model with Runs

- Coordination problem between lenders a la Cole-Kehoe
 - Investors may panic and refuse to rollover deposits
- A bank choosing to repay in the event of a run solves

$$V_t^{Run}(n) = \max_{k' \geq 0, c \geq 0} \log(c) + V_{t+1}^{Safe} \left((\bar{z} + p_{t+1})k' \right)$$
 subject to: $c = \underbrace{(\bar{z} + p_t)k - bR}_{} - p_t k'$

• Repayment of b must come from sales of k

$$\bigstar$$
 If $V_t^{Run}(n) < V_t^D(k) < V_t^{Safe}(n)$, a bank is vulnerable

$$\bigstar$$
 If $V_t^{Run}(n) > V_t^D(k)$, a bank is safe

• We assume that if a bank is vulnerable, a run happens

The Effects of Bank-Runs

- 1. Partial equilibrium: tighter borrowing constraint $\gamma^{Run} < \gamma$
 - $V_{t+1}^{Run}(n') \ge V_{t+1}^{D}(k')$
- 2. General equilibrium: lower price of capital
 - Lower γ , imply lower demand by repaying banks
 - More banks defaulting, which have lower demand for capital

Complementarity effects:

Runs cause more banks to default, which imply a $\downarrow p_0$

- \Rightarrow Lower p_0 hurts banks facing a run
- ⇒ more defaults

Outline of the Talk

- 1. Basic environment without runs
 - Bank problem in partial equilibrium
 - General equilibrium
- 2. Introduce bank-runs
- 3. Credit easing

Credit Easing

- Government purchases of assets financed with debt and lump sum taxes on banks
- Assumptions:
 - ullet Government is less efficient than defaulting banks $z_g \leq \underline{z}$
 - Focus on $R^g \equiv \frac{z^g + p_1}{p_0} < R \Rightarrow \text{govt. loses money}$
 - No taxes/subsidies after t > 0 ⇒ government cannot bypass borrowing constraint

Q1: How does credit easing affect the fraction of banks defaulting?

Credit Easing

- Government purchases of assets financed with debt and lump sum taxes on banks
- Assumptions:
 - Government is less efficient than defaulting banks $z_g \leq \underline{z}$
 - Focus on $R^g \equiv \frac{z^g + p_1}{p_0} < R \Rightarrow \text{govt. loses money}$
 - No taxes/subsidies after t > 0 ⇒ government cannot bypass borrowing constraint
- Q1: How does credit easing affect the fraction of banks defaulting?
- Q2: What are the welfare implications?

Credit Easing: Fundamental Driven

Fraction of defaulting banks increases absent runs

- Banks that default are net sellers of capital
 - \Rightarrow credit easing raises p_0 and increases V^D relative to V^R

Credit Easing: Run Driven

Fraction of defaulting banks decreases with runs

- Banks facing run are net sellers of capital (need to pay back b)
 - \Rightarrow Credit easing raises p and increases V^{Run} relative to V^D
 - ⇒ Deters investors from running

Credit Easing: Taking Stock

- ★ Credit easing is only welfare improving if crisis is driven by runs
 - Given asset prices, credit easing can only reduce welfare because government needs to tax banks to cover the losses
 - In equilibrium, asset prices rise:
 - Without runs: more banks default and welfare falls
 - With runs: less banks default and welfare improves by avoiding inefficient defaults

Other policies: Controlling Default

- \bigstar Government picks at t = 0 banks that default
 - Let all markets clear competitively

Absent runs:

$$\frac{dW}{d\phi} = \underbrace{\left[V^{D}(p_{0}^{E}) - V^{R}(p_{0}^{E})\right]}^{0} - (1 - \phi) \left[u'(c^{R}(p_{0}^{E})) - u'(c^{D}(p_{0}^{E}))\right] (k^{R}(p_{0}^{E}) - \tilde{K}) \frac{dp_{0}}{d\phi} > 0$$

- Optimal to increase share of defaulting banks
 - More defaults reduce the price of capital and helps repaying banks, which have high marginal utility

Other policies: Controlling Default

- \bigstar Government picks at t=0 banks that default
 - Let all markets clear competitively

Absent runs:

$$\frac{dW}{d\phi} = \left[V^{D}(p_{0}^{E}) - V^{R}(p_{0}^{E}) \right]^{-0} - (1 - \phi) \left[u'(c^{R}(p_{0}^{E})) - u'(c^{D}(p_{0}^{E})) \right] (k^{R}(p_{0}^{E}) - \bar{K}) \frac{dp_{0}}{d\phi} > 0$$

- Optimal to increase share of defaulting banks
 - More defaults reduce the price of capital and helps repaying banks, which have high marginal utility

With runs:

$$\frac{dW}{d\phi} = \left[V^{Safe}(\boldsymbol{p}_0^E) - V^D(\boldsymbol{p}_0^E) \right] - (1 - \phi) \left[u'(\boldsymbol{c}^R(\boldsymbol{p}_0^E)) - u'(\boldsymbol{c}^D(\boldsymbol{p}_0^E)) \right] \left(k^R(\boldsymbol{p}_0^E) - \bar{K} \right) \frac{d\boldsymbol{p}_0}{d\phi}$$

May be optimal to reduce defaults

Other Policies

- \bigstar Tax on purchases of capital at t=0 rebated lump sum
 - Irrelevant: after-tax price remains constant and has no effects
- ★ Deposit insurance
 - Can deter investors from running, but leads to inefficiently large bank borrowing
 - Banks can borrow at risk-free rate ⇒ borrow a lot and default
 - \Rightarrow Government needs to impose, in addition, borrowing limits

Conclusions

- Presented a tractable macroeconomic model of self-fulfilling bank-runs
- General equilibrium effects induce contagion effects through price of capital and are crucial to assess government policies
- Credit easing is desirable if and only if crisis are driven by runs
- Framework can be used to study other policies
 - Next: macroprudential policy

(c) Demand for Capital Fundamental

Values and Net Positions as a function of Initial Price

(a) Value Functions Fundamental

(c) Demand for Capital Fundamental

Values and Net Positions as a function of Initial Price

(a) Value Functions Fundamental

(c) Demand for Capital Fundamental

Values and Net Positions as a function of Initial Price

Values and Net Positions as a function of Initial Price

Values and Net Positions as a function of Initial Price

Definition of Equilibrium.

Given B_0 , an equilibrium is a sequence of $\{p_t\}_{t=0}^{\infty}, \{\gamma_t\}_{t=-1}^{\infty}$, aggregate debt and capital, $\{B_t, K_t^R, K_t^D\}_{t=0}^{\infty}$, and an initial share of defaulting banks, ϕ , such that

(i) Evolution of aggregate debt and capital levels consistent with bank optimality given $\{\gamma_t, p_t\}$

$$B_{t+1} = \mathcal{B}_{t+1}((\bar{z} + p_t)K_t^R - RB_t)$$

$$K_{t+1}^R = \mathcal{K}_{t+1}^R((\bar{z} + p_t)K_t^R - RB_t)$$

$$K_{t+1}^D = \mathcal{K}_{t+1}^D((\underline{z} + p_t)K_t^D)$$

- (ii) Borrowing limits are equilibrium consistent
- (iii) Market for capital clears
- (iv) ϕ is consistent with banks' optimal default decision