Vacancy Chains

Mike Elsby
University of Edinburgh

Ryan Michaels
Philadelphia Fed

David Ratner
Federal Reserve Board

Axel Gottfries
University of Edinburgh
[Preliminary and Incomplete]

National Bank of Belgium, November 2018

What is a vacancy?

After several decades of BLS research:
"A specific position exists and there is work available for that position..."

What is a vacancy?

After several decades of BLS research:

"A specific position exists and there is work available for that position..."

What is a "position"?

What is a vacancy?

After several decades of BLS research:
"A specific position exists and there is work available for that position..."

What is a "position"?
Connotes some sunk investment.

What is a vacancy?

After several decades of BLS research:
"A specific position exists and there is
work available for that position..."
What is a "position"?
Connotes some sunk investment.
Our project: this has interesting implications.

I. Implications for frictions

New plant-level facts on replacement hiring.
A lot of recruitment replaces positions vacated by quits.
Plants report no net change in employment, often for years at a time, despite gross turnover via quits.

Who cares?
Nature of labor frictions: origins in production structure?
Vacancy chains: positive feedback in job creation...

II. Implications for fluctuations

Vacancy chains.

Vacancies

$$
\Rightarrow \text { Poaching }
$$

\Rightarrow Replacement
\Rightarrow Vacancies...

Search model: $V \uparrow \Rightarrow$ Hiring cost $\uparrow \Rightarrow$ Desired hires \downarrow : - ve feedback

Search model: $V \uparrow \Rightarrow$ Hiring cost $\uparrow \Rightarrow$ Desired hires \downarrow : - ve feedback

Aggregate Vacancies

Search model: $V \uparrow \Rightarrow$ Hiring cost $\uparrow \Rightarrow$ Desired hires \downarrow : - ve feedback

Replacement: $V \uparrow \Rightarrow$ Quits $\uparrow \Rightarrow$ Desired hires \uparrow : + ve feedback

Replacement: $V \uparrow \Rightarrow$ Quits $\uparrow \Rightarrow$ Desired hires \uparrow : + ve feedback

Replacement: Amplification of aggregate labor market responses.

Questions / contributions

Why are labor market stocks and flows so volatile over the business cycle?

And what are the microeconomic foundations that give rise to this volatility?
[How to model interaction of on-the-job search with firm dynamics, and why it's important.]

Related literature

- Faberman and Nagypal (2008).

Current quits predict future hires.

- Akerlof, Rose and Yellen (1988).

Vacancy chains \Rightarrow procyclical quits. But no amplification.

- Lentz and Mortensen (2012).

Large firms \cap on-the-job search. But no shocks.

Data

1. Quarterly Census of Employment and Wages. Census of UI-covered ($\approx 98 \%$) employment in U.S.

- Establishment microdata onsite at BLS.

Excludes MA, NH, NY, WI, FL, IL, MS, OR, WY, PA.
Restrict analysis to continuing, private establishments.
Broad coverage \Rightarrow natural establishment panel

- 2014q2: 5 million establishments; 77 million workers

Data

2. Job Openings and Labor Turnover Survey.
$\approx 16,000$ establishments per month
"Certainty sample" + 24-month rotating panel

- Establishment microdata onsite at BLS.
- Key: JOLTS measures gross flows at estab. Level Gross hires and separations. Separations decomposed into Quits, Layoffs and Other.

Facts on replacement hiring

1. Inaction over net employment changes.

Despite nontrivial quit rates.
2. Slow decay of inaction by frequency of adj. Much slower than geometric decay.
3. Large cumulative gross turnover | inaction.

Cumulative replacement is nontrivial.
4. Replacement is a large share of total hires

Facts on replacement hiring

1. Inaction over net employment changes.

Despite nontrivial quit rates.
2. Slow decay of inaction by frequency of adj. Much slower than geometric decay.
3. Large cumulative gross turnover | inaction.

Cumulative replacement is nontrivial.
4. Replacement is a large share of total hires

Quarterly employment growth
Distribution of employment growth, QCEW

Quarterly employment growth
Distribution of employment growth, QCEW

Quarterly employment growth
Distribution of employment growth, QCEW

Quarterly employment growth
Distribution of employment growth, QCEW

Facts on replacement hiring

1. Inaction over net employment changes.

Despite nontrivial quit rates.
2. Slow decay of inaction by frequency of adj. Much slower than geometric decay.
3. Large cumulative gross turnover | inaction.

Cumulative replacement is nontrivial.
4. Replacement is a large share of total hires

Slow decay of inaction, QCEW, Establishment weighted

Slow decay of inaction, QCEW, Employment weighted

Facts on replacement hiring

1. Inaction over net employment changes.

Despite nontrivial quit rates.
2. Slow decay of inaction by frequency of adj. Much slower than geometric decay.
3. Large cumulative gross turnover | inaction. Cumulative replacement is nontrivial.
4. Replacement is a large share of total hires

Cumulative gross turnover at inactive establishments, JOLTS

Facts on replacement hiring

1. Inaction over net employment changes.

Despite nontrivial quit rates.
2. Slow decay of inaction by frequency of adj. Much slower than geometric decay.
3. Large cumulative gross turnover | inaction.

Cumulative replacement is nontrivial.
4. Replacement is a large share of total hires

Lessons from the data

Firms have reference levels of employment to which they return routinely.

Many short-run adjustments appear to be returns to reference level.

Suggests role of replacement hiring.
Could this matter?

Towards a model

Stylized facts \Rightarrow model with three ingredients:

1. Multi-worker firms.

To map theory to data.
2. On-the-job search.

To generate quits.
3. Persistent reference levels of employment. To generate replacement.

Towards a model

Stylized facts \Rightarrow model with three ingredients:

1. Multi-worker firms.

To map theory to data.
2. On-the-job search.

To generate quits.
3. Persistent reference levels of employment.

To generate replacement.

Towards a model

Stylized facts \Rightarrow model with three ingredients:

1. Multi-worker firms.

To map theory to data.
2. On-the-job search.

To generate quits.
3. Persistent reference levels of employment.

To generate replacement.

```
"Firm Dynamics with On-the-Job Search" (feat. Axel Gottfries)
```


Firm's problem

$$
\begin{aligned}
\Pi\left(n_{-1}, x\right) \equiv \max _{v, S} & \{p x F(n) \\
& -w(\cdot) n \\
& -c(v) \\
& \left.+\beta \mathbb{E}\left[\Pi\left(n, x^{\prime}\right) \mid x\right]\right\}
\end{aligned}
$$

subject to

$$
\Delta n=q(\cdot) v-\delta(\cdot) n_{-1}-S
$$

Firm's problem

$$
\begin{aligned}
\Pi\left(n_{-1}, x\right) \equiv & \max _{v, S}\{p x F(n) \longleftarrow \text { Multi-worker firms } \\
& -w(\cdot) n \\
& -c(v) \\
& \left.+\beta \mathbb{E}\left[\Pi\left(n, x^{\prime}\right) \mid x\right]\right\}
\end{aligned}
$$

subject to

$$
\Delta n=q(\cdot) v-\delta(\cdot) n_{-1}-S
$$

Firm's problem

$\Pi\left(n_{-1}, x\right) \equiv \max _{v, S}\{p x F(n) \longleftarrow$ Multi-worker firms
$-w(\cdot) n$
$-c(v)$
$\left.+\beta \mathbb{E}\left[\Pi\left(n, x^{\prime}\right) \mid x\right]\right\}$
subject to
$\Delta n=q(\cdot) v-\delta(\cdot) n_{-1}-S$

Wages and turnover (w, q and δ)

Two challenges to wage determination:

1. Multi-worker firms. 2. Employees with outside offers.

Wages and turnover (w, q and δ)

Two challenges to wage determination:

1. Multi-worker firms. 2. Employees with outside offers.

Use surplus sharing at margin with continual renegotiation.
[Stole/Zwiebel 96; Bruegemann et al. 16; Gottfries 18]

Wages and turnover (w, q and δ)

Two challenges to wage determination:

1. Multi-worker firms. 2. Employees with outside offers.

Use surplus sharing at margin with continual renegotiation. [Stole/Zwiebel 96; Bruegemann et al. 16; Gottfries 18]
\Rightarrow Worker's surplus \propto Firm's marginal surplus $\equiv J$.
$\Rightarrow J$ sufficient statistic for recruitment and retention:

$$
q=q(J) \text { and } \delta=\delta(J) .
$$

Conceptually and analytically simple. Efficient separations.

Matching

- Matching function, $M(U+s(L-U), V)$.

Fixed employed search intensity s.
Tightness $\theta=V /[U+s(L-U)]$.

On-the-job search

Vacancy contact rate $\chi(\theta)=M(1 / \theta, 1)$.
Unemployed contact rate $\phi(\theta)=M(1, \theta)$.

CRS in matching

Employed contact rate $s \phi(\theta)$.

Turnover

- Recruitment rate

where $\mathbb{J}_{E}(J)$ is c.d.f. of $J \mathrm{~s}$ among the employed.

Turnover

- Recruitment rate

$$
q(J)=\chi(\theta)\left[v+(1-v) \rrbracket_{E}(J)\right]
$$

- Quit rate

where $\mathbb{I}_{V}(J)$ is c.d.f. of $J s$ among vacancies.

Firm's problem

$\Pi\left(n_{-1}, x\right) \equiv \max _{v, S}\{p x F(n)$

$$
\begin{aligned}
& -w(\quad) n \\
& -c(v)
\end{aligned}
$$

$$
\left.+\beta \mathbb{E}\left[\Pi\left(n, x^{\prime}\right) \mid x\right]\right\}
$$

subject to

$$
\Delta n=q(\quad) v-\delta(\quad) n_{-1}-S
$$

Firm's problem

$$
\begin{aligned}
\Pi\left(n_{-1}, x\right) \equiv \max _{v, S} & \{p x F(n) \\
& -w(\mathbb{J}(J)) n \\
& -c(v) \\
& \left.+\beta \mathbb{E}\left[\Pi\left(n, x^{\prime}\right) \mid x\right]\right\}
\end{aligned}
$$

subject to

$$
\Delta n=q(\mathbb{T}(J)) v-\delta(\mathbb{J}(J)) n_{-1}-S
$$

- Π a function of its derivative J, and distributions \mathbb{J}.
- And $\rrbracket s$ are induced by $\{\Pi, J\}$ by aggregation.

Steady-state equilibrium

Given $\Omega=\left\{\theta, v, \mathbb{J}_{V}, \mathbb{J}_{E} ; p\right\}$:
\Rightarrow Firm labor demand: $n\left(n_{-1}, x ; \Omega\right)$.
\Rightarrow Agg. labor demand and U inflows: $N(\Omega), S(\Omega)$.
\Rightarrow Update $\Omega^{\prime}=\left\{\theta^{\prime}, v^{\prime}, \mathbb{D}_{V}^{\prime}, \mathbb{J}_{E}^{\prime} ; p\right\}$.
Steady-state equilibrium: $\Omega^{\prime}=\Omega$.

The challenge

Distributions $\left\{\mathbb{J}_{V}, \mathbb{D}_{E}\right\}$ or, equivalently, turnover rates $\{\delta(\cdot), q(\cdot)\}$ part of state.

How to solve for them?

Some progress

- Set in continuous time.
- Isoelastic production, $F(n)=n^{\alpha}$.
- Idiosyncratic shocks, $d x / x=\mu d t+\sigma d W$.

Wages

$$
w(n, x)=
$$

$$
\eta\left[p x \alpha n^{\alpha-1}\right.
$$

Wages

Wages

$$
-\eta s \phi \int_{J}\left[1-\mathbb{I}_{V}(j)\right] d j-\eta \frac{d(\delta n)}{d n} J \longleftarrow \underbrace{}_{\substack{\text { On-the-job } \\ \text { search }}}
$$

Some progress

- Set in continuous time.
- Isoelastic production, $F(n)=n^{\alpha}$.
- Idiosyncratic shocks, $d x / x=\mu d t+\sigma d W$.

Some progress

- Set in continuous time.
- Isoelastic production, $F(n)=n^{\alpha}$.
- Idiosyncratic shocks, $d x / x=\mu d t+\sigma d W$.

Admits normalization in terms of $m=p x \alpha n^{\alpha-1}$.
Surplus, quit and recruitment rates: $J(m), \delta(m), q(m)$.

Some progress

- Set in continuous time.
- Isoelastic production, $F(n)=n^{\alpha}$.
- Idiosyncratic shocks, $d x / x=\mu d t+\sigma d \mathcal{W}$.

Admits normalization in terms of $m=p x \alpha n^{\alpha-1}$.
Surplus, quit and recruitment rates: $J(m), \delta(m), q(m)$.

- Per-worker hiring cost, $c(h)=c h$.

Some progress

- Set in continuous time.
- Isoelastic production, $F(n)=n^{\alpha}$.
- Idiosyncratic shocks, $d x / x=\mu d t+\sigma d \mathcal{W}$.

Admits normalization in terms of $m=p x \alpha n^{\alpha-1}$.
Surplus, quit and recruitment rates: $J(m), \delta(m), q(m)$.

- Per-worker hiring cost, $c(h)=c h$.
- Job-to-job turnover from low m to high m.

Suppose (for now) this also breaks ties.

Optimal labor demand

$J(m) \uparrow$

Optimal labor demand

$m=p x \alpha n^{1-\alpha}$

Optimal labor demand

Optimal labor demand

Solution for $\boldsymbol{\delta}(\boldsymbol{m})$

Bellman equation for firm's marginal surplus

$$
r J=m-\frac{\partial(w n)}{\partial n}-\frac{\partial(\delta n J)}{\partial n}+\mu x J_{x}+\frac{1}{2} \sigma^{2} x^{2} J_{x x}
$$

Solution for $\boldsymbol{\delta}(\boldsymbol{m})$

Bellman equation for firm's marginal surplus

$$
r J=m-\frac{\partial(w n)}{\partial n}-\frac{\partial(\delta n J)}{\partial n}+\mu x J_{x}+\frac{1}{2} \sigma^{2} x^{2} J_{x x}
$$

In hiring region, $J(m)=c \Rightarrow w(m)=w_{u}$.

Solution for $\boldsymbol{\delta}(\boldsymbol{m})$

Bellman equation for firm's marginal surplus

$$
r c=m-w_{u}-\frac{\partial(\delta n)}{\partial n} c
$$

In hiring region, $J(m)=c \Rightarrow w(m)=w_{u}$.

Solution for $\boldsymbol{\delta}(\boldsymbol{m})$

Bellman equation for firm's marginal surplus

$$
r c=m-w_{u}-\frac{\partial(\delta n)}{\partial n} c
$$

In hiring region, $J(m)=c \Rightarrow w(m)=w_{u}$.

$$
\delta(m)=-\delta_{0}+\delta_{1} m-\delta_{2} m^{\frac{1}{1-\alpha}}
$$

Solution for $\boldsymbol{\delta}(\boldsymbol{m})$

Marginal product, m
$\mathbb{I}_{V}(m)$

Marginal product, m

$$
\delta(m)=-\delta_{0}+\delta_{1} m-\delta_{2} m^{\frac{1}{1-\alpha}}=s \phi\left[1-\mathbb{I}_{V}(m)\right]
$$

Solution for $\boldsymbol{\delta}(\boldsymbol{m})$: Some intuition

- Turnover is costly to the firm on the margin.
- Workers don't internalize these costs.
- Higher m allows firm to reduce turnover costs.
- Firms "under-hire"; but not to the same m.
- Optimal to deviate from any mass point in m.
- The result is endogenous misallocation.

Solution for $\boldsymbol{q}(\boldsymbol{m})$

Stochastic law of motion for marginal product m :

$$
\frac{d m}{m}=\{\mu-(1-\alpha)[h(m)-\delta(m)]\} d t+\sigma d \mathcal{W}
$$

Solution for $\boldsymbol{q}(\boldsymbol{m})$

Stochastic law of motion for marginal product m :

$$
\frac{d m}{m}=\{\mu-(1-\alpha)[h(m)-\delta(m)]\} d t+\sigma d \mathcal{W}
$$

Endogenous mean reversion in m.

- $m \uparrow \Rightarrow$ net hiring rate $[h(m)-\delta(m)]$ rises $\Rightarrow m \downarrow$.

Solution for $\boldsymbol{q}(\boldsymbol{m})$

Stochastic law of motion for marginal product m :

$$
\frac{d m}{m}=\{\mu-(1-\alpha)[h(m)-\delta(m)]\} d t+\sigma d \mathcal{W}
$$

Endogenous mean reversion in m.

- $m \uparrow \Rightarrow$ net hiring rate $[h(m)-\delta(m)]$ rises $\Rightarrow m \downarrow$.

Fokker-Planck (Kolmogorov Forward) Equation \Rightarrow

$$
q(m)=q_{0} \exp \left[q_{1} \int^{m} \delta(v) / v d v\right]
$$

Solution for $\boldsymbol{q}(\boldsymbol{m})$

Marginal product, m

Marginal product, m

$$
q(m)=q_{0} \exp \left[q_{1} \int^{m} \delta(v) / v d v\right]=\chi\left[v+(1-v) \mathbb{J}_{E}(m)\right]
$$

Solution for $\boldsymbol{q}(\boldsymbol{m})$

Marginal product, m

Marginal product, m

$$
q(m)=q_{0} \exp \left[q_{1} \int^{m} \delta(v) / v d v\right]=\chi\left[v+(1-v) \mathbb{J}_{E}(m)\right]
$$

Steady-state equilibrium

- Job creation curve (recall $n=(\alpha p x / m)^{\frac{1}{1-\alpha}}$):

$$
N(\theta)=\mathbb{E}\left[(\alpha p x)^{\frac{1}{1-\alpha}}\right] / \mathbb{E}_{\mathbb{D}_{E}}\left[m^{\frac{1}{1-\alpha}} ; \theta\right] .
$$

- Beveridge curve (flow balance):

$$
N(\theta)=\frac{\phi(\theta)}{\lambda(\theta)+\phi(\theta)} L,
$$

where $\lambda(\theta) \equiv \frac{1}{2} \frac{\sigma^{2}}{1-\alpha} m_{l} \mathbb{D}_{E}^{\prime}\left(m_{l} ; \theta\right)$ is E-to-U rate.

Lessons from the model

1. It is possible to solve for equilibrium distributions.
2. Wages and endogenous misallocation.
3. New perspectives on labor market competition. Endogenous mean reversion.
4. Establishment-level behavior of vacancies.
5. "Excess" firing as natural wastage falls in recession.

Employment growth vs. $\boldsymbol{q}(\boldsymbol{m})$

Data

Davis, Faberman and Haltiwanger (2013):
Fast-growing firms have higher vacancy-filling rates. Why?

Employment growth vs. $\boldsymbol{q}(\boldsymbol{m})$

Data

Model

Employment growth vs. $\boldsymbol{q}(\boldsymbol{m})$

Data

Model

Fast-growing firms have large hiring rates, small quit rates \Rightarrow high marginal product, $m \Rightarrow$ high vacancy-filling rates

Natural wastage and job destruction

Looking ahead: Vacancy Chains

- Consider an aggregate expansion.
- Raises J for individual firm.

More likely to post vacancies and grow.

- But raises J for all firms.

Distributions of J shift to right; $q \downarrow$ and $\delta \uparrow$.

- If labor demand is inelastic, firms must post even more vacancies to reach desired employment.

Model so far: Gross inaction versus Data: Net inaction...

Towards a model

Stylized facts \Rightarrow model with three ingredients:

1. Multi-worker firms.

To map theory to data.
2. On-the-job search.

To generate quits.
3. Persistent reference levels of employment.

To generate replacement.

Towards a model

Stylized facts \Rightarrow model with three ingredients:

1. Multi-worker firms.

To map theory to data.
2. On-the-job search.

To generate quits.
3. Persistent reference levels of employment.

To generate replacement.

Firm's problem

$\Pi\left(k_{-1}, n_{-1}, x\right) \equiv \max _{v, S, k}\{p x F(n ; k)$

$$
\begin{aligned}
& -w(\cdot) n \\
& -c_{v}(v) \\
& -c_{k}(\Delta k)
\end{aligned}
$$

$$
\left.+\beta \mathbb{E}\left[\Pi\left(k, n, x^{\prime}\right) \mid x\right]\right\}
$$

subject to

$$
\Delta n=q(\cdot) v-\delta(\cdot) n_{-1}-S
$$

Firm's problem

$\Pi\left(k_{-1}, n_{-1}, x\right) \equiv \max _{v, S, k}\left\{p x F(n ; k) \leftarrow \begin{array}{l}\text { Operating with } \\ n<k \text { costly } . . .\end{array}\right.$

$$
\begin{aligned}
& -w(\cdot) n \\
& -c_{v}(v)
\end{aligned}
$$

$$
\underset{\substack{\ldots \text { and } k \text { (very } \\ \text { costly to adjust }}}{\substack{\text { and } \\ \hline}}
$$

$$
\left.+\beta \mathbb{E}\left[\Pi\left(k, n, x^{\prime}\right) \mid x\right]\right\}
$$

subject to

$$
\Delta n=q(\cdot) v-\delta(\cdot) n_{-1}-S
$$

Effects of reference employment k

Recall: What is a vacancy?

After several decades of BLS research:
"A specific position exists and there is work available for that position..."

What is a "position"?
Connotes some sunk investment.

Recall: What is a vacancy?

After several decades of BLS research:

"A specific position exists and there is work available for that position..."

What is a "position"?
Connotes some sunk investment.
In this model: k.

Firm's problem

$\Pi\left(k_{-1}, n_{-1}, x\right) \equiv \max _{v, S, k}\left\{p x(n / k) k^{\alpha}\right.$

$$
\begin{aligned}
& -w(\cdot) n \\
& -c_{v}(v) \\
& -c_{k}(\Delta k) \\
& \left.+\beta \mathbb{E}\left[\Pi\left(k, n, x^{\prime}\right) \mid x\right]\right\}
\end{aligned}
$$

subject to and

$$
\begin{aligned}
\Delta n & =q(\cdot) v-\delta(\cdot) n_{-1}-S \\
n & \leq k
\end{aligned}
$$

Firm's problem

$\Pi\left(k_{-1}, n_{-1}, x\right) \equiv \max _{v, S, k}\left\{p x(n / k) k^{\alpha}\right.$

$$
\begin{aligned}
& -w(\cdot) n \\
& -c_{v}(v) \\
& -c_{k} \mathbb{\Pi}\left[k \neq k_{-1}\right]
\end{aligned}
$$

$$
\left.+\beta \mathbb{E}\left[\Pi\left(k, n, x^{\prime}\right) \mid x\right]\right\}
$$

subject to and
$\Delta n=q(\cdot) v-\delta(\cdot) n_{-1}-S$
$n \leq k$

Optimal labor demand policy

Calibration (preliminary)

Parameter	Meaning	Value	Reason
α	Returns to scale	0.64	Cooper et al. (2007, 2015)
β	Discount factor	0.987	Annual real interest rate $=0.05$
ρ_{x}	Persistence of shocks	0.7	Abraham and White (2006)
σ_{x}	Std. dev. of shocks	0.187	Unemployment rate $=0.065$
ϵ	Matching elasticity	0.67	Elasticity of job-finding rate w.r.t. V / U
η	Bargaining power	0.25	Elasticity of \bar{w} w.r.t. $1-u$
s	Search intensity of employed	0.066	38 percent of hires from employment
c_{v}	Linear vacancy cost	2 weeks' wages	Manning (2011)
μ	Matching efficiency	0.23	Job-finding rate of unemployed $=0.28$
b	Flow unemployment payoff	0.23	Average firm size $=16$
C_{k}	Capacity adjustment cost	12.5% revenue	Four-quarter inaction rate $=0.41$

Matching stylized facts

Moments	Data	Model (with \boldsymbol{k})
One-quarter inaction rate	0.55	0.55
Quits as share of employment (monthly)	0.017	0.014
Quit rate among nonadjusters (monthly)	0.011	0.012
Replacement hires as a share of total hires	0.45	0.32
Four-quarter inaction rate	0.41	0.46
E-to-E flows as a share of total hires	0.38	0.38
One-quarter k-inaction rate	-	0.84
Vacancy-filling rate (monthly)	0.74	0.72

Matching stylized facts

Moments	Data	Model $($ with $\boldsymbol{k})$	Model $($ no $\boldsymbol{k})$
One-quarter inaction rate	0.55	0.55	0
Quits as share of employment (monthly)	0.017	0.014	0.016
Quit rate among nonadjusters (monthly)	0.011	0.012	-
Replacement hires as a share of total hires	0.45	0.32	0.03
Four-quarter inaction rate	0.41	0.46	0
E-to-E flows as a share of total hires	0.38	0.38	0.44
One-quarter k-inaction rate	-	0.84	-
Vacancy-filling rate (monthly)	0.74	0.72	0.75

Comparative steady states

Moment	Data	Model $($ with $\boldsymbol{k})$
$\Delta \ln$ vacancies / $\Delta \ln$ output per worker	10.1	7.8
$\Delta \ln$ unemployment $/ \Delta \ln$ output per worker	-9.5	-7.8
$\Delta \ln$ job-finding rate $/ \Delta \ln$ output per worker	5.9	3.8
$\Delta \ln$ inflow rate $/ \Delta \ln$ output per worker	-3.8	-4.5
$\Delta \ln$ average wages $/ \Delta \ln$ employment	≈ 1	1.13

Comparative steady states

Moment	Data	Model $($ with $\boldsymbol{k})$	Model $($ no $\boldsymbol{k})$
$\Delta \ln$ vacancies $/ \Delta \ln$ output per worker	10.1	7.8	4.9
$\Delta \ln$ unemployment $/ \Delta \ln$ output per worker	-9.5	-7.8	-9.6
$\Delta \ln$ job-finding rate $/ \Delta \ln$ output per worker	5.9	3.8	3.1
$\Delta \ln$ inflow rate $/ \Delta \ln$ output per worker	-3.8	-4.5	-7.1
$\Delta \ln$ average wages $/ \Delta \ln$ employment	≈ 1	1.13	1

Replacement hiring \Rightarrow positive feedback in vacancy creation

Positive feedback amplifies aggregate responses

Adjustment of U reinforces response of V

$$
\Delta V \mid U \approx \Delta V
$$

No feedback

$\Delta V \mid U<\Delta V$
 Positive feedback

Summary and where next?

- Replacement hiring pervasive.
- Nature of frictions:

In the production structure.

- Induces vacancy chains:

Positive feedback in vacancy creation. Amplifies aggregate labor market responses. Sluggish $\mathbb{J} s \Rightarrow$ Persistence in vacancy chains?

Extra slides

Five facts on replacement hiring

1. Inaction over net employment changes.

Despite nontrivial quit rates.
2. Net inaction is inversely related to quits. At aggregate, industry, state, and establishment levels.
3. Slow decay of inaction by frequency of adj. Much slower than geometric decay.
4. Large cumulative gross turnover in inactive estabs. Cumulative replacement is nontrivial.
5. Replacement is a large share of total hires

Aggregate-level inaction and quits, QCEW and CPS

Industry-level inaction and quits, QCEW and CPS

Establishment-level inaction and quits, JOLTS

Industry-level inaction vs. job-to-job rate

Three measures of (de-meaned) industry E-to-E indicators.

- Current Population Survey [Fallick and Fleischman 2004].
- Job Openings and Labor Turnover Survey [N.B. Quit rate].
- Longitudinal Employer-Household Data [Bjelland et al. 2011].

Slow decay of inaction, QCEW, employment weighted

Slow decay of inaction

- Not an artefact of seasonality.
- Decay is slow between as well as within years.
- Similar decay in high vs. low seasonal industries.
- Nor of mean reversion.
- Mean reversion \Rightarrow return to neighborhood of n_{t}.
- In data, return precisely to n_{t}, for example:

$$
\operatorname{Pr}\left(n_{t}=n_{t+3}\right)>3 \times \operatorname{Pr}\left(n_{t} \in\left\{n_{t+3} \pm 1\right\}\right)
$$

Slow decay of inaction

- Not an artefact of seasonality.
- Decay is slow between as well as within years.
- Similar decay in high vs. low seasonal industries.

- Mean reversion \Rightarrow return to neighborhood of n_{t}.
- In data, return precisely to n_{t}, for example:

Unweighted

Variance of month dummy coefficients by 3-digit industry

$\operatorname{Pr}\left(n_{t}=n_{t+\tau}\right)$, QCEW, average over 1992-2014

"A vacancy means that a current employee must do the work of a vacant position. This can cause a cascade effect causing others to have to fill in for their position, resulting in many 'rusty' people doing unfamiliar jobs and decreasing productivity."
"A vacancy means that a current employee must do the work of a vacant position. This can cause a cascade effect causing others to have to fill in for their position, resulting in many 'rusty' people doing unfamiliar jobs and decreasing productivity."
~Corporate Strategic Resourcing

Why not Bertrand?

Not at all simple:

1. Within-firm wage distribution to keep track of. Multi-worker firms + heterogeneous histories of offers.
2. Bertrand paradox.

Competing firms know which will prevail. ε-cost of competing \Rightarrow losing firm withdraws.
Moscarini (2005): linear surplus sharing obtains.

Why not directed search?

Directed search + free entry + complete contracts
\Rightarrow recruitment and quit rates $\perp \mathbb{J s}$. [Schaal (2015)]
But, we think this dependence is interesting:

1. Because it is. What happens in this case?
2. It is plausible that firms must know position in the J hierarchy to infer turnover.
3. Because $\mathbb{J s}$ are slow-moving state variables; interesting propagation properties?

The value of the firm

$r \Pi(n, x) d t$

$$
\begin{aligned}
=\max _{h, d S}\{ & {\left[p x n^{\alpha}-w n-c h+(h-\delta n) \Pi_{n}\right.} \\
& \left.\left.+\mu x \Pi_{x}+\frac{1}{2} \sigma^{2} x^{2} \Pi_{x x}\right] d t-\Pi_{n} d S\right\}
\end{aligned}
$$

The value of the firm

$r \Pi(n, x) d t$

$$
\begin{aligned}
=\max _{h, d S}\{ & {\left[p x n^{\alpha}-w n-c h+(h-\delta n) J\right.} \\
& \left.\left.+\mu x \Pi_{x}+\frac{1}{2} \sigma^{2} x^{2} \Pi_{x x}\right] d t-J d S\right\}
\end{aligned}
$$

The value of the firm

$r \Pi(n, x) d t$

$$
\begin{aligned}
=\max _{h, d S}\{ & {\left[p x n^{\alpha}-w n-c h+(h-\delta n) J\right.} \\
& \left.\left.+\mu x \Pi_{x}+\frac{1}{2} \sigma^{2} x^{2} \Pi_{x x}\right] d t-J d S\right\}
\end{aligned}
$$

First-order conditions:

$$
\begin{aligned}
-c+J & =0 \text { whenever } h>0 \\
J & =0 \text { whenever } d S>0
\end{aligned}
$$

The value of the firm

$r \Pi(n, x) d t$
$=\max _{h, d S}\left\{\left[p x n^{\alpha}-w n-J \delta n\right.\right.$

$$
\left.\left.+\mu x \Pi_{x}+\frac{1}{2} \sigma^{2} x^{2} \Pi_{x x}\right] d t\right\}
$$

First-order conditions:

$$
\begin{aligned}
-c+J & =0 \text { whenever } h>0 \\
J & =0 \text { whenever } d S>0
\end{aligned}
$$

Firm and worker value functions

$$
\begin{aligned}
& r \Pi=\max _{h, d S}\left\{p x n^{\alpha}-w n-\delta n J+\mu x \Pi_{x}+\frac{1}{2} \sigma^{2} x^{2} \Pi_{x x}\right\} \\
& r J=p x \alpha n^{\alpha-1}-\frac{\partial(w n)}{\partial n}-\frac{\partial(\delta n J)}{\partial n}+\mu x J_{x}+\frac{1}{2} \sigma^{2} x^{2} J_{x x} \\
& r W=w+s \phi \int_{W}\left[1-\mathbb{W}_{V}(j)\right] d j-\delta n W_{n}+\mu x W_{x}+\frac{1}{2} \sigma^{2} x^{2} W_{x x} \\
& r U=b+\phi \int\left[1-\mathbb{W}_{V}(j)\right] d j
\end{aligned}
$$

Firm and worker value functions

$$
\begin{aligned}
& r J=p x \alpha n^{\alpha-1}-\frac{\partial(w n)}{\partial n}-\frac{\partial(\delta n J)}{\partial n}+\mu x J_{x}+\frac{1}{2} \sigma^{2} x^{2} J_{x x} \\
& r W=w+s \phi \int_{W}\left[1-\mathbb{W}_{V}(j)\right] d j-\delta n W_{n}+\mu x W_{x}+\frac{1}{2} \sigma^{2} x^{2} W_{x x}
\end{aligned}
$$

Firm and worker value functions

$$
\begin{aligned}
& r J=p x \alpha n^{\alpha-1}-\frac{\partial(w n)}{\partial n}-\frac{\partial(\delta n J)}{\partial n}+\mu x J_{x}+\frac{1}{2} \sigma^{2} x^{2} J_{x x} \\
& r W=\underset{\uparrow}{w}+s \phi \int_{W}\left[1-\mathbb{W}_{V}(j)\right] d j-\delta n W_{n}+\mu x W_{x}+\frac{1}{2} \sigma^{2} x^{2} W_{x x} \\
& \begin{array}{c}
\text { Ignores infra- } \\
\text { marginal effects }
\end{array}
\end{aligned}
$$

Firm and worker value functions

$$
\begin{gathered}
r J=p x \alpha n^{\alpha-1}-\frac{\partial(w n)}{\partial n}-\frac{\partial(\delta n J)}{\partial n}+\mu x J_{x}+\frac{1}{2} \sigma^{2} x^{2} J_{x x} \\
r W=w+s \phi \int_{W}\left[1-\mathbb{W}_{V}(j)\right] d j-\delta n W_{n}+\mu x W_{x}+\frac{1}{2} \sigma^{2} x^{2} W_{x x} \\
\begin{array}{l}
\text { Gains option } \\
\text { value to OJS }
\end{array}
\end{gathered}
$$

Firm and worker value functions

$$
\begin{aligned}
& r J=p x \alpha n^{\alpha-1}-\frac{\partial(w n)}{\partial n}-\frac{\partial(\delta n J)}{\partial n}+\mu x J_{x}+\frac{1}{2} \sigma^{2} x^{2} J_{x x} \\
& r W=w+s \phi \int_{W}\left[1-\mathbb{W}_{V}(j)\right] d j-\delta n W_{n}+\mu x W_{x}+\frac{1}{2} \sigma^{2} x^{2} W_{x x} \\
& \begin{array}{c}
\text { Ignores firms' } \\
\text { turnover costs }
\end{array}
\end{aligned}
$$

