Wage Rigidity and Job Creation

Christian Haefke
IHS Vienna

Marcus Sonntag
University of Bonn

Thijs van Rens
CREI and Universitat Pompeu Fabra

NBB, KUL, ULB, UCL
April 10, 2008
1 Wage Rigidity and Job Creation

- Job Creation
 - Unemployment volatility puzzle (Shimer 2005; Costain and Reiter 2006)
 - Wage rigidity often suggested as an explanation (Shimer 2005; Hall 2005; Rudanko 2006; Gertler and Trigari 2006; Blanchard and Gali 2006; Braun 2006; ...)

- Wage rigidity
 - Wage less volatile than models predict
 - Micro-evidence (Bils 1985; Beaudry and DiNardo 1991; Solon, Barsky and Parker 1994)
2 Wage Rigidity and Job Creation

- Job Creation
 - Unemployment volatility puzzle (Shimer 2005; Costain and Reiter 2006)
 - Wage rigidity often suggested as an explanation (Shimer 2005; Hall 2005; Rudanko 2006; Gertler and Trigari 2006; Blanchard and Gali 2006; Braun 2006; ...)

- Wage rigidity
 - Wage less volatile than models predict
 - Micro-evidence (Bils 1985; Beaudry and DiNardo 1991; Solon, Barsky and Parker 1994)

- This paper:
 - Wage newly hired workers is flexible
 - Rigid wage models not consistent with the data
3 Our argument

- Response wage to changes in labor productivity
 - New hires: \(\frac{d \log w}{d \log y} \approx 1 \)
 - Workers in ongoing jobs: \(\frac{d \log w}{d \log y} \approx 0.25 << 1 \)

- To match these facts, model needs:
 - Search frictions
 - Wage rigidity in ongoing matches
 - Flexible wage setting at start of match

- Implication
 - Job creation not affected by observed wage rigidity
 - Wage rigidity cannot explain the unemployment volatility puzzle
4 Our argument

- Response wage to changes in labor productivity → Data & Results
 - New hires: $d \log w / d \log y \simeq 1$
 - Workers in ongoing jobs: $d \log w / d \log y \simeq 0.25 << 1$

- To match these facts, model needs: → Model & Conclusions
 - Search frictions
 - Wage rigidity in ongoing matches
 - Flexible wage setting at start of match

- Implication
 - Job creation not affected by observed wage rigidity
 - Wage rigidity cannot explain the unemployment volatility puzzle
5 Data

“There is little statistical data on the pay of new hires. And the data that do exist show little downward flexibility.” (Bewley 1999)

- Large, representative sample of wage data @ quarterly frequency
 - Wage = usual weekly earnings / usual weekly hours

- Panel data to identify newly hired workers
 - Match individual workers to three proceeding months ⇒ 1 quarter employment history
 - New hire = unemployed at least once in previous 3 months
6 Data

“There is little statistical data on the pay of new hires. And the data that do exist show little downward flexibility.” (Bewley 1999)

- Large, representative sample of wage data @ quarterly frequency
 - Wage = usual weekly earnings / usual weekly hours

- Panel data to identify newly hired workers
 - Match individual workers to three proceeding months ⇒ 1 quarter employment history
 - New hire = unemployed at least once in previous 3 months

- Sample sizes (per quarter)
 - Workers in private non-farm business sector: 35 000
 - Correctly matched workers: 28 000
 - New hires: 1 500
7 Data

“There is little statistical data on the pay of new hires. And the data that do exist show little downward flexibility.” (Bewley 1999)

- Large, representative sample of wage data @ quarterly frequency
 - Wage = usual weekly earnings / usual weekly hours

- Panel data to identify newly hired workers
 - Match individual workers to three preceding months ⇒ 1 quarter employment history
 - New hire = unemployed at least once in previous 3 months

- Sample sizes (per quarter)

<table>
<thead>
<tr>
<th>Category</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers in private non-farm business sector</td>
<td>35 000</td>
</tr>
<tr>
<td>Correctly matched workers</td>
<td>28 000</td>
</tr>
</tbody>
</table>
 | New hires | 1 500 | (cf PSID: 5% of 3200/4 = 40)
8 Data: replicating the aggregate wage

- Aggregate wage: hourly compensation in the private, non-farm business sector

- Adjustments to the CPS wages
 - Correcting individual wages
 * Impute topcoded earnings
 * Impute ‘varying’ hours worked
 * No correction for overtime, tips and commissions
 - Correcting sample
 * Exclude public sector and armed forces
 * Exclude agriculture (industry)
 * Exclude supervisory workers (occupation)
 * Exclude workers < 25 and > 60 years old
 - Aggregation
 * Use median instead of mean or trim outliers in hours worked
 * Weight median/mean by hours worked (and sampling weights)
9 Data: replicating the aggregate wage

- Business cycle statistics (HP filtered, 10^5)

<table>
<thead>
<tr>
<th></th>
<th>corr</th>
<th>w</th>
<th>sd</th>
<th>rel.sd</th>
<th>acorr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hourly compensation, 1951-2001</td>
<td>0.015</td>
<td>0.43</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hourly compensation, 1979-2006</td>
<td>0.016</td>
<td>0.59</td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPS all workers</td>
<td>0.71</td>
<td>0.017</td>
<td>0.55</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>CPS all matched workers</td>
<td>0.70</td>
<td>0.017</td>
<td>0.55</td>
<td>0.89</td>
<td></td>
</tr>
</tbody>
</table>

- Statistics corrected for sampling error (i.i.d. with known variance)

- Similar for various detrending methods
10 Data: newly hired workers

- Descriptive statistics (2005)

<table>
<thead>
<tr>
<th></th>
<th>All workers</th>
<th>New hires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education (years)</td>
<td>13.6</td>
<td>12.8</td>
</tr>
<tr>
<td>Experience (years)</td>
<td>21.9</td>
<td>21.2</td>
</tr>
<tr>
<td>Female (%)</td>
<td>44.9</td>
<td>49.9</td>
</tr>
<tr>
<td>Black (%)</td>
<td>11.7</td>
<td>16.3</td>
</tr>
<tr>
<td>Hispanic (%)</td>
<td>13.5</td>
<td>19.3</td>
</tr>
<tr>
<td>Married (%)</td>
<td>62.4</td>
<td>53.6</td>
</tr>
</tbody>
</table>
11 Wage of new hires
12 Wage of new hires

Wage for newly hired workers and all workers, BP 3206
13 Wage of new hires

- Business cycle statistics (HP filtered, 10^5)

<table>
<thead>
<tr>
<th></th>
<th>corr</th>
<th>w</th>
<th>sd</th>
<th>rel.sd</th>
<th>acorr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hourly compensation, 1951-2001</td>
<td>0.015</td>
<td>0.43</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hourly compensation, 1979-2006</td>
<td>0.016</td>
<td>0.59</td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPS all workers</td>
<td>0.71</td>
<td>0.017</td>
<td>0.55</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>CPS all matched workers</td>
<td>0.70</td>
<td>0.017</td>
<td>0.55</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>CPS new hires</td>
<td>0.037</td>
<td>1.07</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14 **Wage response to productivity shocks**

- Two-step procedure
 - 1) Regress wage on (controls and) time dummies
 - 2) Regress Δ coefficients on Δ productivity

\[
\Delta \log w_{it} = \alpha + \xi \Delta \log y_t + \varepsilon_t
\]
15 Wage response to productivity shocks

• Two-step procedure
 – 1) Regress wage on (controls and) time dummies
 – 2) Regress Δ coefficients on Δ productivity

$$\Delta \log w_{it} = \alpha + \xi \Delta \log y_t + \varepsilon_t$$

• Existing micro-studies (all workers, job stayers, job changers)
 – 1) Regress Δ wage on (controls and) time dummies
 – 2) Regress coefficients on Δ unemployment

$$\Delta \log w_{it} = \tilde{\alpha} + \tilde{\xi} \Delta u_t + \tilde{\varepsilon}_t$$

 – Cannot do this for new hires (out of non-employment)

• Estimation issues
 – Composition bias
 – Endogeneity
Wage response to productivity shocks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate wage</td>
<td>0.27</td>
<td>0.27</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>CPS, all workers</td>
<td>0.11</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,904,458</td>
<td>1,566,161</td>
<td></td>
</tr>
<tr>
<td>CPS, new hires</td>
<td>0.25</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146,108</td>
<td>117,243</td>
<td></td>
</tr>
</tbody>
</table>
17 Composition bias

- Worker heterogeneity
 - New hires not representative for workforce
 - Relatively more high skilled workers hired in recession (Solon, Barsky and Parker 1994)
18 Fraction of female workers

![Graph showing the fraction of female workers over time from 1980 to 2005. The graph indicates fluctuations and trends in the percentage of female workers in the workforce.]
19 Fraction of black workers
20 Fraction of hispanic workers
21 Fraction of married workers
22 Average years of schooling
23 Average years of experience
24 Composition bias

- Worker heterogeneity
 - New hires not representative for workforce
 - Relatively more high skilled workers hired in recession (Solon, Barsky and Parker 1994)
25 Composition bias

- Worker heterogeneity
 - New hires not representative for workforce
 - Relatively more high skilled workers hired in recession (Solon, Barsky and Parker 1994)
 - Control for wage fluctuations due to fluctuations in (observable) skill
26 Composition bias

- Worker heterogeneity
 - New hires not representative for workforce
 - Relatively more high skilled workers hired in recession (Solon, Barsky and Parker 1994)
 - Control for wage fluctuations due to fluctuations in (observable) skill

- Elasticity wrt unemployment from the PSID (Devereux 2001)

<table>
<thead>
<tr>
<th></th>
<th>2-step, fd</th>
<th>1-step</th>
<th>2-step, lev</th>
<th>2-step, w/contr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job stayers</td>
<td>-0.83</td>
<td>-0.83</td>
<td>-0.37</td>
<td>-0.80</td>
</tr>
<tr>
<td></td>
<td>0.19</td>
<td>0.19</td>
<td>0.62</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>42,164</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
27 Wage response to productivity shocks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate wage</td>
<td>0.27</td>
<td>0.27</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>CPS, all workers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,904,458</td>
<td>1,566,161</td>
<td></td>
</tr>
<tr>
<td>CPS, new hires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146,108</td>
<td>117,243</td>
<td></td>
</tr>
</tbody>
</table>
28 Wage response to productivity shocks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate wage</td>
<td>0.27</td>
<td>0.27</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.09</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>CPS, all workers</td>
<td>0.11</td>
<td>0.14</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.15</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>1,904,458</td>
<td>1,566,161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPS, new hires</td>
<td>0.25</td>
<td>0.67</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td>0.41</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146,108</td>
<td>117,243</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
29 Wage response - composition bias

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate wage</td>
<td>0.27</td>
<td>0.27</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.09</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPS, all workers</td>
<td>0.11</td>
<td>0.14</td>
<td>0.25</td>
<td>0.28</td>
<td>0.23</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,904,458</td>
<td>1,566,161</td>
<td>1,546,720</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPS, new hires</td>
<td>0.25</td>
<td>0.67</td>
<td>0.90</td>
<td>1.00</td>
<td>1.00</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td>0.41</td>
<td>0.38</td>
<td>0.40</td>
<td>0.42</td>
<td>0.39</td>
<td></td>
</tr>
</tbody>
</table>
30 Wage response - robustness

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate wage</td>
<td>0.27</td>
<td>0.27</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.09</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPS, all workers</td>
<td>0.11</td>
<td>0.14</td>
<td></td>
<td>0.25</td>
<td>0.18</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.15</td>
<td></td>
<td>0.14</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>1,904,458</td>
<td>1,566,161</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPS, new hires</td>
<td>0.25</td>
<td>0.67</td>
<td></td>
<td>0.90</td>
<td>0.89</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td>0.41</td>
<td></td>
<td>0.38</td>
<td>0.37</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>146,108</td>
<td>117,243</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
31 Exogenous changes in productivity

- Diminishing returns to employment
 - \(\text{LP} = \log Y_t - \log L_t \)
 - \(\text{TFP} = \log Y_t - \alpha \log K_t - (1 - \alpha) \log L_t = \text{LP} - \alpha \log K_t + \alpha \log L_t \)

- Identified technology shocks
 - SVAR with long run restriction
 - Technology shocks only shocks that affect labor productivity in the long run (Gali 1999)

- Total Factor Productivity (Basu, Fernald and Kimball 2006; Fernald 2007)
Wage response - exogenous productivity shocks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate wage</td>
<td>0.27</td>
<td>0.27</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.09</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPS, all workers</td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
<td>0.31</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.14</td>
<td></td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>1,904,458</td>
<td>1,566,161</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPS, new hires</td>
<td>0.25</td>
<td>0.67</td>
<td></td>
<td>0.90</td>
<td>1.09</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td>0.41</td>
<td></td>
<td>0.38</td>
<td>0.40</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>146,108</td>
<td>117,243</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
33 Our argument

- Response wage to changes in labor productivity → Data & Results
 - New hires: $d \log w / d \log y \simeq 1$
 - Workers in ongoing jobs: $d \log w / d \log y \simeq 0.25 << 1$

- To match these facts, model needs: → Model & Conclusions
 - Search frictions
 - Wage rigidity in ongoing matches
 - Flexible wage setting at start of match

- Implication
 - Job creation not affected by observed wage rigidity
 - Wage rigidity cannot explain the unemployment volatility puzzle

34 Model

- Standard search and matching model (Pissarides 1985, 2000)
 - Continuum of identical, risk-neutral workers and firms (entrepreneurs)
 - Random search, CRTS, Cobb-Douglas matching technology
 * Probability vacancy is filled $q(\theta_t)$, where $\theta_t = v_t / u_t$
 * Probability worker finds job $p(\theta_t) = \theta_t q(\theta_t)$
 - Exogenous (constant) separation probability δ

- Stochastic labor productivity (Shimer 2005)

- Equilibrium (θ_t, w_t)
 - Job creation (‘labor demand’)
 - Wage curve (‘labor supply’ + wage determination)
35 Job creation

- Free entry drives profits vacancy to zero

\[
\frac{c}{q(\theta_t)} = \frac{\bar{y}_t - \bar{w}_t}{r + \delta}
\]

ENPV costs of opening vacancy \quad \text{ENPV profits from filled job}

where

\[
\bar{y}_t - \bar{w}_t = \frac{r + \delta}{1 + r} \sum_{\tau=1}^{\infty} \left(\frac{1 - \delta}{1 + r} \right)^\tau E_t \left[y_{t+\tau} - w_{t+\tau} \right]
\]

- Only ‘permanent’ wage is allocative
 - cf. user cost of labor (Kudlyak 2007)
36 Job creation

- Free entry drives profits vacancy to zero

\[
\frac{c}{q(\theta_t)} = \frac{\bar{y}_t - \bar{w}_t}{r + \delta}
\]

ENPV costs of opening vacancy \hspace{1cm} ENPV profits from filled job

where

\[
\bar{y}_t - \bar{w}_t = \frac{r + \delta}{1 + r} \sum_{\tau=1}^{\infty} \left(\frac{1 - \delta}{1 + r} \right)^\tau E_t [y_{t+\tau} - w_{t+\tau}]
\]

- Only ‘permanent’ wage is allocative
 - cf. user cost of labor (Kudlyak 2007)

- Rigidity in permanent wage
 - Makes ENPV profits more responsive to productivity shocks
 - Therefore, vacancy creation is more volatile
 - Therefore, unemployment is more volatile
37 Flexible wages

- Job creation
 \[
 \frac{c}{q(\theta_t)} = \frac{\bar{y}_t - \bar{w}_t}{r + \delta}
 \]

- Wage determination
 - Nash bargaining every period
 - Wage curve
 \[
 \bar{w}_t = (1 - \beta) b + \beta \bar{y}_t + \beta c \bar{\theta}_t
 \]
38 Flexible wages

- Job creation

\[
\frac{c}{q (\theta_t)} = \frac{\bar{y}_t - \bar{w}_t}{r + \delta}
\]

- Wage determination
 - Nash bargaining every period
 - Wage curve

\[
\bar{w}_t = (1 - \beta) b + \beta \bar{y}_t + \beta c \bar{\theta}_t
\]

- In this model:
 - Unique period wage for all workers
 - Wage responds almost one-to-one to productivity, \(d \log w_t / d \log y_t \approx 1 \)
39 Flexible wages: elasticities

<table>
<thead>
<tr>
<th>Flexible wages</th>
<th>b</th>
<th>β</th>
<th>$\frac{d \log w_t}{d \log \bar{y}_t}$</th>
<th>$\frac{d \log w_t}{d \log y_t}$</th>
<th>$\frac{d \log \bar{y}_t}{d \log y_t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.400</td>
<td>0.050</td>
<td>0.592</td>
<td>0.598</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>0.400</td>
<td>0.300</td>
<td>0.919</td>
<td>0.920</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>0.400</td>
<td>0.700</td>
<td>0.984</td>
<td>0.984</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>0.400</td>
<td>0.900</td>
<td>0.996</td>
<td>0.996</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>0.800</td>
<td>0.050</td>
<td>0.431</td>
<td>0.437</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>0.800</td>
<td>0.300</td>
<td>0.861</td>
<td>0.862</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>0.800</td>
<td>0.700</td>
<td>0.971</td>
<td>0.971</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>0.800</td>
<td>0.900</td>
<td>0.992</td>
<td>0.992</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>0.980</td>
<td>0.050</td>
<td>0.384</td>
<td>0.390</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>0.980</td>
<td>0.300</td>
<td>0.837</td>
<td>0.839</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>0.980</td>
<td>0.700</td>
<td>0.966</td>
<td>0.966</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>0.980</td>
<td>0.900</td>
<td>0.991</td>
<td>0.991</td>
<td>=</td>
</tr>
</tbody>
</table>

New hires: stayers: all
40 Flexible wages: elasticities
41 Wage rigidity

- Need wage rigidity in ongoing jobs

- Theoretical justification
 - Implicit contracts (Beaudry and DiNardo 1991; Rudanko 2006)
 - Unions
 - Motivational concerns (Bewley 1999)

- Empirical evidence (Bils 1985; Solon, Barsky and Parker 1994; Beaudry and DiNardo 1991)
 - Vast majority workers are in ongoing job relationships
 - Wages of job movers much more cyclical (Bils 1985; Barlevy 2001; Devereux and Hart 2005; Pissarides 2007)
Wage rigidity: elasticities

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>β</th>
<th>$\frac{d \log w_t}{d \log y_t}$</th>
<th>$\frac{d \log w_t}{d \log y_t}$</th>
<th>$\frac{d \log y_t}{d \log y_t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>new hires</td>
<td>stayers</td>
<td>all</td>
</tr>
<tr>
<td>Flexible wages</td>
<td>0.400</td>
<td>0.050</td>
<td>0.592</td>
<td>0.598</td>
<td>$=$</td>
</tr>
<tr>
<td>Rigid wages ongoing</td>
<td>0.400</td>
<td>0.700</td>
<td>0.984</td>
<td>0.648</td>
<td>0.159 0.163</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
43 Wage rigidity: elasticities
44 Wage rigidity

- Wage rigidity in ongoing jobs consistent with wage data
 - Completely rigid, full commitment: $\frac{d \log w_t^0}{d \log y_t} = 0.16 < 0.25$
 - Intermediate cases: adaptive, occasional rebargaining, ...
45 Wage rigidity

- Wage rigidity in ongoing jobs consistent with wage data
 - Completely rigid, full commitment: \(\frac{d \log w_t^0}{d \log y_t} = 0.16 < 0.25 \)
 - Intermediate cases: adaptive, occasional rebargaining, ...

- Implied rigidity permanent wage

\[
\frac{d \log \bar{w}_t}{d \log \bar{y}_t} = \frac{d \log \bar{w}_t / d \log w_t^0}{d \log \bar{y}_t / d \log y_t} \frac{d \log w_t^0}{d \log y_t}
\]

 - Elasticity of interest
 - Persistence ratio
 - Observed elasticity

- Flexible wages: \(\frac{d \log \bar{w}_t}{d \log \bar{y}_t} \approx \frac{d \log w_t^0}{d \log y_t} \)

- Rigid wages in ongoing jobs: \(\frac{d \log \bar{w}_t}{d \log \bar{y}_t} \geq \frac{d \log w_t^0}{d \log y_t} \)
Wage rigidity: elasticities

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>β</th>
<th>(\frac{d \log w_t}{d \log y_t}) (new hires)</th>
<th>(\frac{d \log w_t}{d \log y_t}) (stayers)</th>
<th>(\frac{d \log w_t}{d \log y_t}) (all)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible wages</td>
<td>0.400</td>
<td>0.050</td>
<td>0.592</td>
<td>0.598</td>
<td>=</td>
</tr>
</tbody>
</table>
| Rigid wages ongoing jobs | 0.400| 0.700 | 0.984 | 0.648 | 0.159 | 0.163 | 1.646
47 Wage rigidity and job creation

- Job Creation

\[
\frac{c}{q(\theta_t)} = \frac{\bar{y}_t - \bar{w}_t}{r + \delta}
\]

ENPV costs of opening vacancy

ENPV profits from filled job

- Response job finding rate to productivity shocks

\[
\frac{d \log p(\theta_t)}{d \log \bar{y}_t} = \frac{1 - \eta}{\eta} \left[\frac{\bar{y}_t}{\bar{y}_t - \bar{w}_t} - \frac{\bar{w}_t}{\bar{y}_t - \bar{w}_t} \frac{d \log \bar{w}_t}{d \log \bar{y}_t} \right] = \begin{cases}
\frac{1 - \eta}{\eta} \frac{\bar{y}_t}{\bar{y}_t - \bar{w}_t} & \text{if } \frac{d \log \bar{w}_t}{d \log \bar{y}_t} = 0 \\
\frac{1 - \eta}{\eta} & \text{if } \frac{d \log \bar{w}_t}{d \log \bar{y}_t} = 1
\end{cases}
\]

- \(\eta > 0.5 \) (Petrongolo and Pissarides 2001) \(\Rightarrow \frac{d \log p(\theta_t)}{d \log \bar{y}_t} < 1 \) (Data: \(\sigma_{p(\theta)}/\sigma_y = 5.9 \))
48 Wage rigidity and job creation

- **Job Creation**
 \[
 \frac{c}{q(t)} \quad \text{ENPV costs of opening vacancy}
 \]
 \[
 \frac{\tilde{y}_t - \tilde{w}_t}{r + \delta} \quad \text{ENPV profits from filled job}
 \]

- **Response job finding rate to productivity shocks**
 \[
 \frac{d \log p(\theta_t)}{d \log \tilde{y}_t} = \frac{1 - \eta}{\eta} \left[\frac{\tilde{y}_t - \tilde{w}_t}{\tilde{y}_t - \tilde{w}_t} - \frac{\bar{w}_t}{\bar{y}_t - \bar{w}_t} d \log \bar{w}_t \right] = \begin{cases}
 \frac{1 - \eta}{\eta} \frac{\bar{y}_t}{\bar{y}_t - \bar{w}_t} & \text{if } \frac{d \log \bar{w}_t}{d \log \bar{y}_t} = 0 \\
 \frac{1 - \eta}{\eta} & \text{if } \frac{d \log \bar{w}_t}{d \log \bar{y}_t} = 1
 \end{cases}
 \]

- \(\eta > 0.5 \) (Petrongolo and Pissarides 2001) \(\Rightarrow \frac{d \log p(\theta_t)}{d \log \tilde{y}_t} < 1 \) (Data: \(\sigma_{p(\theta)} / \sigma_y = 5.9 \))

- **Unemployment volatility and job destruction**
 \[
 u_{t+1} = u_t + \delta (1 - u_t) - p(\theta_t) u_t
 \]
49 Conclusions

- New data on wage new hires out of non-employment:
 - New hires: $d \log w / d \log y \approx 1$
 - Workers in ongoing jobs: $d \log w / d \log y \approx 0.25 << 1$

- To match these facts, model needs:
 - Wage rigidity in ongoing matches
 - Flexible wage setting at start of match

- Implications for the unemployment volatility puzzle
 - No rigidity in permanent wage
 - No effect on job creation
 - No effect on unemployment fluctuations