
Tensor Principal Component Analysis
with Applications in Finance

Andrii Babii Eric Ghysels Junsu Pan

UNC-Chapel Hill

March 18, 2024

Andrii Babii, Eric Ghysels, Junsu Pan Tensor PCA March 18, 2024 1 / 86



Presentation based on:

Babii, A. and Ghysels, E. and Pan, Junsu (2023) Tensor Principal
Component Analysis, arXivpreprintarXiv:2212.12981

Babii, A. and Ghysels, E. and Pan, Junsu (2024) Missing Financial
Data: Filling the Tensor Blanks, Work in progress

Andrii Babii, Eric Ghysels, Junsu Pan Tensor PCA March 18, 2024 2 / 86

arXiv preprint arXiv:2212.12981


Overview
1 Tensor Factor Model

2 Tensor PCA

3 Asymptotic Theory

4 Monte Carlo Experiments

5 Empirical Application — Sorted Portfolios

6 Missing Financial Data: Filling the Tensor Blanks

7 Conditional Asset Pricing with Imputed Characteristics

8 Conclusions

9 References & Appendices

Andrii Babii, Eric Ghysels, Junsu Pan Tensor PCA March 18, 2024 3 / 86



What is a Tensor?

A tensor is a multi-dimensional panel dataset — an array generalizing
vectors and matrices to higher dimensions

scalar

         vector
(1st order tensor)

         matrix
(2nd order tensor)

3rd order tensor

. . .
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Long Table vs. Wide Table vs. Tensor

Price

Year Seller A Seller B Product

2021 $14 $15 1
2022 $15 $17 1
2023 $16 $20 1
2021 $4 $7 2
2022 $5 $10 2
2023 $6 $14 2

Price
Product 1 Product 2

Year Seller A Seller B Seller A Seller B

2021 $14 $15 $4 $7
2022 $15 $17 $5 $10
2023 $16 $20 $6 $14

3-dimensional tensor →
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Examples of tensors in finance

Decile sorted portfolios: (a) time, (b) characteristics and (c) decile.
Usually deciles of characteristics sorted portfolios are collapsed into
high-low spreads, yielding a panel

Firm characteristics: (a) time, (b) firm and (c) characteristic.
Typically one does panel analysis for each time period separately, see
Bryzgalova, Lerner, Lettau, and Pelger (2022)

International asset pricing has cross-section within countries, time and
country dimensions. Typically one dimension is omitted

Related literature: Lettau (2022) who looks at mutual funds
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Big Picture

The tensor structure is often ignored to apply standard methods.

This paper: apply insights from the PCA literature to tensors.

Our contribution:

▶ PCA-type estimators for d-dimensional panel data;

▶ statistical test for the number of latent factors;

▶ easy to use: closed-form estimators, avoid non-convex optimization,
sequential computation of factors.
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Factor Model for a 2D Panel

A classical 2D factor model

yit =

R∑
r=1

λirftr + uit,

where
▶ ftr is a latent factor driving co-movement;
▶ λir is a latent exposure;
▶ i = 1, . . . , N is cross-section and t = 1, . . . , T is time.

Example: asset pricing
▶ yit is the excess returns of the ith asset at time t;
▶ explaining co-movement of asset returns with a small number of

factors.
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Factor Model for a 2D Panel

Matrix notation:

Y =

R∑
r=1

λr ⊗ fr +U,

where Y ∈ RN×T and λr ⊗ fr = λrf
⊤
r is a tensor (outer) product

temporal

cross section

factor

loadings loadings

factor

noise

Objective: identify and estimate the loadings λr ∈ RN and the
factors fr ∈ RT .
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Factor Models

Factor models are ubiquitous in economics/finance. A few examples are:

Asset pricing: Ross (1976), Chamberlain and Rothschild (1983).

Business cycle analysis: Sargent and Sims (1977).

Consumer theory: Lewbel (1991).

Forecasting with ’big data’: Stock and Watson (2002).

Unobserved heterogeneity and interactive fixed effects: Bai (2009),
Moon and Weidner (2015), Cunha, Heckman, and Schennach (2010).
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A Tensor Factor Model: 3-dimensional Case
Tensor factor model for 3-dimensional panel data

yijt =

R∑
r=1

λirµjrftr + uijt,

where µj,r are loadings for the third dimension j = 1, . . . , J . In tensor
form

Y =

R∑
r=1

λr ⊗ µr ⊗ fr +U,

where Y ∈ RN×J×T and ⊗ is the tensor product

temporal

cross section

cro
ss

 se
cti

on

factor

loadings

loa
din

gs

factor

loadings

loa
din

gs
noise

Objective: identify and estimate loadings λr ∈ RN , µr ∈ RJ , and
factors fr ∈ RT .
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A Tensor Factor Model: d-dimensional Case

This can be generalized to d dimensions

yi1i2···id =

R∑
r=1

vi11,rv
i2
2,r · · · v

id
d,r + ui1i2···id ,

where ij = 1, . . . , Nj and j = 1, . . . , d.

Collecting the data in a d-dimensional tensors Y ∈ RN1×N2×···×Nd ,

Y =

R∑
r=1

d⊗
j=1

vj,r +U,

where
⊗d

j=1 vj,r = v1,r ⊗ v2,r ⊗ · · · ⊗ vd,r.

This is called the Canonical Polyadic Decomposition
(CP-decomposition).
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A Tensor Factor Model: d-dimensional Case

For identification purposes, we normalize the loadings/factors

Y =

R∑
r=1

σr

d⊗
j=1

mj,r +U, EU = 0,

where σr =
∏d

j=1 ∥vj,r∥ is a scale and mj,r = vj,r/∥vj,r∥ is a
unit-norm loading/factor.

σr interpreted as a signal strength.

Objective: identify and estimate the unit-norm loadings/factors
mj,r ∈ RNj and scale components (σr)

R
r=1.

Tucker (1958) introduced a more general decomposition which does
not restrict the same number of factors along each tensor dimension.
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Principal Component Analysis
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PCA constructs linearly weighted combination of variables
▶ explaining most variance;
▶ are mutually orthogonal.

Solution: Eigendecomposition of Y⊤Y = Γ̂D̂2Γ̂⊤, where
▶ Γ̂ → eigenvectors
▶ D̂2 → eigenvalues.
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2D Factor Model via PCA

2D factor model

Y =

R∑
r=1

λr ⊗ fr +U = ΛF⊤ +U

where matrices Λ, F collect the vectors λr, fr.

Identifying loadings Λ ∈ RN×R via PCA assuming that F⊤F = IR:

YY⊤ = ΛΛ⊤ + noise = Γ̂D̂2Γ̂⊤, (1)

where
▶ Γ̂ → eigenvectors of YY⊤

▶ D̂2 → eigenvalues of YY⊤

Estimate Λ̂: the first R eigenvectors of YY⊤.

Estimate F̂ : the first R eigenvectors of Y⊤Y, or regress Y on Λ̂.
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TPCA - Tensor Matricization
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Tensor Matricization
Let Y be a 3× 4× 2 dimensional tensor of the following two frontal slices:

Y1 =

1 4 7 10
2 5 8 11
3 6 9 12

 Y2 =

13 16 19 22
14 17 20 23
15 18 21 24

 .

Then the mode-1, 2 and 3 matricization of Y are respectively:

Y(1) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24


3×8

,

Y(2) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24


4×6

,

Y(3) =

[
1 2 3 4 · · · 9 10 11 12
13 14 15 16 · · · 21 22 23 24

]
2×12

.
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Some intuition
Tensor factor model for 3-dimensional panel data

yijt =

R∑
r=1

λirµjrftr + uijt,

where i = 1, . . . , N , j = 1, . . . , J , and t = 1, . . . , T .

Collecting the data in a three-dimensional tensors Y ∈ RN×J×T ,

yijt =
R∑

r=1

[µjrftr]λir + uijt,

yijt =

R∑
r=1

[λirµjr]ftr + uijt,

yijt =

R∑
r=1

[λirftr]µjr + uijt,
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Some notation/definitions

Khatri-Rao Product: The KR product between two matrices
A ∈ RI×K and B ∈ RJ×K , A⊙B ∈ R(IJ)×K corresponds to
column-wise Kronecker Product:

A⊙B := [a1 ⊗K b1 a2 ⊗K b2 · · · aK ⊗K bK ]

Hadamard Product: The Hadamard product between two
same-sized matrices A ∈ RI×J and B ∈ RI×J , A ◦B ∈ RI×J

corresponds to the element-wise matrix product:

A ◦B :=


a11b11 a12b12 · · · a1Jb1J
a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ
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Tensor Decomposition via PCA
Recall that the tensor factor model for Y ∈ RN×J×T is

Y =

R∑
r=1

σrλr ⊗ µr ⊗ fr +U,

where the unit-norm λr, µr, and fr can be collected in matrices
Λ,M, F .

Matricizing the tensor

Y(1) = ΛD(F ⊙M)⊤ +U(1),

where Y(1) and U(1) are N ×JT matrices and D = diag(σ1, . . . , σR).

Likewise, we could reshape the 3-way factor model as

Y(2) = MD(F ⊙Λ)⊤+U(2) or Y(3) = FD(M ⊙Λ)⊤+U(3),

where Y(2),U(2) are J ×NT matrices and Y(3),U(3) are T × JN
matrices.
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TPCA Algorithm

For a 3 dimensional tensor:

Unfold the tensor Y ∈ RN×J×T → Y(1),Y(2),Y(3)

Estimate loadings and factors:
▶ Λ̂ → first R eigenvectors of Y(1)Y

⊤
(1);

▶ M̂ → first R eigenvectors of Y(2)Y
⊤
(2);

▶ F̂ → first R eigenvectors of Y(3)Y
⊤
(3).

Estimate the scale components:
▶ σ̂ → first R eigenvalues of Y(1)Y

⊤
(1).

Alternatively:

Estimate factors F̂ by regressing Y(3) on the product of Λ̂ and M̂ .

Estimate scale σ̂r → ∥f̂r∥.

Appendix: Derivation
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Asymptotics of PCA tensor decomposition

Theorem

Suppose that M⊤
j Mj = IR the idiosyncratic errors U are i.i.d. with

EU = 0 and finite fourth moment. Then for all

∥m̂j,r−mj,r∥ = OP

√Njtr(D) +
(
Nj ∨

∏
k ̸=j Nk

)
δr

 , ∀r ≤ R, j ≤ d.

where δr is the eigengap, namely:

δr = min
k ̸=r

|σ2
k − σ2

r | ∧ σ2
r

which measures the strength of rth factor. Note that if we ignore the
eigengap for the smallest eigenvalue (distance to zero) we have δr =
mink ̸=r |σ2

k − σ2
r |
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Rates of Consistency

Strong tensor factor model: For any rth factor,

the signal strength σr increases proportional to

√(∏d
j=1Nj

)
· dr

for some d1 > d2 > · · · > dR > 0 as N1, . . . , Nd → ∞.

Tensor dimensions improve the convergence rate

∥m̂j,r −mj,r∥ = OP

(√
1∏

k ̸=j Nk

)
,

for the jth dimension.

Appendix: Asymptotics
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Asymptotic distribution: factors/loadings

Suppose additionally that ν ∈ RNj is such that

lim
Nj→∞

√
Nj⟨mj,k, ν⟩ > 0.

Examples:
▶ ith element of factors/loadings vector mj,r ∈ RNj : ν ∈ RNj is the all

zeros vector except for ith coordinate equal to 1;
▶ average factors/loadings: ν = N−1

j (1, 1, . . . , 1).

Under some conditions on tensor dimensions, e.g. N1 ∼ N2 ∼ N3 in
the 3D case

∏
k ̸=j

√
Nk⟨m̂j,k −mj,k, ν⟩

d−→ N

0, σ2
∑
k ̸=r

ω2
j,k(ν)

dr + dk
(dr − dk)2

 .
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Testing the Number of Factors

Consider the following hypotheses

H0 : ≤ k factors vs. H1 : the number of factors is > k, but ≤ K.

Eigenvalue ratio statistics inspired by Onatski (2009)

Sj = max
k<r≤K

σ̂2
r,j − σ̂2

r+1,j

σ̂2
r+1,j − σ̂2

r+2,j

, 1 ≤ j ≤ d.

Theorem

Then under H0, Sj
d−→ Z, where Z can be approximated using type-1

Tracy-Widom distribution. Under H1, we have Sj ↑ ∞ for every j ≤ d.
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Simulated Distribution of Sj
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Model Complexity

Consider the following model for Y = {yi,j,t} ∈ RN×J×T :

yi,j,t =

R∑
r=1

σrλi,rµj,rft,r + ui,j,t, E(ui,j,t) = 0,

If pooling the tensor into a matrix and then applying PCA to
Y(3)Y

⊤
(3), where Y(3) ∈ R(NJ)×T

yi,j,t =

R∑
r=1

σrβi,j,rft,r + ui,j,t, E(ui,j,t) = 0.

where βi,j,r = λi,rµj,r.

Number of parameters:
▶ Tensor → R× (N + J + T );
▶ Pooling → R× (NJ + T ).
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Model Complexity: # of Parameters/Sample Size

Number of factors
Model 1 2 3 4 5

Panel A: T = 100, N = 30, J = 20

Tensor 0.25% 0.50% 0.75% 1.00% 1.25%
Pooling 1.17% 2.33% 3.50% 4.67% 5.83%

Panel B: T = 50, N = 50, J = 50

Tensor 0.12% 0.24% 0.36% 0.48% 0.60%
Pooling 2.04% 4.08% 6.12% 8.16% 10.2%

Panel C: T = 50, N = 100, J = 100

Tensor 0.05% 0.10% 0.15% 0.20% 0.25%
Pooling 2.01% 4.02% 6.03% 8.04% 10.05%

Andrii Babii, Eric Ghysels, Junsu Pan Tensor PCA March 18, 2024 28 / 86



Model Fit: Tensor vs. Pooling
R2 := 1− RSS/TSS, where RSS =

∑
i,j,t û

2
i,j,t and TSS =

∑
i,j,t y

2
i,j,t.

0 500 1000 1500 2000 2500 3000 3500
Number of Parameters

0.4

0.5

0.6

0.7

0.8

0.9

1
R

2

1 1

2 2

3 3

4 4
5 5

Tensor
Pooling

Figure: 100× 30× 20 - 5 Factors
Appendix: DGP
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Tensor Decomposition via ALS Algorithm

The low-rank tensor approximation is a non-convex optimization
problem

min
Ŷ

∥Y − Ŷ∥ where Ŷ =

R∑
r=1

λr ⊗ µr ⊗ fr

Alternating Least Squares (ALS) algorithm, Kolda and Bader
(2009), is the workhorse of tensor decomposition in numerical
analysis.
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Tensor Decomposition via ALS Algorithm

For the 3-way tensor, the ALS algorithm solves sequentially the
following steps repeatedly until convergence (where [·]+ is the
Penrose inverse)

Λ̂ = argmin
Λ

∥Y(1) − Λ(F ⊙M)T ∥ = Y(1)[(F ⊙M)T ]+

M̂ = argmin
M

∥Y(2) −M(F ⊙ Λ)T ∥ = Y(2)[(F ⊙ Λ)T ]+

F̂ = argmin
F

∥Y(3) − F (M ⊙ Λ)T ∥ = Y(3)[(M ⊙ Λ)T ]+

Requires initial starting values, and convergence is not guaranteed.

Requires prior knowledge of rank R, whereas TPCA allows sequential
computation of factors/loadings.
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MC Experiment: TPCA vs. ALS

Same DGP,
▶ allow the true number of factors R ∈ {1, 2, 3, 4},
▶ always fit a one-factor model without the knowledge of the true R.

Performance evaluation: the norm of estimation errors

Lλ = ∥λ̂r − λr∥,
Lµ = ∥µ̂r − µr∥,
Lf = ∥f̂r − fr∥.
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Distribution of Errors: TPCA vs. ALS

Estimation Error
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Distribution of Errors: TPCA vs. ALS
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MC Experiment: Eigenvalue Ratio Test

We generate a 2-factor model, and test

H0 : ≤ 1 factors vs. H1 : the number of factors is > 1, but ≤ K.

The signal strength
▶ σr = dr ×

√
NJT with d1 = 2,

▶ gradually increase d2 to study the power properties of the test.

▶ d2 = 0 implies a 1-factor model.
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Power Curves of Eigenvalue Ratio Test

H0 : ≤ 1 factors vs. H1 : the number of factors is > 1, but ≤ K.
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Power Curves of Eigenvalue Ratio Test

5 dimensional tensor - Gaussian Errors
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Student’s t-distributed idiosyncratic errors also work with the
empirical power climbs slightly slower to 1.
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High-minus-low Risk Premia

Risk Premium: excess return that an investor expects to receive for
taking on additional risk compared to a risk-free investment

Examples: market, firm size, book-to-market ratio, operating
profitability, investment strategies, etc.

Market risk is the primary risk of assets

Market Risk Premium = Expected Return− Risk Free Rate

where Expected Return is return of S&P 500 or value-weighted
average of all US common shares, and Risk Free Rate is treasury bill
rate.
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High-minus-low Risk Premia

Constructing characteristic risk premium: The difference between the
returns of portfolios with the highest and lowest characteristic.

characteristiclowest highest

individual assets

1 2 3 4 5 6 7 8 9 10

This can be done at any point of time t and for any characteristic i,
making it a 3-dimensional tensor.

Question: Are characteristic risk premia biased by the market risk?
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characteristiclowest highest

individual assets

1 2 3 4 5 6 7 8 9 10

This can be done at any point of time t and for any characteristic i,
making it a 3-dimensional tensor.

Question: Are characteristic risk premia biased by the market risk?
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High-minus-low risk premia

Consider a 3D factor model:

yi,j,t =

R∑
r=1

σrλi,rµj,rft,r + ui,j,t, E(ui,j,t) = 0,

where yi,j,t is the excess return of the jth quantile of the ith

characteristic at time t.

≈ +temporal

characteristic

decile

temporal

characteristic

decile
decile

temporal

characteristic
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High-minus-low risk premia

Consider a 3D factor model:

yi,j,t =

R∑
r=1

σrλi,rµj,rft,r + ui,j,t, E(ui,j,t) = 0,

where yi,j,t is the excess return of the jth quantile of the ith

characteristic at time t.

High-minus-low risk premia:

y10−1
it = σ1λi,1(µ10,1 − µ1,1)ft,1 + σ2λi,2(µ10,2 − µ1,2)ft,2 + u10−1

it ,

where y10−1
it = yi,10,t − yi,1,t and u10−1

it = ui,10,t − ui,1,t.
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Datasource

Data source: “Open Source Cross-Sectional Asset Pricing” database
created by Chen and Zimmermann (2023).

Monthly portfolio returns, sorted into 10 deciles based on firm level
characteristics, from Jan. 1990 to Dec. 2020

The number of characteristics is 133.

The 3D tensor we consider is
▶ size N × J × T , with N = 133, J = 10, T = 360,
▶ the total number of observations NJT = 478,800.

Compare the estimates of the 3D factor model from both TPCA and
ALS.
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Estimated Factors
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Appendix: First Factor is Market
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Estimated Loadings Specific to Deciles

Decile 1 2 3 4 5 6 7 8 9 10 10 - 1

Tensor PCA
µ̂1 0.3779 0.3423 0.3170 0.3021 0.2924 0.2846 0.2866 0.2961 0.3097 0.3406 -0.0373
µ̂2 0.5259 0.3719 0.2289 0.1225 0.0216 -0.0689 -0.1660 -0.2769 -0.3823 -0.5119 -1.0378

ALS
µ̂1 0.4417 0.3925 0.3481 0.3186 0.2927 0.2700 0.2567 0.2517 0.2541 0.2752 -0.1665
µ̂2 -0.3585 -0.3308 -0.2346 -0.1433 -0.0369 0.0752 0.2003 0.3261 0.4483 0.5762 0.9347

Exposures of deciles to the first factor - Market:

▶ largest on the two extremes and smaller in the middle

▶ TPCA is more symmetric than ALS
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Estimated Loadings Specific to Deciles

Decile 1 2 3 4 5 6 7 8 9 10 10 - 1

Tensor PCA
µ̂1 0.3779 0.3423 0.3170 0.3021 0.2924 0.2846 0.2866 0.2961 0.3097 0.3406 -0.0373
µ̂2 0.5259 0.3719 0.2289 0.1225 0.0216 -0.0689 -0.1660 -0.2769 -0.3823 -0.5119 -1.0378

ALS
µ̂1 0.4417 0.3925 0.3481 0.3186 0.2927 0.2700 0.2567 0.2517 0.2541 0.2752 -0.1665
µ̂2 -0.3585 -0.3308 -0.2346 -0.1433 -0.0369 0.0752 0.2003 0.3261 0.4483 0.5762 0.9347

Exposures of deciles to the second factor:

▶ both TPCA and ALS are monotone

▶ sign indeterminant
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Message on High-Minus-Low Portfolios

High-minus-low portfolios (risk premia):

y10−1
it = σ1λi,1(µ10,1 − µ1,1)ft,1 + σ2λi,2(µ10,2 − µ1,2)ft,2 + u10−1

it

For TPCA, symmetry of µ1 implies the first term on the right-hand
side cancels out. Not the case with ALS.

Constructing risk premia using high-minus-low portfolios:
▶ eliminates the risks from the market;
▶ delivers the highest risk premium associated with one characteristic,

i.e., 10-1 is better than 9-2 or 8-3.
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Highest to Lowest Characteristic Loadings - TPCA

First factor - market

Firm Age - Momentum

Idiosyncratic risk

Price
...

Price delay R square

Frazzini-Pedersen Beta

Volume Variance

Second factor

Bid-ask spread

Idiosyncratic risk

CAPM beta
...

Real estate holdings

Market leverage

Earnings Surprise
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Summary Statistics of Loadings Specific to Characteristics

Max Mean Min Std. > 0

TPCA

λ̂1 0.1133 0.0863 0.0658 0.0087 100%

λ̂2 0.2715 0.0027 -0.2681 0.0870 58.65%
ALS

λ̂1 0.2740 0.0424 -0.2060 0.0759 81.20%

λ̂2 0.2447 0.0748 -0.0254 0.0441 96.24%

Exposures of characteristics to the first factor - Market:

▶ TPCA strictly positive, ALS about 20% negative

▶ Std. is significantly larger for ALS than TPCA
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Summary Statistics of Loadings Specific to Characteristics

Max Mean Min Std. > 0

TPCA

λ̂1 0.1133 0.0863 0.0658 0.0087 100%

λ̂2 0.2715 0.0027 -0.2681 0.0870 58.65%
ALS

λ̂1 0.2740 0.0424 -0.2060 0.0759 81.20%

λ̂2 0.2447 0.0748 -0.0254 0.0441 96.24%

Exposures of characteristics to the second factor:

▶ TPCA about 50% positive

▶ ALS more than 96% positive
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Remainder of talk based on:

Babii, A. and Ghysels, E. and Pan, Junsu (2024) Missing Financial Data:
Filling the Tensor Blanks, Work in progress
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Missing Financial Data: Filling the Tensor Blanks

Bryzgalova et al. (2022) models the panel of firm characteristics for each
month t as follows:

Ct
i,ℓ = Ft

iΛ
t⊤
ℓ +Ut

i,ℓ with i = 1, . . . , Nt and ℓ = 1, . . . , L.

Using the approach of Xiong and Pelger (2022), the loadings Λt are
estimated as eigenvectors of the estimated characteristic covariance matrix

Σ̂XS,t
ℓ,p =

1

Qt
ℓ,p

∑
i∈Qt

ℓ,p

Ct
ℓ,iC

t
p,i,

where Qt
ℓ,p is the set of all stocks that are observed for the two

characteristics ℓ and p at time t.
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Missing Financial Data: Filling the Tensor Blanks

The cross-sectional factors are estimated by a regression on the estimated
loadings Λ̂t:

F̂t
i =

(
1

L

L∑
ℓ=1

W t
i,ℓΛ̂

t
ℓ(Λ̂

t
ℓ)

⊤

)−1(
1

L

L∑
ℓ=1

W t
i,ℓΛ̂

t
ℓ(C

t
ℓ,i)

⊤

)
,

where W t
i,ℓ = 1 if characteristic ℓ is observed for stock i at time t and

W t
i,ℓ = 0 otherwise. Due to overfitting, the above equation is replaced by

a regularized ridge regression:

F̂t,γ
i =

(
1

L

L∑
ℓ=1

W t
i,ℓΛ̂

t
ℓ(Λ̂

t
ℓ)

⊤ + γIK

)−1(
1

L

L∑
ℓ=1

W t
i,ℓΛ̂

t
ℓ(C

t
ℓ,i)

⊤

)
.
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Tensor Factor Model for Firm Characteristics

For firm characteristics C ∈ RN×T×L with possibly missing entries,
consider the tensor factor model

Ci,t,ℓ =

R∑
r=1

σrµr,ifr,tλr,ℓ +Ui,t,ℓ,

where loadings µ and λ correspond to the firm and characteristic
dimensions, respectively. The loadings λ and factors f are estimated as
eigenvectors of

Σ̂
(j)
ℓ,p =

1

Qℓ,p

∑
i∈Qℓ,p

C
(j)
ℓ,iC

(j)
p,i ,

where Qℓ,p is the set of all columns that are observed for the ℓth and the
pth rows of C(j), and C(j) is matricized characteristic tensor along the jth

dimension, for j = 2, 3.
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Tensor Factor Model for Firm Characteristics

The loadings µ are estimated by a cross-sectional regression of the
characteristics on the Khatri-Rao product of Λ̂ and F̂, denoted by
K̂ := Λ̂⊙ F̂, as follows:

M̂i =

 TL∑
j=1

Wi,jK̂j(K̂j)
⊤

−1 TL∑
j=1

Wi,jK̂j(C
(1)
j )⊤

 ,

where Wi,j = 1 if the jth column of C(1) ∈ RN×TL is observed. The
missing characteristics are predicted by TPCA as

ĈTPCA
i,t,ℓ =

R∑
r=1

σ̂rµ̂r,if̂r,tλ̂r,ℓ.
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Backward Information

Similar to Bryzgalova et al. (2023), we also combine backward information
by a cross-sectional regression:

Ci,t,ℓ =
(
βℓ,t,B-TPCA

)⊤( R∑
r=1

σ̂rµ̂r,if̂r,tλ̂r,ℓ Ct−1
i,ℓ êt−1

i,ℓ

)

where the êti,ℓ = Ci,t,ℓ − ĈTPCA
i,t,ℓ , and estimate

β̂ℓ,t,B-TPCA =

(
Nt∑
i=1

Wt,ℓ
i XB-TPCA

i,t,ℓ (XB-TPCA
i,t,ℓ )⊤

)(
Nt∑
i=1

Wt,ℓ
i XB-TPCA

i,t,ℓ Ci,t,ℓ

)
,

where Wt,ℓ
i = 1 if XB-TPCA

i,t,ℓ and Ci,t,ℓ are both observed and 0 otherwise.
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Backward-Forward Information

The B-TPCA model can be extended to include forward information
at time t+ 1, where we define the covariates

XBF-TPCA
i,t,ℓ =

(
R∑

r=1

σ̂rµ̂r,if̂r,tλ̂r,ℓ Ct−1
i,ℓ êt−1

i,ℓ Ct+1
i,ℓ êt+1

i,ℓ

)
,

and estimate the model

Ci,t,ℓ =
(
βℓ,t,BF-TPCA

)⊤( R∑
r=1

σ̂rµ̂r,if̂r,tλ̂r,ℓ Ct−1
i,ℓ êt−1

i,ℓ Ct+1
i,ℓ êt+1

i,ℓ

)
.
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Imputation Methods - New tensor-based

Tensor PCA (TPCA)
ĈTPCA

i,t,ℓ =
∑R

r=1 σ̂rµ̂r,if̂r,tλ̂r,ℓ

Backward-TPCA (B-TPCA)

ĈB-TPCA
i,t,ℓ = (β̂ℓ,t,B-TPCA)⊤

(
ĈTPCA

i,t,ℓ Ct−1
i,ℓ êt−1

i,ℓ

)
Backward-Forward-TPCA (BF-TPCA)

ĈBF-TPCA
i,t,ℓ = (β̂ℓ,t,BF-TPCA)⊤

(
ĈTPCA

i,t,ℓ Ct−1
i,ℓ êt−1

i,ℓ Ct+1
i,ℓ êt+1

i,ℓ

)
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Imputation Methods - Bryzgalova et al. (2022)
Backward-Forward-XS (BF-XS)

ĈBF-XS
i,t,ℓ = (β̂ℓ,t,BF-XS)⊤

(
ĈXS

i,t,ℓ Ct−1
i,ℓ êt−1

i,ℓ Ct+1
i,ℓ êt+1

i,ℓ

)
Backward-XS (B-XS)

ĈB-XS
i,t,ℓ = (β̂ℓ,t,B-XS)⊤

(
ĈXS

i,t,ℓ Ct−1
i,ℓ êt−1

i,ℓ

)
Cross-sectional (XS)
ĈXS

i,t,ℓ =
∑R

r=1 σ̂r,tµ̂r,i,tλ̂r,ℓ,t

Autoregression (AR)
ĈAR

i,t,ℓ = (β̂ℓ,t,AR)⊤Ct−1
i,ℓ

Previous Value (PV)
ĈPV

i,t,ℓ = Ct−1
i,ℓ

Cross-sectional median (median)
Ĉmedian

i,t,ℓ = 0
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Evaluation Metrics

The accuracy of the imputations are measured by the root-mean-squared
errors as

RMSE =

√√√√ 1

T

T∑
t=1

1

L

L∑
ℓ=1

1

Nt

Nt∑
i=1

(Ci,t,ℓ − Ĉi,t,ℓ)2.

We measure the out-of-sample RMSE by randomly creating missingness
following two schemes:

Missing Completely at Random (MCAR). 10% of the characteristics
are masked completely at random.

Block Missing. We mask 10% of the characteristics in blocks of one
year, and 40% of the blocks are at the beginning.
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Data
We use the dataset created by Freyberger, Neuhierl, and Weber
(2020). The data cover 35 firm characteristics.

The dataset is monthly and ranges from January 1966 to December
2020, and there are a total of 13588 firms in the entire sample.

This number is smaller than 22630 in Bryzgalova et al. (2022),
because we only have access to the pre-cleaned dataset that has no
missingness in the cross-section of characteristics, i.e., all
characteristics exist for all firms at any time period.

The results calculated based on cross-sectional factor model are also
very close to those in Bryzgalova et al. (2022).

However, this difference does not affect the empirical results because
the RMSE are calculated based on simulated (masked) missing
characteristics both in this paper and in Bryzgalova et al. (2022).

Raw characteristics are converted into ranks within range [−0.5, 0.5] .
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Number of Factors
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Cross-sectional factor model overfits easily.
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Window Size for Rolling-Window Estimation
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(b) Block Missing

The best information comes from within one year.

The quality of information beyond one year is similar.
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Imputation Results

In-Sample OOS MCAR OOS Block

Method RMSE R2 RMSE R2 RMSE R2

TPCA (5) 0.1844 0.5747 0.1866 0.5648 0.1984 0.5073
TPCA (10) 0.1591 0.6810 0.1600 0.6802 0.1792 0.5980
XS (5) 0.1784 0.6190 0.2069 0.4875 0.2093 0.4783
XS (10) 0.1244 0.8148 0.1923 0.5574 0.2029 0.5098

B-TPCA (5) 0.1026 0.8674 0.1168 0.8294 0.1934 0.5318
B-TPCA (10) 0.0987 0.8773 0.1098 0.8492 0.1752 0.6157
B-XS (5) 0.0904 0.9021 0.1189 0.8308 0.2038 0.5051
B-XS (10) 0.0670 0.9463 0.1253 0.8120 0.1988 0.5295

Prev. Value 0.1282 0.8031 0.1522 0.7229 0.2814 0.0570
Median 0.2890 0.0000 0.2890 0.0000 0.2898 0.0000
AR(1) 0.1153 0.8407 0.1426 0.7566 0.2810 0.0596
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Conditional Asset Pricing with Imputed Characteristics

Characteristics data figure prominently in the estimation of many
asset pricing models.

We study the influence of missing characteristics and their imputation
on the estimation of conditional asset pricing models. Specifically, we
consider the instrumented principal component analysis, or IPCA,
proposed by Kelly, Pruitt, and Su (2019). The general IPCA model
specification for an excess return ri,t+1 is:

ri,t+1 = αi,t + βi,tFt+1 + εi,t+1

αi,t = Z ′
i,tΓα + να,i,t

βi,t = Z ′
i,tΓβ + νβ,i,t

where Ft are K asset pricing factors.
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IPCA estimator

The model allows for dynamic factor loadings, βi,t on a K - vector of
latent factors Ft. Loadings depend on L characteristics labeled as
instruments (not counting a constant).

We can rewrite the model with αi,t = 0 ∀ i and t, as follows:

rt+1 = ZtΓβFt+1 + ε∗t+1

where rt+1 is an N × 1 vector of individual firm excess returns, Zt is
a N × L+ 1 matrix with individual firm characteristics, and ε∗t+1 is
the N × 1 vector with entries ε∗i,t+1 = εt+1 + να,i,t + νβ,i,tFt+1.

Andrii Babii, Eric Ghysels, Junsu Pan Tensor PCA March 18, 2024 62 / 86



IPCA estimator

The least squares estimator for Γβ and F is defined as:

min
Γβ ,F

T−1∑
t=1

(rt+1 −ZtΓβFt+1)
′ (rt+1 −ZtΓβFt+1)

with first order conditions:

F̂t+1 = (Γ̂′
βZ ′

tZtΓ̂β)
−1Γ̂′

βZ ′
trt+1

vec(Γ′
β) =

(
T−1∑
t=1

Z ′
tZt ⊗ F̂t+1F̂ ′

t+1

)−1(T−1∑
t=1

[
Zt ⊗ F̂ ′

t+1

]′
rt+1

)

This system of first-order conditions has no closed-form solution and
must be solved iteratively as an alternating least squares procedure.
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IPCA estimator

We study the situation where some of the characteristics are missing
and imputed with either one of the methods discussed in the previous
sections. To that end we define: ẐBF-TPCA

t , ẐB-TPCA
t , ẐTPCA

t ,
ẐBF-XS
t , ẐB-XS

t , ẐXS
t , ẐAR

t and Ẑmedian
t .

In each case, apart from the constant we use the different imputation
methods to complete the N × L+ 1 matrix Zt for its missing values.
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IPCA estimator

Since imputation implies errors, we expect that the estimates of Γβ
and F will be biased and our purpose is to study the bias of the
various methods. In addition, we also propose an IV estimator to
correct the bias, namely we replace the IPCA estimator with:

B̂i,t =
(
F̂t−k,tF̂ ′

t−k,t

)−1

F̂ ′
t−k,tri,t−k,t i = 1, . . . , N

F̂t+1 = (B̂′
tZtΓ̂β)

−1B̂′
trt+1

vec(Γ′
β) =

(
T−1∑

τ=k+1

(IK ⊗Zτ )
′(IK ⊗Zτ )

)−1( T−1∑
τ=k+1

(IK ⊗Zτ )
′vec(Bτ )

)

where B̂i,t is a rolling sample beta estimator for firm i using returns
from t− k to t characterized by the vector ri,t−k,t which is used as

instruments in the estimation of F̂t+1 depicted in the second equation.

The third equation represents the least squares estimator for vec(Γ′
β)

by regressing (IK ⊗Zτ ) onto vec(Bτ ).
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Conditional Beta and Factor Model Estimators

Imputation Method IPCA Estimators IV Estimators

Backward-Forward-TPCA F̂BF-TPCA
t Γ̂BF-TPCA

β IV-F̂BF-TPCA
t IV-Γ̂BF-TPCA

β

Backward-TPCA F̂B-TPCA
t Γ̂B-TPCA

β IV-F̂B-TPCA
t IV-Γ̂B-TPCA

β

Tensor PCA F̂TPCA
t Γ̂TPCA

β IV-F̂TPCA
t IV-Γ̂TPCA

β

Backward-Forward-XS F̂TPCA
t Γ̂TPCA

β IV-F̂TPCA
t IV-Γ̂TPCA

β

Backward-XS F̂B-XS
t Γ̂B-XS

β IV-F̂B-XS
t IV-Γ̂B-XS

β

Cross-sectional F̂XS
t Γ̂XS

β IV-F̂XS
t IV-Γ̂XS

β

Autoregression F̂AR
t Γ̂AR

β IV-F̂AR
t IV-Γ̂AR

β

Previous Value F̂PV
t Γ̂PV

β IV-F̂PV
t IV-Γ̂PV

β

Cross-sectional median F̂median
t Γ̂median

β IV-F̂median
t IV-Γ̂median

β
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Conclusions

Novel approach for analyzing tensor datasets: tensor factor model

Estimation via the PCA: closed-form expressions, avoids non-convex
optimization.

Asymptotic theory:
▶ tensor dimensions can improve the estimation accuracy for

factors/loadings.
▶ eigenvalue ratio test for selecting the number of factors.

Monte Carlo experiments:
▶ TPCA is superior to ALS.
▶ tensor factor model is more effective in reducing dimensions than

traditional

Sorted portfolios application: results with TPCA provide new insights
for high-minus-low risk premia calculations.

Missing characteristics: tensor-based approach provides better results
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The End
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Appendix: MC Experiment - Finite Sample Properties

Recall the convergence rate

∥m̂j,r −mj,r∥ = OP

(√
1∏

k ̸=j Nk

)
.

Then the rate would be

▶ λr → OP (1/
√
JT ),

▶ µr → OP (1/
√
NT ),

▶ fr → OP (1/
√
NJ).
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Appendix: MC Experiment - Finite Sample Properties

Generate a strong model with one factor with
▶ signal strength σ1 =

√
NJT .

Baseline model (T,N, J) = (100, 30, 20), and the modified model:
▶ double all dimensions, (T,N, J) = (200,60,40),
▶ double two dimensions, (T,N, J) = (100,60,40),
▶ double only one dimension, (T,N, J) = (100,60,20).

Performance evaluation: the norm of estimation errors.
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Appendix: Estimation Errors - Increasing Tensor Size
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(c) f̂

Double all dimensions, all estimation errors are reduced by 1/2.

Recall the convergence rate
▶ λr → OP (1/

√
JT ),

▶ µr → OP (1/
√
NT ),

▶ fr → OP (1/
√
NJ).
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Appendix: Estimation Errors - Increasing Tensor Size
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(c) f̂

Only double N and J, the estimation errors
▶ for both λ̂ and µ̂ are reduced by 1/

√
2,

▶ for f̂ are reduce by 1/2.

Recall the convergence rate
▶ λr → OP (1/

√
JT ),

▶ µr → OP (1/
√
NT ),

▶ fr → OP (1/
√
NJ).
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Appendix: Estimation Errors - Increasing Tensor Size
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(c) f̂

Only double N,
▶ no improvement for λ̂,
▶ the estimation errors for µ̂ and f̂ are reduced by 1/

√
2.

Recall the convergence rate
▶ λr → OP (1/

√
JT ),

▶ µr → OP (1/
√
NT ),

▶ fr → OP (1/
√
NJ).
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Appendix: Tensor Decomposition via PCA

Recall a 3D tensor factor model

Y︸︷︷︸
N×J×T

=

R∑
r=1

σrλr ⊗ µr ⊗ fr +U,

where λr, µr, and fr can be collected in matrices Λ,M, F .

Matricizing the tensor

Y(1)︸︷︷︸
N×JT

= ΛD(F ⊙M)⊤ + U(1)︸︷︷︸
N×JT

,

where D = diag(σ1, . . . , σR).

Appendix: Notations
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Appendix: Tensor Decomposition via PCA

Recall a 3D tensor factor model

Y︸︷︷︸
N×J×T

=

R∑
r=1

σrλr ⊗ µr ⊗ fr +U,

where λr, µr, and fr can be collected in matrices Λ,M, F .

Likewise, we could reshape the 3D factor model as

Y(2)︸︷︷︸
J×NT

= MD(F⊙Λ)⊤+U(2) or Y(3)︸︷︷︸
T×JN

= FD(M⊙Λ)⊤+U(3).
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Appendix: Derivation

Recall
Y(1)︸︷︷︸
N×JT

= ΛD(F ⊙M)⊤ + U(1)︸︷︷︸
N×JT

,

where D = diag(σ1, . . . , σR).

If F⊤F = IR, Λ
⊤Λ = IR, and M⊤M = IR, then

Y(1)Y
⊤
(1) = ΛD(F ⊙M)⊤(F ⊙M)DΛ⊤ + noise

= ΛD(F⊤F ) ◦ (M⊤M)DΛ⊤ + noise

= ΛD2Λ⊤ + noise

= Γ̂D̂2Γ̂⊤

where ◦ is element-wise matrix product (Hadamard product).
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Appendix: Tensor Decomposition via PCA

Under orthogonality

Y(1)Y
⊤
(1) = ΛD2Λ⊤ + noise

= Γ̂D̂2Γ̂⊤

where
▶ Γ̂ → eigenvectors of Y(1)Y

⊤
(1),

▶ D̂2 → eigenvalues of Y(1)Y
⊤
(1).

PCA estimators:
▶ Λ̂ → first R eigenvectors of Y(1)Y

⊤
(1);

▶ M̂ → first R eigenvectors of Y(2)Y
⊤
(2);

▶ F̂ → first R eigenvectors of Y(3)Y
⊤
(3).

Back
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Appendix: Tensor Decomposition via PCA

More generally, the d-dimensional tensor factor model

Y︸︷︷︸
N1×···×Nd

=

R∑
r=1

σr

d⊗
j=1

mj,r +U

can be matriced as

Y(j)︸︷︷︸
Nj×

∏
k ̸=j Nk

= MjD

⊙
k ̸=j

Mk

⊤

+U(j), 1 ≤ j ≤ d,

where
⊙

k ̸=j Mk = Md ⊙ · · · ⊙Mj+1 ⊙Mj−1 ⊙ · · · ⊙M1.

PCA estimators:
▶ M̂j → first R eigenvectors of Y(j)Y

⊤
(j) for 1, . . . , J .
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Appendix: Asymptotics of TPCA

Theorem

Suppose that M⊤
j Mj = IR, the idiosyncratic errors U are i.i.d. with

EU = 0 and finite 4th moment. Then for all

∥m̂j,r−mj,r∥ = OP

√Njtr(D) +
(
Nj ∨

∏
k ̸=j Nk

)
δr

 , ∀r ≤ R, j ≤ d.

where δr is the eigengap, namely:

δr = min
k ̸=r

|σ2
k − σ2

r |

measuring the strength of rth factor.
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Appendix: Asymptotic Distribution: Factors/Loadings

Let ν ∈ RNj be such that ωj,k(ν) = limNj→∞
√

Nj⟨mj,k, ν⟩ > 0.

Examples:
▶ ith element of factors/loadings vector mj,r ∈ RNj :

ν = (0, 0, . . . , 1, . . . , 0);
▶ average factors/loadings: ν = N−1

j (1, 1, . . . , 1).

If N1 ∼ N2 ∼ N3 in the 3D case

∏
k ̸=j

√
Nk⟨m̂j,r −mj,r, ν⟩

d−→ N

0, σ2
∑
k ̸=r

ω2
j,k(ν)

dr + dk
(dr − dk)2

 .

Back
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Appendix: MC Experiment DGP

yi,j,t =

R∑
r=1

σrλi,rµj,rft,r + ui,j,t, ui,j,t ∼i.i.d. N(0, s2u),

ft,r = ρft−1,r + εt,r, εt,r ∼i.i.d. N(0, s2ε).

Parameters:
▶ ρ = 0.5, sε = 0.1, su = 1,
▶ signal strength σr = dr ×

√
NJT with dr = R− r + 1,

Consider the cases R = 5, and (T,N, J) = (100, 30, 20).

Back
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Appendix: Notations

⊙ is the Khatri-Rao Product:

A︸︷︷︸
M×K

⊙ B︸︷︷︸
N×K

:= [a1 ⊗K b1 a2 ⊗K b2 · · · aK ⊗K bK ]︸ ︷︷ ︸
(MN)×K

⊗K is the Kronecker Product:

A︸︷︷︸
M×N

⊗K B︸︷︷︸
J×K

=

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


︸ ︷︷ ︸

MJ×NK

Back
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Appendix: First Factor is Market

The first factor is market is commonly acknowledged in finance.

A regression

latent factor ∼ intercept + β observable factor ,

shows
Estimate SE tStat pValue

(intercept) 0.000 0.000 -1.209 0.228
observable factor 0.012 0.000 140.39 0.000

R-squared: 0.982, Adjusted R-Squared: 0.982

observable factor is value-weight (excess) returns of all CRSP firms
incorporated in the US.

Back
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