# The Cyclicality of the Term Structure of Interest Rates

#### Mirko Abbritti, Carlos Fellmann and Antonio Moreno

National Bank of Belgium

February 16th, 2023

Abbritti, Fellmann, Moreno Term Structure Cyclicality

▲ @ ▶ ▲ 三 ▶ ▲

글 > 글

- Motivation
- Model
- Results
- Robustness
- Conclusions

ヘロト 人間 とくほとくほとう

₹ 990

- Motivation
- Model
- Results
- Robustness
- Conclusions

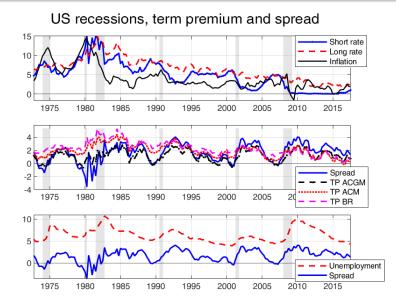
ヘロト 人間 とくほとくほとう

₹ 990

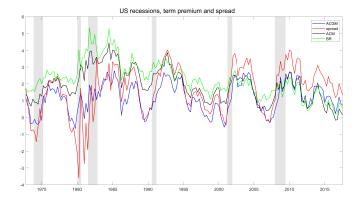
## The Key Objects in this Paper

$$SP_t = R_t^{(10)} - R_t^{(1)} \Rightarrow$$
 Term Spread (Yield Slope)

$$TP_t = R_t^{(10)} - R_t^{(EH)} => \text{Term Premium}$$


$$R_t^{EH} = \frac{1}{10} E_t \sum_{i=0}^{9} R_{t+i}^{(1)} => \text{Risk Neutral Rate (EH)}$$

 $SP_t$  and  $TP_t$  key indicators of financial conditions, targeted by recent monetary policy


Key Focus of the paper: Explain cyclicality of  $SP_t$  and  $TP_t$ 

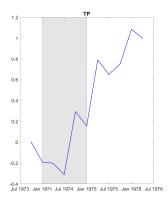
★週 ▶ ★ 理 ▶ ★ 理 ▶ …

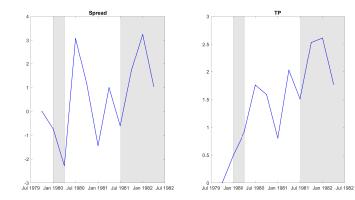
## Term Spread and Term Premium Cyclicality

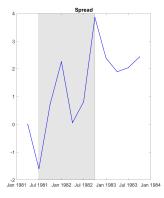


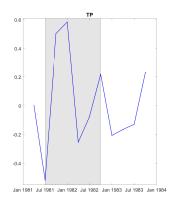
## Term Premium(s) and Term Spread



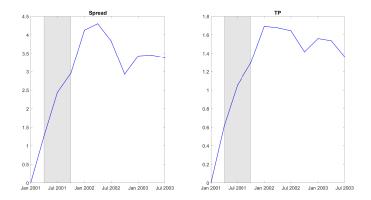

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

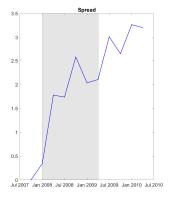

#### • The term spread and term premium are counter-cyclical

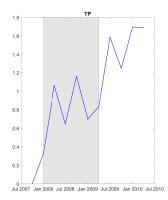

• High positive correlation between the term spread (and the term premium) with the unemployment rate.


・ 同 ト ・ ヨ ト ・ ヨ ト ・

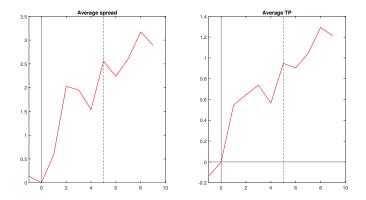












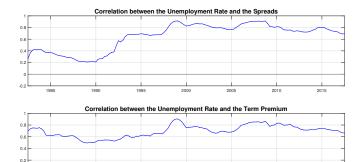

#### Average across recessions



<ロ> (四) (四) (三) (三) (三) (三)

- The term spread and term premium are counter-cyclical
- High positive correlation between the term spread (and the term premium) and the unemployment rate.

(雪) (ヨ) (ヨ)


## Unemployment and TS / TP

-0.2

1985

1990

1995



2000

2005

2010

2015

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

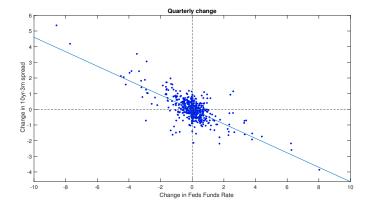
# Literature Focus: Negative Supply Shock drives up TP

- Mainstream macro-finance models with complete markets explain the positive term premiums with negative supply shocks.
- The mechanism is that inflation causes the bond to be a bad asset in the very state of the world when consumer's marginal utility of consumption is high, so they demand a positive premium.
- Somewhat silent about effects on the yield slope

(雪) (ヨ) (ヨ)

# Negative Supply Shock Counterfactual Effect on SP

Take the following stylized model:


$$\pi_t = a\pi_{t-1} + u_t$$
$$R_t = b\pi_t$$
$$R_t^L = \frac{1}{2}[R_t + E_t R_{t+1}]$$

A recessionary supply shock  $\uparrow u_t \Rightarrow \uparrow R_t \Rightarrow \uparrow R_t^L$ Importantly  $\uparrow R_t > \uparrow R_t^L$  (given that a < 1)

Therefore  $\uparrow u_t \Rightarrow \downarrow SP_t$ , counterfactual in recessions

(日本) (日本) (日本)

## Another Way to Look at SP Counter-cyclicality



► < E >

æ

- Data moves between the NW and SE quadrants.
- Recessionary dynamics of mainstream model points to the SE quadrant, mostly.
- But data in recent recessions point otherwise => NW.

=> We present a structural DSGE that fits the observed patterns in the data.

< 回 > < 回 > < 回 > .

- Demand shocks have mostly been omitted in the literature because they imply an overall negative term premium.
- With complete financial markets: a negative demand shock reduces inflation, increasing the real price of bonds and decreasing yields.
- The increase in prices means that bonds are a good hedge against bad times, so consumers do not demand a positive premium => counterfactual
- The decrease in yields also means a decrease in TP in recessions => counterfactual

・ 同 ト ・ ヨ ト ・ ヨ ト …

## Literature

- Models with complete financial markets.
  - Rudebusch and Swanson (2012) and Kung (2015) have models with complete financial markets. They seek to explain the positive slope of the yield curve.
  - Emphasis is on macro-to-finance channel.
- Models with incomplete financial markets
  - Gertler and Karadi (2013), Carlstrom et al. (2017) Sims and Wu (2021) have models with segmented markets. Their goal is to examine the effects of QE policies.
  - Emphasis is on finance-to-macro channel.
- We introduce a new focus: the cyclicality of the term structure

・ 同 ト ・ 三 ト ・

.≣⇒

- Motivation
- Model
- Results
- Robustness
- Conclusions

ヘロト 人間 とくほとくほとう

₹ 990

# A NK Model With Segmented Financial Markets and Unemployment

#### Financial intermediaries

- The short-term bond market is segmented from the long-term bond market: only financial intermediaries can purchase long term private and public bonds
- Costly enforcement problem on financial intermediaries leads to an endogenous leverage constraint that results in excess returns
- Loan in advance constraint on investment: firms must issue long term bonds to finance part of their investment
- Labor market: search and matching frictions; wages are set by Nash bargaining
- Central bank: Standard Taylor rule with interest rate smoothing
- Shocks: technology shock, monetary policy shock, credit shock

・ 同 ト ・ ヨ ト ・ ヨ ト

## Model: Financial Intermediaries

The balance sheet of a financial intermediary (FI) is given by

$$Q_t F_{fi,t} + Q_{B,t} B_{fi,t} = D_{fi,t} + N_{fi,t}$$

FIs maximize the discounted stream of payouts to the households:

$$\mathcal{V}_{fi,t} = \max(1-\sigma) E_t \sum_{k=1}^{\infty} \sigma^{k-1} \Lambda_{t,t+k} n_{fi,t+k}.$$

Subject to Incentive Constraint

$$\mathcal{V}_{fi,t} \geq \theta_t \left( Q_t f_{fi,t} + \omega Q_{B,t} b_{fi,t} \right)$$

 $\theta_t$  is a credit shock: When  $\theta_t$  increases, depositors are less willing to deposit funds in the FIs because these can take a larger fraction of assets in the event of default.

Market segmentation allows FIs to take arbitrage opportunities. Their FOCs are

$$E_t \Lambda_{t,t+1} \frac{1}{\pi_{t+1}} \left( R_{t+1}^F - R_t^d \right) \Omega_{fi,t+1} = \frac{\mu_{fi,t}}{\left( 1 + \mu_{fi,t} \right)} \theta_t, \tag{1}$$

$$E_t \Lambda_{t,t+1} \frac{1}{\pi_{t+1}} \left( R_{t+1}^{\mathcal{B}} - R_t^{\mathcal{d}} \right) \Omega_{fi,t+1} = \frac{\mu_{fi,t}}{\left( 1 + \mu_{fi,t} \right)} \theta_t \omega, \qquad (2)$$

Leverage constraint:

$$\phi_{fi,t} = \frac{Q_t f_{fi,t} + \omega Q_{B,t} b_{fi,t}}{n_{fi,t}} \le \bar{\phi}_{fi,t}$$

 $\mu_{fi,t}$  is the incentive constraint multiplier. If constraint binds =>  $\mu_{fi,t}$  > 0, spreads > 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

## Model: Households

$$U_t = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ \log \left( C_t - h C_{t-1} \right) \right\},\,$$

Subject to budget constraint and:

- Standard law of motion of capital:  $k_{t+1} = (1 - \delta_{\mathcal{K}}(z_t)) k_t + \hat{l}_t$
- Law of motion of labor:  $L_t = (1 \rho) L_{t-1} + m_t$
- Loan in advance constraint:  $\psi P_t^k \hat{I}_t \leq Q_t \left( F_{w,t} \kappa F_{w,t-1} \right)$

## Model: Households

#### The FOCs are

$$\lambda_{t} = \frac{1}{C_{t} - hC_{t-1}} - \beta \mathbb{E}_{t} \left( \frac{h}{C_{t+1} - hC_{t}} \right)$$

$$1 = R_{t}^{D} \mathbb{E}_{t} \frac{\Lambda_{t,t+1}}{\pi_{t+1}}$$

$$r_{Kt} = p_{t}^{k} M_{2,t} \delta_{K}'(z_{t})$$

$$p_{t}^{k} M_{2,t} = \mathbb{E}_{t} \Lambda_{t,t+1} \left( r_{Kt+1} z_{t+1} + (1 - \delta_{K} (z_{t+1})) p_{t+1}^{k} M_{2,t+1} \right)$$

$$Q_{t} M_{1,t} = \mathbb{E}_{t} \Lambda_{t,t+1} \pi_{t+1}^{-1} \left\{ 1 + M_{1,t+1} \kappa Q_{t+1} \right\}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

The labor market has a standard matching function

$$m_t = \bar{m} u_t^{\zeta} v_t^{1-\zeta},$$

Each period, there is a fixed probability of each job being destroyed. Destroyed jobs are replaced by new ones. The law of motion of employment is given by

$$L_t = (1-\rho)L_{t-1} + m_t.$$

Wages are determined by Nash bargaining

$$\boldsymbol{w}_{t} = \eta \left[ (1 - \alpha) \boldsymbol{p}_{\boldsymbol{\mathcal{S}}, t} \frac{\boldsymbol{X}_{t}}{\boldsymbol{L}_{t}} + \boldsymbol{C} \boldsymbol{V}_{t}^{\boldsymbol{F}} \right] + (1 - \eta) \left[ \boldsymbol{u} \boldsymbol{b}_{t} - \boldsymbol{C} \boldsymbol{V}_{t}^{\boldsymbol{H}} \right],$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

# Model: Supply side

- Retail sector
  - Linear production function Y<sub>t</sub>=X<sub>t</sub> and nominal price rigidities á la Calvo
- Intermediate production sector
  - The production function is a Cobb-Douglas

$$X_{t} = A_{t} \left( \gamma^{t} L_{t} \right)^{1-\alpha} \left( K_{t} \right)^{\alpha}$$

• Firms are subject to hiring costs

$$hc_t = \varphi_t v_t$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• The FOCs are standard

• 
$$r_{K,t} = \alpha p_{S,t} \frac{x_t}{K_t}$$

•  $J_t = (1 - \alpha) p_{S,t} \frac{X_t}{L_t} - w_t + \mathbb{E}_t \Lambda_{t,t+1} J_{t+1}$ 

• 
$$\varphi_t = J_t \mu_{V,t}$$

The Central Bank sets the nominal short-term interest rate according to a standard Taylor Rule

$$\boldsymbol{R}_{t}^{d} = \left(\boldsymbol{R}_{t-1}^{d}\right)^{\varphi_{i}} \left[\boldsymbol{R}^{d} \left(\frac{\pi_{t}}{\pi^{*}}\right)^{\varphi_{\pi}} \left(\frac{\hat{\boldsymbol{Y}}_{t}}{\gamma \hat{\boldsymbol{Y}}_{t-1}}\right)^{\varphi_{y}}\right]^{1-\varphi_{i}} \varepsilon_{t}^{m}$$

The government consumes and exogenous amount of output, collects taxes and finances its deficit issuing long-term debt according to the following budget constraint

$$T_t = G_t + ub_t(1-L_t) + (1+\kappa Q_{B,t})rac{B_{G,t-1}}{P_t} - Q_{B,t}rac{B_{G,t}}{P_t}.$$

(雪) (ヨ) (ヨ)

## Term Premium and Term Spread: Closed-Form

$$\widehat{TP}_{t} \approx \Theta \sum_{j=0}^{\infty} \left(\frac{\kappa}{R^{d}}\right)^{j} \mathbb{E}_{t} \left\{ (1-\Delta) \, \hat{\phi}_{t+j} - \frac{\sigma \theta \phi}{\Omega} \, \hat{\phi}_{t+j+1} + \left(1 - \rho_{\theta} \frac{\sigma \theta \phi}{\Omega}\right) \, \hat{\theta}_{t+j} \right\}$$

$$\widehat{TS}_{t} = \left\{ \underbrace{\frac{R^{d} - \kappa}{R^{d}} \sum_{j=0}^{\infty} \left(\frac{\kappa}{R^{d}}\right)^{j} \hat{R}_{t+j}^{d} - \hat{R}_{t}^{d}}_{\widehat{NS}_{t}} \right\} + \widehat{TP}_{t}$$

・ロト ・四ト ・ヨト ・ヨト ・

## Inspecting the Mechanism: Credit Shock

- Tightening Credit Shock Makes FIs more likely to Default
- Opposits decline => Less Funding for Banks
- Less purchases of long-term bonds => Long-term Rates Increase
- Firms cannot invest as much => economic activity declines
- Short-term Rate declines through monetary policy reaction function
- Both the Term Spread and the Term Premium increase

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- Motivation
- Model
- Results
- Robustness
- Conclusions

ヘロト 人間 とくほとくほとう

₹ 990

#### Table: Baseline parameter values

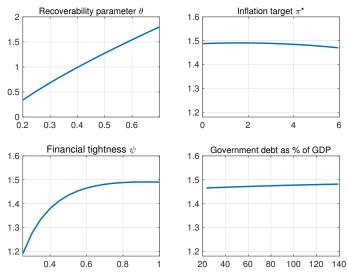
| Parameter           | Description                              | Value  |
|---------------------|------------------------------------------|--------|
| $\overline{\kappa}$ | Bond duration                            | 0.975  |
| $\psi$              | Debt-financed investment                 | 0.81   |
| $\sigma$            | Financial intermediary survival reate    | 0.95   |
| $\theta$            | Recoveravility parameter/credit shock    | 0.5792 |
| Х                   | Leverage                                 | 4      |
| ω                   | Government bond recoverability           | 0.5028 |
| $\pi$               | Steady state inflation                   | 3%     |
| $\gamma$            | Growth rate                              | 1.5%   |
| $\theta_{p}$        | Calvo probability of not changing prices | 0.63   |
| $\rho_{\theta}$     | AR credit shock                          | 0.95   |
| ρ <sub>Α</sub>      | AR technology shock                      | 0.95   |

ヘロト 人間 とくほとく ほとう

₹ 990

## **Results: Matching of moments**

| Moment matching | $\sigma(\mathbf{x})/\sigma(\mathbf{y})$ |          |         |       | $\rho(\mathbf{x}, \mathbf{y})$ |          |         |       |
|-----------------|-----------------------------------------|----------|---------|-------|--------------------------------|----------|---------|-------|
|                 | Data                                    | Baseline | Low S&M | No FF | Data                           | Baseline | Low S&M | No FF |
| Inflation       | 0.35                                    | 0.27     | 0.20    | 0.32  | 0.36                           | 0.26     | 0.22    | 0.02  |
| Unemployment    | 7.92                                    | 7.61     | 8.77    | 8.17  | -0.87                          | -0.76    | -0.77   | -0.72 |
| Employment      | 0.58                                    | 0.48     | 0.67    | 0.49  | 0.87                           | 0.79     | 0.86    | 0.74  |
| Wages           | 0.64                                    | 0.68     | 0.44    | 0.68  | 0.10                           | 0.86     | 0.83    | 0.81  |
| Investment      | 3.84                                    | 3.84     | 3.91    | 2.57  | 0.93                           | 0.95     | 0.94    | 0.99  |
| Consumption     | 0.59                                    | 0.52     | 0.50    | 0.52  | 0.83                           | 0.45     | 0.63    | 0.99  |
| Short rate      | 0.22                                    | 0.22     | 0.16    | 0.23  | 0.33                           | 0.11     | 0.10    | -0.42 |
| Long rate       | 0.13                                    | 0.05     | 0.04    | 0.04  | 0.02                           | -0.15    | -0.21   | -0.32 |
| Spread          | 0.18                                    | 0.19     | 0.13    | 0.19  | -0.41                          | -0.17    | -0.18   | 0.44  |
| Term premium    | 0.09                                    | 0.05     | 0.04    | -     | -0.41                          | -0.37    | -0.34   | -     |
| $\sigma(y)$     | 1.43                                    | 1.43     | 1.81    | 1.21  |                                |          |         |       |

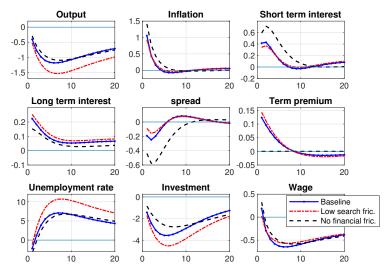

ヘロン 人間 とくほとく ほとう

 Conventional Models: TP is a function of model covariances. Same thing for TS

• Segmented Market Model:  $TS = 1 + \omega \left( \frac{\theta}{(1-\sigma)+\sigma\phi\theta} - \frac{1}{\phi} \right)$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

### **Results:** Steady-state Analysis

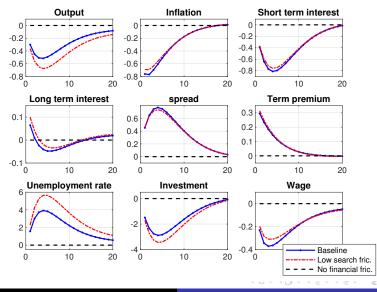



Steady State Analysis: Term Spread

-

## Results: IRFs, Tech shock

#### Technology shock




Abbritti, Fellmann, Moreno Term Structure Cyclicality

÷

# **Results: IRFs, Credit shock**

#### Credit shock



Abbritti, Fellmann, Moreno Term Structure Cyclicality

# **Cross-correlations**

| $\rho(\mathbf{x}, \mathbf{y})$  |       |          |                     |                   |                 |  |  |  |  |
|---------------------------------|-------|----------|---------------------|-------------------|-----------------|--|--|--|--|
| Variable                        | Data  | Baseline | Technology<br>shock | Mon. Policy shock | Credit<br>Shock |  |  |  |  |
| Spread                          | -0.41 | -0.17    | 0.11                | 0.61              | -0.98           |  |  |  |  |
| Term Premium                    | -0.41 | -0.36    | -0.31               | -0.88             | -0.70           |  |  |  |  |
| $\rho(\mathbf{x}, \mathbf{ur})$ |       |          |                     |                   |                 |  |  |  |  |
| Spread                          | 0.57  | 0.47     | 0.44                | -0.77             | 0.98            |  |  |  |  |
| Term Premium                    | 0.54  | 0.11     | -0.27               | 0.95              | 0.53            |  |  |  |  |

Abbritti, Fellmann, Moreno Term Structure Cyclicality

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

- Motivation
- Model
- Results
- Robustness
- Conclusions

ヘロト 人間 とくほとくほとう

₹ 990

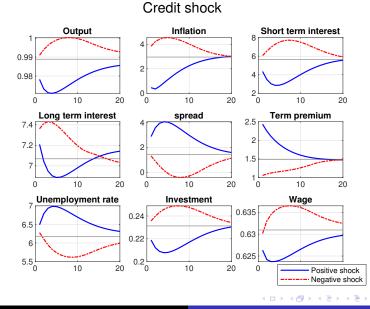
#### **Cross-correlations**, Alternative Shocks

|                                 |       |            | $\rho(\mathbf{x},\mathbf{y})$ |         |               |              |  |
|---------------------------------|-------|------------|-------------------------------|---------|---------------|--------------|--|
| Variable                        | Data  | Preference | Invspecific                   | Mark-up | Gov. spending | Infl. target |  |
|                                 |       | shock      | shock                         | shock   | shock         | shock        |  |
| Spread                          | -0.41 | 0.83       | -0.60                         | 0.50    | -0.94         | 0.87         |  |
| Term Premium                    | -0.41 | 0.79       | 0.54                          | -0.43   | 0.94          | -0.51        |  |
| $\rho(\mathbf{x}, \mathbf{ur})$ |       |            |                               |         |               |              |  |
| Spread                          | 0.57  | -0.66      | 0.85                          | -0.54   | 0.97          | -0.41        |  |
| Term Premium                    | 0.54  | -0.62      | -0.19                         | 0.47    | -0.96         | -0.78        |  |

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

# Asymmetric Effects of Credit Shocks

#### $\mathcal{V}_{fi,t} \geq \theta_t \left( \mathbf{Q}_t f_{fi,t} + \omega \mathbf{Q}_{B,t} \mathbf{b}_{fi,t} \right)$


#### • 'Booming' Credit Shock, Large Reduction in $\theta_t$

- Endogenous Financial Constraint is not binding
- Lots of liquidity, Excess Returns Arbitraged Away
- Long-Bond rates go down until reaching the short-rate
- Standard Expansionary effect on the economy
- 'Tightening' Credit Shock, Large Increase in  $\theta_t$ 
  - Endogenous Financial Constraint binding
  - Reduces Funding for Firms
  - Cost of long-term borrowing increases, so does spread and term premium

ヘロン 人間 とくほ とくほ とう

- Reduces Investment and Productive Capacity for Firms
- Amplified Contractionary Effects

# Robustness: Asymmetric Effects of Credit Shocks



Abbritti, Fellmann, Moreno Term Structure Cyclicality

2

## Cross-correlations: OBC v/s ABC

| Moment matching      | $\sigma(\mathbf{x})/\sigma(\mathbf{y})$ |      | $\rho(\mathbf{x}, \mathbf{y})$ |       |       |       |
|----------------------|-----------------------------------------|------|--------------------------------|-------|-------|-------|
|                      | Data                                    | OBC  | ABC                            | Data  | OBC   | ABC   |
| Inflation            | 0.35                                    | 0.27 | 0.26                           | 0.36  | 0.26  | 0.35  |
| Unemployment         | 7.92                                    | 7.61 | 7.77                           | -0.87 | -0.76 | -0.81 |
| Employment           | 0.58                                    | 0.48 | 0.47                           | 0.87  | 0.79  | 0.84  |
| Wages                | 0.64                                    | 0.68 | 0.69                           | 0.10  | 0.86  | 0.89  |
| Investment           | 3.84                                    | 3.84 | 3.96                           | 0.93  | 0.95  | 0.95  |
| Consumption          | 0.59                                    | 0.52 | 0.42                           | 0.83  | 0.45  | 0.32  |
| Short rate           | 0.22                                    | 0.22 | 0.22                           | 0.33  | 0.11  | 0.31  |
| Long rate            | 0.13                                    | 0.05 | 0.05                           | 0.02  | -0.15 | -0.25 |
| Spread               | 0.18                                    | 0.19 | 0.20                           | -0.41 | -0.17 | -0.40 |
| Term premium         | 0.09                                    | 0.05 | 0.07                           | -0.41 | -0.37 | -0.42 |
| $\sigma(\mathbf{y})$ | 1.43                                    | 1.43 | 1.57                           |       |       |       |

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

- Motivation
- Model
- Results
- Robustness
- Conclusions

ヘロト 人間 とくほとくほとう

₹ 990

# Conclusions

This paper first highlights two stylized facts

- The term spread and the term premium are highly counter-cyclical.
- There is a high positive correlation between unemployment and these term structure variables.

We build a DSGE to rationalize these facts:

- A technology shock in a complete markets model –the standard in the literature– is insufficient to capture term structure cyclical dynamics.
- A credit shock in an incomplete, segmented markets model fits term spread patterns better during most recessions.
- => Credit risk key to understand Term Premium, Term Spread

ヘロン 人間 とくほ とくほ とう