Bank-Runs, Contagion and Credit Easing

Manuel Amador ${ }^{1}$ Javier Bianchi ${ }^{2}$
${ }^{1}$ Federal Reserve Bank of Minneapolis University of Minnesota
${ }^{2}$ Reserve Bank of Minneapolis

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

Motivation

- Bank-runs are a common feature of financial crises
- Friedman-Schwartz; Kindleberger; Bernanke; Gorton
- Central lesson from Diamond-Dybvig:
- Solvent banks can be subject to self-fulfilling runs
- Banks-runs are typically not isolated events
- Can be the outcome of general-equilibrium forces
- ...and in turn, have aggregate general-equilibrium impact
* General equilibrium model essential to understand feedback
-What are the implications for government policy?

What we do

- Tractable dynamic general equilibrium model of bank-runs
- Banks make dynamic portfolio, equity and default decisions
- Asset values determined in general equilibrium
- Analytical characterization:
- When a bank faces a run in partial equilibrium
- Dynamics of asset prices and fraction of banks facing runs
- Panic/systemic-run one possible outcome (Gertler-Kiyotaki)
- Normative analysis:
- Study role of credit easing policies

Key Normative Result

Desirability of policies depend on whether crisis is driven by poor fundamentals or self-fulfilling runs

- If crisis driven by poor fundamentals
- Credit easing is de-stabilizing and welfare reducing
- If crisis driven by self-fulfilling runs
- Credit easing is stabilizing and welfare improving
\star Key distinction: repaying banks are net buyers when crises are driven by fundamentals but are net sellers when driven by runs

Outline of the Talk

1. Basic environment without runs

- Bank problem in partial equilibrium
- General equilibrium

2. Introduce bank-runs
3. Credit easing

Outline of the Talk

1. Basic environment without runs

- Bank problem in partial equilibrium
- General equilibrium

2. Introduce bank-runs
3. Credit easing

Environment

- Discrete time, infinite horizon, deterministic
- Continuum of banks, preferences $\sum_{t=0}^{\infty} \beta^{t} \log \left(c_{t}\right)$.
- Risk-neutral foreign creditors, discount rate R
- Small open economy
- Technology
- Production of consumption good: $y=z k$
- Capital in fixed supply \bar{K}
- Competitive market for assets and deposits
- No commitment to repay deposits

Banks: budgets and decisions

- Banks starts period with deposits b and assets k

If repay:

- Budget constraint

$$
c=\left(\bar{z}+p_{t}\right) k-R b+q_{t}\left(b^{\prime}, k^{\prime}\right) b^{\prime}-p_{t} k^{\prime} .
$$

where q is the price of deposits, p is the price of capital

Banks: budgets and decisions

- Banks starts period with deposits b and assets k

If repay:

- Budget constraint

$$
c=\left(\bar{z}+p_{t}\right) k-R b+q_{t}\left(b^{\prime}, k^{\prime}\right) b^{\prime}-p_{t} k^{\prime} .
$$

where q is the price of deposits, p is the price of capital

If default

- Productivity loss $y=\underline{z} k$ and permanent exclusion: $b^{\prime}=0$
- Budget constraint

$$
c=\left(\underline{z}+p_{t}\right) k-p_{t} k^{\prime}
$$

Banks Optimization

$$
V_{t}(b, k)=\max \left[V_{t}^{R}(b, k), V_{t}^{D}(k)\right]
$$

Value of repayment:

$$
V_{t}^{R}(b, k)=\max _{k^{\prime}, b^{\prime}, c} \log (c)+\beta V_{t+1}\left(b^{\prime}, k^{\prime}\right)
$$

subject to budget constraint \& No-Ponzi

Value of default:

$$
\begin{aligned}
V_{t}^{D}(k)= & \max _{k^{\prime}, c} \log (c)+\beta V_{t+1}^{D}\left(k^{\prime}\right) \\
& \text { subject to budget constraint }
\end{aligned}
$$

Default Decision

The optimal default rule follows

$$
d_{t}(b, k)= \begin{cases}1 & \text { if } V_{t}^{R}(b, k)<V_{t}^{D}(k) \\ 0 & \text { if } V_{t}^{R}(b, k)>V_{t}^{D}(k)\end{cases}
$$

Default Decision

The optimal default rule follows

$$
d_{t}(b, k)= \begin{cases}1 & \text { if } V_{t}^{R}(b, k)<V_{t}^{D}(k) \\ 0 & \text { if } V_{t}^{R}(b, k)>V_{t}^{D}(k) \\ 0 & \text { if } V_{t}^{R}(b, k)=V_{t}^{D}(k) \text { for } t>0\end{cases}
$$

Default Decision

The optimal default rule follows

$$
d_{t}(b, k)= \begin{cases}1 & \text { if } V_{t}^{R}(b, k)<V_{t}^{D}(k) \\ 0 & \text { if } V_{t}^{R}(b, k)>V_{t}^{D}(k) \\ 0 & \text { if } V_{t}^{R}(b, k)=V_{t}^{D}(k) \text { for } t>0\end{cases}
$$

- Equilibrium bond price is of the following form

$$
q_{t}\left(b^{\prime}, k^{\prime}\right)= \begin{cases}0 & \text { if } b^{\prime}>\bar{b}_{t}\left(k^{\prime}\right) \\ 1 & \text { if } b^{\prime} \leq \bar{b}_{t}\left(k^{\prime}\right)\end{cases}
$$

The Value of Default

$$
V_{t}^{D}(k)=A+\frac{1}{1-\beta} \log \left(k\left(\underline{z}+p_{t}\right)\right)+\frac{\beta}{1-\beta} \sum_{\tau \geq t} \beta^{\tau-t} \log \left(R_{\tau+1}^{D}\right),
$$

where the return on capital under default

$$
R_{t+1}^{D}=\frac{z+p_{t+1}}{p_{t}}
$$

Policy functions:

$$
\begin{aligned}
\mathcal{C}_{t}^{D}(k) & =(1-\beta)\left(\underline{z}+p_{t}\right) k \\
\mathcal{K}_{t+1}^{D}(k) & =\beta \frac{\left(\underline{z}+p_{t}\right) k}{p_{t}},
\end{aligned}
$$

The Value of Default

$$
V_{t}^{D}(k)=A+\frac{1}{1-\beta} \log \left(k\left(\underline{z}+p_{t}\right)\right)+\frac{\beta}{1-\beta} \sum_{\tau \geq t} \beta^{\tau-t} \log \left(R_{\tau+1}^{D}\right),
$$

where the return on capital under default

$$
R_{t+1}^{D}=\frac{z+p_{t+1}}{p_{t}}
$$

Policy functions:

Evolution of capital

$$
\begin{aligned}
\mathcal{C}_{t}^{D}(k) & =(1-\beta)\left(\underline{z}+p_{t}\right) k \\
\mathcal{K}_{t+1}^{D}(k) & =\beta \frac{\left(\underline{z}+p_{t}\right) k}{p_{t}}
\end{aligned}
$$

$$
k^{\prime}=\beta R_{t+1}^{D} k
$$

The Value of Repayment: Prelude

- Define net worth:

$$
n \equiv k(\bar{z}+p)-b R
$$

- Return on capital

$$
R_{t+1}^{k} \equiv \frac{\bar{z}+p_{t+1}}{p_{t}}
$$

- Guess a linear borrowing constraint $\bar{b}_{t}\left(k^{\prime}\right)=\gamma_{t} p_{t+1} k^{\prime}$

Lemma. If $p_{t}<\gamma_{t} p_{t+1}$ and $R_{t+1}^{k}>R$, then $k_{t+1}^{\prime}=\infty$ in period t for any level of networth (and so is its value function).

The Value of Repayment

$$
V_{t}^{R}(n)=A+\frac{1}{1-\beta} \log (n)+\frac{\beta}{1-\beta} \sum_{\tau \geq t}^{\infty} \beta^{\tau-t} \log \left(R_{\tau+1}^{e}\right)
$$

where the equity return is denoted by

$$
R_{t+1}^{e}=R_{t+1}^{k}+\left(R_{t+1}^{k}-R\right) \frac{\gamma_{t} p_{t+1}}{p_{t}-\gamma_{t} p_{t+1}}
$$

The Value of Repayment

$$
V_{t}^{R}(n)=A+\frac{1}{1-\beta} \log (n)+\frac{\beta}{1-\beta} \sum_{\tau \geq t}^{\infty} \beta^{\tau-t} \log \left(R_{\tau+1}^{e}\right)
$$

where the equity return is denoted by

$$
R_{t+1}^{e}=R_{t+1}^{k}+\left(R_{t+1}^{k}-R\right) \frac{\gamma_{t} p_{t+1}}{p_{t}-\gamma_{t} p_{t+1}}
$$

Policy functions:

$$
\mathcal{C}_{t}^{R}(n)=(1-\beta) n
$$

For all $t \geq 0$ such that $R_{t+1}^{k}>R$.

$$
\begin{gathered}
\mathcal{B}_{t+1}^{R}(n)=\gamma_{t} p_{t+1} \mathcal{K}_{t+1}^{R}(n) \\
\mathcal{K}_{t+1}^{R}(n)=\frac{\beta n}{p_{t}-\gamma_{t} p_{t+1}}
\end{gathered}
$$

Equilibrium Consistent Borrowing Limits

Proposition. A bank is indifferent between repayment and default at $t+1$ if $\left\{\gamma_{t}\right\}$ is such that:

$$
\begin{equation*}
\frac{\bar{z}+p_{t+1}\left(1-\gamma_{t} R\right)}{\underline{z}+p_{t+1}}=\left(1-\gamma_{t+1} \frac{p_{t+2}}{p_{t+1}}\right)^{\beta} \tag{G}
\end{equation*}
$$

Definition. Given $\left\{p_{t}\right\}_{t=0}^{\infty}$, we say a sequence of borrowing limits $\left\{\gamma_{t}\right\}_{t=0}^{\infty}$ is equilibrium-consistent if (G) is satisfied for all $t \geq 0$.

- With a sequence of γ_{t}, we can then construct value functions and policy functions for any $n_{0} \geq 0$
- Next: how to find $\left\{\gamma_{t}\right\}$?

How to find $\left\{\gamma_{t}\right\}$?

For a constant price, borrowing limit satisfies

$$
\gamma_{t+1}=1-\left(\frac{R^{k} / R-\gamma_{t}}{R^{D} / R}\right)^{\frac{1}{\beta}} \equiv H\left(\gamma_{t}\right)
$$

How to find $\left\{\gamma_{t}\right\}$?

For a constant price, borrowing limit satisfies

$$
\gamma_{t+1}=1-\left(\frac{R^{k} / R-\gamma_{t}}{R^{D} / R}\right)^{\frac{1}{\beta}} \equiv H\left(\gamma_{t}\right)
$$

- If R^{k} is too high, no equilibrium borrowing limit

How to find $\left\{\gamma_{t}\right\}$?

For a constant price, borrowing limit satisfies

$$
\gamma_{t+1}=1-\left(\frac{R^{k} / R-\gamma_{t}}{R^{D} / R}\right)^{\frac{1}{\beta}} \equiv H\left(\gamma_{t}\right)
$$

- Two fixed points γ^{\star} but only smallest satisfies No-Ponzi
- Smallest fixed point unstable $\Rightarrow \gamma_{t}=\gamma^{\star}$ for all t.

Comparative Statics

- Equilibrium γ is increasing in (β, \bar{z}) and decreasing in (R, \underline{z})
- Equilibrium γ is also decreasing in p, reflecting two forces
- Higher price reduces return under repayment and default
- ...but ability to lever up under repayment implies that the value V^{R} is more sensitive than V^{D}

Outline of the Talk

1. Basic environment without runs

- Bank problem in partial equilibrium
- General equilibrium

2. Introduce bank-runs
3. Credit easing

General Equilibrium

- So far, individual bank problem in partial eqm. (given p_{t})
- General eqm. requires market clearing for capital

Consider possibility that $\phi \in[0,1]$ banks default

- Fraction ϕ must be consistent with optimal default decision

$$
\phi=\left\{\begin{array}{l}
1 \text { if } B_{0}>\gamma_{-1} p_{0} \bar{K} \\
0 \text { if } B_{0}<\gamma_{-1} p_{0} \bar{K}, \\
\in[0,1] \text { otherwise }
\end{array}\right.
$$

General Equilibrium

- So far, individual bank problem in partial eqm. (given p_{t})
- General eqm. requires market clearing for capital

Consider possibility that $\phi \in[0,1]$ banks default

- Fraction ϕ must be consistent with optimal default decision

$$
\phi=\left\{\begin{array}{l}
1 \text { if } B_{0}>\gamma_{-1} p_{0} \bar{K} \\
0 \text { if } B_{0}<\gamma_{-1} p_{0} \bar{K} \\
\in[0,1] \text { otherwise }
\end{array}\right.
$$

- Market clearing

$$
\phi K_{t}^{D}+(1-\phi) K_{t}^{R}=\bar{K}
$$

Definition of Equilibrium.

Given B_{0}, an equilibrium is a sequence of $\left\{p_{t}\right\}_{t=0}^{\infty},\left\{\gamma_{t}\right\}_{t=-1}^{\infty}$, aggregate debt and capital, $\left\{B_{t}, K_{t}^{R}, K_{t}^{D}\right\}_{t=0}^{\infty}$, and an initial share of defaulting banks, ϕ, such that
(i) Evolution of aggregate debt and capital levels consistent with bank optimality given $\left\{\gamma_{t}, p_{t}\right\}$

$$
\begin{aligned}
B_{t+1} & =\mathcal{B}_{t+1}\left(\left(\bar{z}+p_{t}\right) K_{t}^{R}-R B_{t}\right) \\
K_{t+1}^{R} & =\mathcal{K}_{t+1}^{R}\left(\left(\bar{z}+p_{t}\right) K_{t}^{R}-R B_{t}\right) \\
K_{t+1}^{D} & =\mathcal{K}_{t+1}^{D}\left(\left(\underline{z}+p_{t}\right) K_{t}^{D}\right)
\end{aligned}
$$

(ii) Borrowing limits are equilibrium consistent
(iii) Market for capital clears
(iv) ϕ is consistent with banks' optimal default decision

Stationary Equilibrium: Two Types

1. Default equilibrium:

$$
\begin{aligned}
p^{D} & =\frac{\beta}{1-\beta} \underline{z} \\
\gamma^{D} & =H\left(\gamma^{D}, p^{D}\right)
\end{aligned}
$$

2. Repayment equilibrium:

$$
\begin{aligned}
p^{R} & =\frac{\beta \bar{z}}{1-\beta-(1-\beta R) \gamma^{R}} \\
\gamma^{R} & =H\left(\gamma^{R}, p^{R}\right)
\end{aligned}
$$

- Higher asset price under repayment
- Higher dividend and higher "collateral" value

Transitional Dynamics: 3 Regions depending on B_{0}

\bar{B}^{R} : threshold at which banks are indifferent while facing p^{R} \bar{B}^{D} : threshold at which banks are indifferent while facing p^{D}

Conjecture that $\bar{B}^{D}>\bar{B}^{R}$

Transitional Dynamics: High B_{0}

No transition \Rightarrow economy converges immediately to $\left(\gamma^{D}, p^{D}\right)$

Transitional Dynamics: Low B_{0}

(a) Transition map for B_{t}

(b) Associated price p_{t}

Transitional Dynamics: Intermediate B_{0}

- Equilibrium must be non-degenerate $0<\phi<1$
- A bank would find optimal to deviate under any equilibrium with all banks repaying or defaulting
- Mixed equilibrium: some banks default and some banks repay

Transitional Dynamics: Intermediate B_{0}

Borrowing Limit γ_{t}

Price of Capital

Capital Holdings

Summary Transitions as a fraction of B_{0}

(a) Fraction of banks defaulting

(c) Allocation of Capital

(b) Price of Capital p_{0}

(d) Consumption

Outline of the Talk

1. Basic environment without runs

- Bank problem in partial equilibrium
- General equilibrium

2. Introduce bank-runs
3. Credit easing

Model with Runs

- Coordination problem between lenders a la Cole-Kehoe
- Investors may panic and refuse to rollover deposits
- A bank choosing to repay in the event of a run solves

$$
\begin{aligned}
V_{t}^{\text {Run }}(n)= & \max _{k^{\prime} \geq 0, c \geq 0} \log (c)+V_{t+1}^{\text {Safe }}\left(\left(\bar{z}+p_{t+1}\right) k^{\prime}\right) \\
& \text { subject to: } \\
c= & \underbrace{\left(\bar{z}+p_{t}\right) k-b R}_{n}-p_{t} k^{\prime}
\end{aligned}
$$

- Repayment of b must come from sales of k

Model with Runs

- Coordination problem between lenders a la Cole-Kehoe
- Investors may panic and refuse to rollover deposits
- A bank choosing to repay in the event of a run solves

$$
\begin{aligned}
V_{t}^{\text {Run }}(n)= & \max _{k^{\prime} \geq 0, c \geq 0} \log (c)+V_{t+1}^{\text {Safe }}\left(\left(\bar{z}+p_{t+1}\right) k^{\prime}\right) \\
& \text { subject to: } \\
c= & \underbrace{\left(\bar{z}+p_{t}\right) k-b R}_{n}-p_{t} k^{\prime}
\end{aligned}
$$

- Repayment of b must come from sales of k

Model with Runs

- Coordination problem between lenders a la Cole-Kehoe
- Investors may panic and refuse to rollover deposits
- A bank choosing to repay in the event of a run solves

$$
\begin{aligned}
V_{t}^{\text {Run }}(n)= & \max _{k^{\prime} \geq 0, c \geq 0} \log (c)+V_{t+1}^{\text {Safe }}\left(\left(\bar{z}+p_{t+1}\right) k^{\prime}\right) \\
& \text { subject to: } \\
c= & \underbrace{\left(\bar{z}+p_{t}\right) k-b R}_{n}-p_{t} k^{\prime}
\end{aligned}
$$

- Repayment of b must come from sales of k
\star If $V_{t}^{\text {Run }}(n)<V_{t}^{D}(k)<V_{t}^{\text {Safe }}(n)$, a bank is vulnerable \star If $V_{t}^{\text {Run }}(n)>V_{t}^{D}(k)$, a bank is safe
- We assume that if a bank is vulnerable, a run happens

The Effects of Bank-Runs

1. Partial equilibrium: tighter borrowing constraint $\gamma^{\text {Run }}<\gamma$

- $V_{t+1}^{R u n}\left(n^{\prime}\right) \geq V_{t+1}^{D}\left(k^{\prime}\right)$

2. General equilibrium: lower price of capital

- Lower γ, imply lower demand by repaying banks
- More banks defaulting, which have lower demand for capital

Complementarity effects:
Runs cause more banks to default, which imply a $\Downarrow p_{0}$
\Rightarrow Lower p_{0} hurts banks facing a run
\Rightarrow more defaults

Outline of the Talk

1. Basic environment without runs

- Bank problem in partial equilibrium
- General equilibrium

2. Introduce bank-runs
3. Credit easing

Credit Easing

- Government purchases of assets financed with debt and lump sum taxes on banks
- Assumptions:
- Government is less efficient than defaulting banks $z_{g} \leq \underline{z}$
- Focus on $R^{g} \equiv \frac{z^{g}+p_{1}}{p_{0}}<R \Rightarrow$ govt. loses money
- No taxes/subsidies after $t>0 \Rightarrow$ government cannot bypass borrowing constraint

Q1: How does credit easing affect the fraction of banks defaulting?

Credit Easing

- Government purchases of assets financed with debt and lump sum taxes on banks
- Assumptions:
- Government is less efficient than defaulting banks $z_{g} \leq \underline{z}$
- Focus on $R^{g} \equiv \frac{z^{g}+p_{1}}{p_{0}}<R \Rightarrow$ govt. loses money
- No taxes/subsidies after $t>0 \Rightarrow$ government cannot bypass borrowing constraint

Q1: How does credit easing affect the fraction of banks defaulting?
Q2: What are the welfare implications?

Credit Easing: Fundamental Driven

Fraction of defaulting banks increases absent runs

- Banks that default are net sellers of capital
\Rightarrow credit easing raises p_{0} and increases V^{D} relative to V^{R}

Credit Easing: Run Driven

Fraction of defaulting banks decreases with runs

- Banks facing run are net sellers of capital (need to pay back b) \Rightarrow Credit easing raises p and increases $V^{R u n}$ relative to V^{D} \Longrightarrow Deters investors from running

Credit Easing: Taking Stock

\star Credit easing is only welfare improving if crisis is driven by runs

- Given asset prices, credit easing can only reduce welfare because government needs to tax banks to cover the losses
- In equilibrium, asset prices rise:
- Without runs: more banks default and welfare falls
- With runs: less banks default and welfare improves by avoiding inefficient defaults

Other policies: Controlling Default

\star Government picks at $t=0$ banks that default

- Let all markets clear competitively

Absent runs:

$$
\frac{d W}{d \phi}=\left[V^{D}\left(p_{0}^{E}\right)-V^{R}\left(p_{0}^{E}\right)\right]^{0}-(1-\phi)\left[u^{\prime}\left(c^{R}\left(p_{0}^{E}\right)\right)-u^{\prime}\left(c^{D}\left(p_{0}^{E}\right)\right)\right]\left(k^{R}\left(p_{0}^{E}\right)-\bar{K}\right) \frac{d p_{0}}{d \phi}>0
$$

- Optimal to increase share of defaulting banks
- More defaults reduce the price of capital and helps repaying banks, which have high marginal utility

Other policies: Controlling Default

\star Government picks at $t=0$ banks that default

- Let all markets clear competitively

Absent runs:

$$
\frac{d W}{d \phi}=\left[V^{D}\left(p_{0}^{E}\right)-\forall^{R}\left(p_{0}^{E}\right)\right]-(1-\phi)\left[u^{\prime}\left(c^{R}\left(p_{0}^{E}\right)\right)-u^{\prime}\left(c^{D}\left(p_{0}^{E}\right)\right)\right]\left(k^{R}\left(p_{0}^{E}\right)-\bar{K}\right) \frac{d p_{0}}{d \phi}>0
$$

- Optimal to increase share of defaulting banks
- More defaults reduce the price of capital and helps repaying banks, which have high marginal utility

With runs:
$\frac{d W}{d \phi}=\left[V^{\text {Safe }}\left(p_{0}^{E}\right)-V^{D}\left(p_{0}^{E}\right)\right]-(1-\phi)\left[u^{\prime}\left(c^{R}\left(p_{0}^{E}\right)\right)-u^{\prime}\left(c^{D}\left(p_{0}^{E}\right)\right)\right]\left(k^{R}\left(p_{0}^{E}\right)-\bar{K}\right) \frac{d p_{0}}{d \phi}$

- May be optimal to reduce defaults

Other Policies

\star Tax on purchases of capital at $t=0$ rebated lump sum

- Irrelevant: after-tax price remains constant and has no effects
\star Deposit insurance
- Can deter investors from running, but leads to inefficiently large bank borrowing
- Banks can borrow at risk-free rate \Rightarrow borrow a lot and default \Rightarrow Government needs to impose, in addition, borrowing limits

Conclusions

- Presented a tractable macroeconomic model of self-fulfilling bank-runs
- General equilibrium effects induce contagion effects through price of capital and are crucial to assess government policies
- Credit easing is desirable if and only if crisis are driven by runs
- Framework can be used to study other policies
- Next: macroprudential policy

Credit Easing: Fundamentals vs. Runs

(a) Value Functions Fundamental

(c) Demand for Capital Fundamental

Values and Net Positions as a function of Initial Price

Note: Vertical line indicate equilibrium price

Credit Easing: Fundamentals vs. Runs

(a) Value Functions Fundamental

(c) Demand for Capital Fundamental

Values and Net Positions as a function of Initial Price

Note: Vertical line indicate equilibrium price

Credit Easing: Fundamentals vs. Runs

(a) Value Functions Fundamental

(c) Demand for Capital Fundamental

Values and Net Positions as a function of Initial Price

Note: Vertical line indicate equilibrium price

Credit Easing: Fundamentals vs. Runs

Values and Net Positions as a function of Initial Price

Note: Vertical line indicate equilibrium price

Credit Easing: Fundamentals vs. Runs

Values and Net Positions as a function of Initial Price

Note: Vertical line indicate equilibrium price

Definition of Equilibrium.

Given B_{0}, an equilibrium is a sequence of $\left\{p_{t}\right\}_{t=0}^{\infty},\left\{\gamma_{t}\right\}_{t=-1}^{\infty}$, aggregate debt and capital, $\left\{B_{t}, K_{t}^{R}, K_{t}^{D}\right\}_{t=0}^{\infty}$, and an initial share of defaulting banks, ϕ, such that
(i) Evolution of aggregate debt and capital levels consistent with bank optimality given $\left\{\gamma_{t}, p_{t}\right\}$

$$
\begin{aligned}
B_{t+1} & =\mathcal{B}_{t+1}\left(\left(\bar{z}+p_{t}\right) K_{t}^{R}-R B_{t}\right) \\
K_{t+1}^{R} & =\mathcal{K}_{t+1}^{R}\left(\left(\bar{z}+p_{t}\right) K_{t}^{R}-R B_{t}\right) \\
K_{t+1}^{D} & =\mathcal{K}_{t+1}^{D}\left(\left(\underline{z}+p_{t}\right) K_{t}^{D}\right)
\end{aligned}
$$

(ii) Borrowing limits are equilibrium consistent
(iii) Market for capital clears
(iv) ϕ is consistent with banks' optimal default decision

