International Macroeconomic Implications of Gradual Portfolio Adjustment

Philippe Bacchetta
University of Lausanne
Swiss Finance Institute
CEPR

Eric van Wincoop
University of Virginia
NBER

January 2021
Motivation

- Modern international macro/finance models: Expected excess returns are small as portfolio positions are assumed to adjust immediately to shocks
 - May imply large portfolio changes

- Often directly assume Uncovered Interest rate Parity (UIP). Or linearization methods produce trivial portfolio decisions

- In these models financial shocks, e.g. exogenous portfolio shifts, have little impact

- Inconsistent with the data
Conflicting Evidence

1. Expected excess returns can be large and vary over time
 - Both for short-term debt and equity
 - Even predictable, but sign of predictability changes with the horizon
 - Short-term returns on long-term bonds not predictable

2. Capital flows do not react strongly to expected excess returns
 - Passive portfolio investors
 - Autocorrelated portfolio flows
 - Link between flows and lagged return

3. Financial shocks affect capital flows and asset prices
 - Gabaix-Koijen (2020) (Inelastic market hypothesis)
 - Large-scale FX intervention
Recent Developments: Risk and Market Segmentation

- Gabaix-Maggiori (QJE 2015) propose a model where all transactions go through financial intermediaries
 - This increases the overall degree of risk aversion as intermediaries are risk averse and have large positions
 - This in turn can generate significant expected return differentials

- This can also be attained by increasing the level of risk, e.g. introducing disaster risk (e.g. Dou-Verdelhan, 2015)

- Various forms of segmentation
 - E.g., Greenwood, Hanson, Stein, Sunderam (2020), Gourinchas, Ray, Vayanos (2020)

- Role of financial shocks
 - UIP shocks (Kollman, 2002)
 - Itskhoki-Mukhin (2019)
Our Approach: Gradual or Infrequent Portfolio Adjustment

- Widespread evidence of limited or infrequent portfolio adjustment at the investor level
 - E.g. Giglio, Maggiori, Stroebel, and Utkus (2019) on US retail investors

- Huge volume in financial markets, but outstanding positions of frequent traders are not large

⇒ Frequent trading may not offset the impact of slow portfolio adjustments

- Gradual portfolio adjustment implies smaller response of portfolios and thus larger movements in expected excess returns
 - No need to assume large risk aversion
 - Is a form of endogenizing market segmentation
 - Has a different dynamic impact, implying a lagged response of portfolios to shocks
Our Recent Work

- We find that open economy models with infrequent portfolio adjustment can explain many stylized facts.

- In Bacchetta and van Wincoop (AER 2010) we used this approach to explain the forward premium puzzle.
 - Inspired by Froot and Thaler (1990) who suggested that the forward discount puzzle can be explained by delayed portfolio adjustment.

- In several recent papers we analyze further implications of gradual international portfolio adjustment.

- In this presentation I will:
 1. Explain the general approach
 2. Mention some applications
 3. Describe our empirical evidence
Modeling Gradual Portfolio Adjustment

1. Investors adjust their portfolio every T period in a staggered way
 - $1/T$ investors adjust their portfolio in each period and there are T overlapping portfolios
 - Most papers in finance assume a fixed frequency of adjustment

2. Constant probability p of adjusting portfolio
 - As in Calvo pricing
 - Portfolios depend on present value of returns with declining weight $\beta(1-p)$

3. Cost of adjusting portfolios
 - Either portfolio shares or portfolio values
Optimal Portfolios with Frequent Investors

- Optimal portfolio share in Foreign equity by Home investors: z_t

- Excess return:
 \[er_{t+1} = R_{F,t+1} - R_{H,t+1} \]

- Frequent portfolio adjustment:
 \[z_t = \frac{E_t er_{t+1}}{\gamma \sigma^2} + \bar{z}_t \]
 where \bar{z}_t is made of various elements (e.g., hedging terms) including portfolio shifts. Can represent financial shocks

- Assume only frequent investors, both Home and Foreign and consider market equilibrium

- Shocks to excess returns or financial shocks have very little impact on asset prices or exchange rate as $\gamma \sigma^2$ is small
Optimal Portfolio with Costly Adjustment

- Assume a quadratic cost of adjusting the portfolio:
 \[0.5\psi (z_t - z_{t-1})^2 \]

- Assume myopic (two-period OLG) investors. Optimal portfolio:
 \[z_t = \frac{\psi}{\psi + \gamma\sigma^2} z_{t-1} + \frac{\gamma\sigma^2}{\psi + \gamma\sigma^2} z_f \]

- Weighted average of past portfolio and frequent portfolio

- Portfolio can be rewritten as:
 \[z_t = \frac{\psi}{\psi + \gamma\sigma^2} z_{t-1} + \frac{1}{\psi + \gamma\sigma^2} E_t r_{t+1} + \tilde{z}_t \]

 - Portfolio persistence
 - Return sensitivity
Remarks on Optimal Portfolio with Costly Adjustment

- With infinite horizon, discounted future expected excess returns also matter.
 - Discounting depends on ψ

- If we assume a probability p of changing the portfolio instead of an adjustment cost, we get a related portfolio demand with weight on past portfolio of $1 - p$
 - Link between ψ and p: increasing ψ is similar to decreasing p

- If the adjustment is about portfolio values rather than portfolio shares, there is also a valuation effect
 - This can also be represented as a deviation from buy-and-hold portfolio
Implications of Portfolios with Costly Adjustment

- Assume all investors have costly adjustment and consider market equilibrium.

- Shocks to expected excess returns or financial shocks generate a small portfolio response \(\Rightarrow \) larger excess return change is required.
 - Similar to very large risk aversion, implies market segmentation.
 - Explains excess return and large impact of flows (Gabaix-Koijen).

- If shock is persistent portfolio adjustment will continue in future periods \(\Rightarrow \) predictability.

- If shock is not permanent, portfolio changes will be reversed and there will be a change in the sign of predictability.

- Also explains delayed overshooting of asset price.
Applications

1. Bacchetta and van Wincoop (2021), "Puzzling Exchange Rate Dynamics and Delayed Portfolio Adjustment"

- Simple model with myopic investors and adjustment cost

- Analytically tractable. Implies an AR(2) process for the exchange rate:

\[E_t q_{t+1} - \theta q_t + b\psi q_{t-1} + r_t^D = 0 \]

where \(\theta = 1 + \psi b + \gamma \sigma^2 b \) and \(r_t^D \) is return differential

- Can explain six puzzles of exchange rates including e.g. forward premium puzzle, delayed overshooting, predictability sign reversal, exchange rate forward puzzle, or lack of predictability for long-term bonds
Applications

2. Bacchetta, van Wincoop, and Young (2020,) “Infrequent Random Portfolio Decisions in an Open Economy Model”

- Two-country model with equity portfolio and returns. Assume a probability \(p \) of changing portfolios.

- Solved with global methods

- Can match the behavior of equity returns and portfolios. Requires significant financial shocks
Empirical Evidence on Mutual Funds

- We analyze international equity positions of U.S. mutual fund from EPFR database
 - Mutual funds account for 60 percent of U.S. foreign equity holdings

- We use a simple model with portfolio frictions inspired by Gârleanu and Pedersen (2013), where funds maximize a mean-variance utility function with quadratic adjustment costs

- We first estimate expected return differentials

- We then turn to portfolio regressions with fund-level data
Theoretical Framework

- Partial Equilibrium: Mutual funds behavior

- A fund can allocate its portfolio across two country assets with gross returns $R_{1,t+s}$ and $R_{2,t+s}$

- Represents allocation between country 1 and other countries

- $z_t, (1 - z_t)$: Share invested in assets 1 and 2

- σ^2_1, σ^2_2: Variance returns of assets 1 and 2 (covariance σ_{12})
Portfolio Frictions

- Modeled by quadratic adjustment costs with two benchmarks:

1. Past portfolio: \(0.5\psi_1(z_t - z_{t-1})^2\)
2. Buy-and-hold portfolio: \(0.5\psi_2(z_t - z_{t}^{bh})^2\)

- Maximize the present value of future expected returns, penalized for risks and frictions:

\[
\sum_{s=0}^{\infty} \beta^s E_t \left(z_{t+s} R_{1,t+s+1} + (1 - z_{t+s}) R_{2,t+s+1} \right) - 0.5\gamma \sum_{s=0}^{\infty} \beta^s \left(z_{t+s}^2 \sigma_1^2 + (1 - z_{t+s})^2 \sigma_2^2 + 2z_{t+s}(1 - z_{t+s})\sigma_{12} \right) - 0.5 \sum_{s=0}^{\infty} \beta^s E_t \left(\psi_1(z_{t+s} - z_{t+s-1})^2 + \psi_2(z_{t+s} - z_{t+s}^{bh})^2 \right)
\]
Portfolio Regression

- Optimal Portfolio

\[z_t = a_1 + a_2 \left(\frac{\psi_1}{\psi_1 + \psi_2} z_{t-1} + \frac{\psi_2}{\psi_1 + \psi_2} z_t^{bh} \right) + a_3 \sum_{s=1}^{\infty} \delta^{s-1} E_t \varepsilon_{t+s} \]

- Consistent with the model, we consider the following regression:

\[z_{i,n,t} = b_{int} + b_1 \frac{z_{i,n,t-1} + z_{i,n,t}^{bh}}{2} + b_2 \left(z_{i,n,t-1} - z_{i,n,t}^{bh} \right) + b_3 E_t \varepsilon_{i,n,t+k}^{\delta} + \varepsilon_{i,n,t} \]

- Parameters can be linked to structural parameters

- Discounted expected excess returns are fund specific (weighted by fund share)
Need to find a measure for $\sum_{s=1}^{\infty} \delta^{s-1} E_t er_{t+s}$

We construct $E_t er^\delta_{i,n,t,t+k}$

1. Compute discounted present value of excess returns between US and other 35 countries, with discount rate δ and horizon k.

2. We show results for $k = 24$ and $k = 60$.

3. δ has to be consistent with the estimated parameters: iterative procedure.

4. Linear panel regression of $er^\delta_{n,t,t+k}$ on momentum, dividend-price, and earning-price differentials. Compute country-level discounted expected excess return.

5. For each fund, use country shares to compute fund-specific discounted relative returns.
Regression Specification

Endogeneity issue:

1. Funds are very small and cannot influence equity returns

2. Country-level factors (e.g. aggregate portfolio shifts) could affect both portfolios and equity price. Can be captured by country-month fixed effect
 - This is possible because of fund-specific excess returns

 - Also add fund-country fixed effect: captures differences in funds’ style

 - First assume same regression coefficients across funds. Then explore various forms of heterogeneity
Sample

- EPFR US-based equity funds with more than USD 5mio at the end of the sample and that report at least 12 months (316 funds)

- At the fund level, we drop countries where investment < 2%. We only consider observations where fund i positively invests in country n both at time t and $t-1$

- Pooled regressions, 316’732 observations
Table: Portfolio Regressions, Benchmark

<table>
<thead>
<tr>
<th></th>
<th>Fund-Level</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>((z_{i,n,t-1} + z_{i,n,t}^{bh})/2)</td>
<td>0.928***</td>
<td>0.916***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>((z_{i,n,t-1} - z_{i,n,t}^{bh}))</td>
<td>0.173*</td>
<td>0.313***</td>
</tr>
<tr>
<td></td>
<td>(0.090)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>(E_{\text{ter}}_{i,n,t,t+24}^{0.89})</td>
<td>1.082***</td>
<td>2.324***</td>
</tr>
<tr>
<td></td>
<td>(0.144)</td>
<td>(0.291)</td>
</tr>
<tr>
<td>(E_{\text{ter}}_{i,n,t,t+60}^{0.89})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fund-Country FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country-Month FE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>316732</td>
<td>316732</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.987</td>
<td>0.988</td>
</tr>
</tbody>
</table>
Main Lessons

- The model with frictions is fully consistent with the data
 - The two frictions have a significant impact
 - Portfolios react to expected return differentials

- The implied degree of risk aversion is around 2.5. Without frictions, it would be larger than 200

- Cost of frictions is small: 3 basis points in expected portfolio return

- Different results with aggregate data

- Impulse response from an increase in expected return differential
Figure 1 Impulse Response Portfolio Share to Expected Excess Return Shock

- With estimated portfolio frictions
- Without portfolio frictions, $\gamma=10$ months
Heterogeneity

- We explore various forms of heterogeneity
- More sensitive to excess return for large country shares
- But large funds are less sensitive to excess returns
- Small, more active and emerging market funds give less weight to buy-and-hold portfolio (more rebalancing)
Conclusion

- The evidence on mutual funds is consistent with portfolio frictions.

- Gradual portfolio adjustment has implication for the exchange rate, asset prices, and capital flows.

- We currently investigate the implications in a more macro model (with M. Davenport). Look in particular at the impact of financial shocks on net capital flows.

- Another interesting direction is the delayed impact of monetary policy on exchange rates and portfolio positions.