Unique Monetary Equilibria with Interest Rate Rules*

Bernardino Adão
Banco de Portugal

Isabel Correia
Banco de Portugal, Universidade Catolica Portuguesa and CEPR

Pedro Teles
Banco de Portugal, Universidade Catolica Portuguesa, and CEPR

First version: November, 2004, this version: August, 2007

Abstract

In contrast to previous literature, we show that there are interest rate rules that implement unique equilibria in standard monetary models. This is a contribution to a literature that either concentrates on conditions for local determinacy, or criticizes that approach showing that local determinacy might be associated with global indeterminacy. We also contribute

*A previous version of this paper circulated under the title "Monetary Policy with Single Instrument Feedback Rules". We thank Mike Golosov, Patrick Kehoe, Andy Neumeyer for very useful discussions. We are also thankful to participants at the 2007 Meetings of the SED, 2006 ESSIM of the CEPR, at the JLS series of the ECB, CFS, and Deutsche Bundesbank, at the FRB of Chicago and FRB of New York, Universitat Pompeu Fabra, European University Institute. We gratefully acknowledge financial support of FCT. The opinions are solely those of the authors and do not necessarily represent those of the Banco de Portugal.
Question

• How can monetary policy implement unique equilibria? (Can interest rate policy provide a nominal anchor?)

• Apparent success with inflation targeting.

 – Success is attributed to some form of a Taylor rule.

 – In monetary models, Taylor rules do not pin down unique equilibria

 * Equilibria may be locally unique, but not globally so.
• Massive literature starting with Sargent and Wallace (1975) and McCallum (1981), including recent literature on local and global determinacy in models with nominal rigidities:

 – Conditions for a unique local equilibrium. There is a unique local equilibrium when there is also a continuum of divergent solutions.

 – Conditions for local determinacy may be conditions for global indeterminacy.

• We show that it is possible to implement a unique equilibrium globally with an interest rate feedback rule.

Outline

• Flexible price economy with a finite horizon: nominal interest rates are not a sufficient policy instrument.

• In an economy with an infinite horizon there is one rule that guarantees global uniqueness.

• Robustness.
 – Sticky prices.
A model with flexible prices

- Identical households, competitive firms, and a government.
- Preferences over consumption and leisure.
- The production uses labor only with a linear technology.
- There are shocks to productivity and government expenditures \(s_t = [A_t, G_t] \). The initial realization \(s_0 \) is given. Discrete distribution. The number of states in period \(t \) is \(\Phi_t \).
- Cash-in-advance constraint with the timing structure as in Lucas (1980).
- Finite horizon economy. The economy lasts for \(T + 1 \) periods, from period 0 to period \(T \). After \(T \), there is an assets market subperiod for the clearing of debts.
Households

- Preferences:
 \[U = E_0 \left\{ \sum_{t=0}^{T} \beta^t u(C_t, L_t) \right\} \]

- Budget constraints:
 \[M_t + B_t + E_t Q_{t,t+1} Z_{t+1} \leq W_t, \ 0 \leq t \leq T \]
 \[W_{t+1} = M_t + R_t B_t + Z_t - P_t C_t + W_t N_t - P_t T_t, \ 0 \leq t \leq T \]

- No-Ponzi:
 \[W_{T+1} \geq 0 \]

- Cash-in-advance constraint
 \[P_t C_t \leq M_t, \ 0 \leq t \leq T \]
• FOC:

\[\frac{u_L(t)}{u_C(t)} = \frac{W_t}{R_t P_t}, \quad 0 \leq t \leq T \]

\[\frac{u_C(t)}{P_t} = R_t E_t \left[\frac{\beta u_C(t + 1)}{P_{t+1}} \right], \quad 0 \leq t \leq T - 1 \]

\[Q_{t,t+1} = \beta \frac{u_C(t + 1)}{u_C(t)} \frac{P_t}{P_{t+1}}, \quad 0 \leq t \leq T - 1 \]

\[W_{T+1} = 0 \]
Firms

• The firms are competitive and prices are flexible.

• Production function of the representative firm is linear

\[Y_t = A_t N_t, \ 0 \leq t \leq T \]

• The equilibrium real wage is

\[\frac{W_t}{P_t} = A_t, \ 0 \leq t \leq T \]
Government

- The policy variables are lump sum taxes T_t, state noncontingent interest rates R_t, state contingent nominal returns $Q_{t,t+1}^{-1}$, money supplies M_t, state noncontingent public debt B_t, state contingent debt Z_{t+1}.

- Policy: Maps sequences of quantities, prices and policy variables into sets of sequences of the policy variables.

- Budget constraints:

\[
M_0 + B_0 = \mathbb{W}_0
\]

\[
M_t + B_t = M_{t-1} + R_{t-1}B_{t-1} + P_{t-1}G_{t-1} - P_{t-1}T_{t-1},
1 \leq t \leq T
\]

\[
\mathbb{W}_{T+1} = M_T + R_TB_T + P_TG_T - P_TT_T = 0
\]
Market clearing

\[C_t + G_t = A_t N_t, \ 0 \leq t \leq T \]

\[1 - L_t = N_t, \ 0 \leq t \leq T \]
Equilibrium

Equilibrium conditions for the variables \(\{C_t, L_t, R_t, M_t, P_t\} \) are

\[
C_t + G_t = A_t(1 - L_t), \quad 0 \leq t \leq T
\]
\[
\frac{u_C(t)}{u_L(t)} = \frac{R_t}{A_t}, \quad 0 \leq t \leq T
\]

From these get \(C_t = C(R_t), \ L_t = L(R_t) \)

\[
P_tC_t = M_t, \quad 0 \leq t \leq T
\]

which gives \(P_t = \frac{M_t}{C(R_t)} \)

\[
\frac{u_C(t)}{P_t} = R_tE_t \left[\frac{\beta u_C(t + 1)}{P_{t+1}} \right], \quad 0 \leq t \leq T - 1
\]
The equilibrium conditions for the variables \(\{R_t, M_t, P_t\} \) are:

\[
\frac{u_C(C(R_t), L(R_t))}{P_t} = \beta R_t E_t \left[\frac{u_C(C(R_{t+1}), L(R_{t+1}))}{P_{t+1}} \right],
\]

\[0 \leq t \leq T - 1\]

\[P_t = \frac{M_t}{C(R_t)}, \quad 0 \leq t \leq T\]
Interest Rate Policy.

• Interest rates are set in every date and state.

There is a unique equilibrium if prices (money supply?) are set in every state at date T

$$\frac{u_C(C(R_t), L(R_t))}{P_t} = \beta R_t E_t \left[\frac{u_C(C(R_{t+1}), L(R_{t+1}))}{P_{t+1}} \right],$$

$$0 \leq t \leq T - 1$$

$$P_T = \frac{M_T}{C(R_T)}$$

• Deterministic economy.

• Uncertainty. Need a nominal anchor for every history.
• Arbitrarily large time horizon.

• Does it matter whether policy is conducted with an interest rate or a money supply rule?

• Does it matter which particular feedback rule is used?

• Does it matter whether prices are flexible or sticky?

• Preferences and technology?
Finite vs Infinite Horizon

- Need to set prices (money supply) in every state at date T and after that in $\Phi_t - \Phi_{t-1}$ states for every $t \geq T + 1$.

$$\frac{u_C(C(R_t), L(R_t))}{P_t} = \beta R_t E_t \left[\frac{u_C(C(R_{t+1}), L(R_{t+1}))}{P_{t+1}} \right], \ t \geq 0$$

$$P_t = \frac{M_t}{C(R_t)}, \ t \geq 0$$

- Standard approach: Local determinacy. A unique local equilibrium and multiple global equilibria.
• In the infinite horizon, preferences are relevant:

• The utility function is additively separable and logarithmic in consumption.

\[U = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t \left[\ln (C_t) + v(L_t) \right] \right\} \]
• Equilibrium conditions:

\[
\frac{1}{M_t} = \beta R_t E_t \frac{1}{M_{t+1}}
\]

\[
P_t = \frac{M_t}{C(R_t)}
\]

\[
C_t = C(R_t)
\]

\[
L_t = L(R_t)
\]
In the finite horizon economy:

\[\frac{1}{M_t} = \beta R_t E_t \left[\frac{1}{M_{t+1}} \right], \quad t = 0, \ldots, T - 1 \]

When the money supply is set exogenously in every state the nominal interest rates, \(R_t \), are determined for \(t = 0, \ldots, T - 1 \). It is still necessary to set exogenously the interest rates, \(R_T \), in every terminal state.
Single Instrument Feedback Rules

- Interest rate rules such that there is a unique equilibrium:

\[R_t = \frac{\xi_t}{E_t^{\beta u_C(t+1)}}, \]

\(\xi_t \) is an exogenous variable.
\[R_t = \frac{\xi_t}{E_t \beta u_C(t+1) P_{t+1}} \]

- From

\[\frac{u_C(t)}{P_t} = R_t E_t \left[\frac{\beta u_C(t + 1)}{P_{t+1}} \right] \]

get

\[\frac{u_C(t)}{P_t} = \xi_t, \ t \geq 0 \]

and

\[R_t = \frac{\xi_t}{\beta E_t \xi_{t+1}}, \ t \geq 0 \]
• From

\[\frac{u_C(t)}{u_L(t)} = \frac{R_t}{A_t}, \quad t \geq 0 \]

and

\[C_t + G_t = A_t(1 - L_t), \quad t \geq 0 \]

and the cash in advance conditions, determine uniquely the variables \(C_t, L_t, \) and \(M_t. \)

• From

\[\frac{u_C(t)}{P_t} = \xi_t, \quad t \geq 0 \]

get \(P_t. \)
• The policy rule resembles the rules followed by central banks?

\[R_t = \frac{\xi_t}{E_t^{\beta u_C(t+1)}}, \]

• Depending on the exogenous process \(\xi_t \), can implement each allocation in a set of implementable allocations, including the (Friedman rule) optimal allocation.
• Define a set of implementable equilibria where the sequences of policy variables can be any sequences that satisfy the government budget constraint.

Definition 1 The set of implementable allocations, prices and policy variables \(\{C_t, L_t, P_t, R_t \geq 1, M_t, B_t, T_t\} \) is the set of sequences that satisfies conditions of the problem for the households, the conditions for the firms and the budget constraint of the government.

• The interest rate rule can be used to implement uniquely each implementable equilibrium in Definition 1.
• With
\[\xi_t = \frac{1}{k \beta^t}, \ t \geq 0, \]
where \(k \) is a positive constant, get \(R_t = 1 \).
\[R_t = \frac{\xi_t}{\beta E_t \xi_{t+1}} \]

• Let \(C_t = C^*(A_t, G_t) \), \(L_t = L^*(A_t, G_t) \) be the first best allocation. The price level is given by
\[u_C(C^*(A_t, G_t), L^*(A_t, G_t)) = \frac{1}{k \beta^t}, \ t \geq 0. \]

• The equilibrium money stock is obtained using the cash-in-advance constraint if it holds with equality.

• There are other possible equilibrium processes for the path of the price level associated with the Friedman rule. The rule with \(\xi_t = \frac{\mu_t}{k(\rho \beta)^t} \), where \(\mu_t = \rho \mu_{t-1} + \varepsilon_t \) and \(\varepsilon_t \) is a white noise, also implies \(R_t = 1 \) and achieves the first best allocation with different processes for the price level depending on the choice of \(k, \rho \) and \(\varepsilon_t \).
Money supply rules

Proposition 1 Suppose the cash-in-advance constraint holds exactly. Every equilibrium in Definition 1 can be implemented (uniquely) with the money supply feedback rule,

\[M_t = \frac{C_t u_C(t)}{\xi_t}, \]

where \(\xi_t \) is an exogenous variable.

- Using the cash in advance conditions with equality,
 \[\frac{u_C(t)}{P_t} = \xi_t \]

- Using the intertemporal conditions,
 \[R_t = \frac{\xi_t}{\beta E_t \xi_{t+1}}. \]

This, together with the intratemporal conditions and the resource constraints, determine \(C_t, L_t, P_t, R_t \), all \(t \geq 0 \) and \(s^t \).
Robustness:
Capital

- Intertemporal condition

\[\frac{u_C(t)}{P_t} = R_tE_t \left[\frac{\beta u_C(t + 1)}{P_{t+1}} \right] \]

- Interest rate rule

\[R_t = \frac{\xi_t}{E_t \beta u_C(t+1)} \]

- Get

\[\frac{u_C(t)}{P_t} = \xi_t, \ t \geq 0, \]

and

\[R_t = \frac{\xi_t}{\beta E_t \xi_{t+1}}. \]

- Once the sequence of nominal interest rates \(R_t \) is determined, the allocations in the model with capital are also uniquely determined and then the price level is also determined uniquely.
Sticky prices: Prices set in advance

- Continuum of firms, indexed by $i \in [0, 1]$, each producing a differentiated good also indexed by i. The firms are monopolistic competitive and set prices in advance with different lags.

- C_t is now the composite good

$$C_t = \left[\int_0^1 c_t(i)^{\frac{\theta - 1}{\theta}} di \right]^{\frac{\theta}{\theta - 1}}, \theta > 1,$$

$c_t(i)$ is consumption of good i.

- The demand function for each good i is

$$c_t(i) = \left(\frac{p_t(i)}{P_t} \right)^{-\theta} C_t,$$

$p_t(i)$ is the price of good i and P_t is the price level,

$$P_t = \left[\int p_t(i)^{1-\theta} di \right]^{\frac{1}{1-\theta}}.$$
• The households’ intertemporal and intratemporal conditions are as before.

• The government must finance an exogenous path of government purchases \(\{G_t\}_{t=0}^{\infty} \), such that

\[
G_t = \left[\int_0^1 g_t(i)^{\theta-1} di \right]^{\frac{\theta}{\theta-1}}, \theta > 0.
\]

and minimizes expenditures on \(G_t \), so that

\[
\frac{g_t(i)}{G_t} = \left(\frac{p_t(i)}{P_t} \right)^{-\theta}.
\]

• Market clearing

\[
c_t(i) + g_t(i) = A_t n_t(i),
\]

\[
\int_0^1 n_t(i) di = N_t.
\]
• Can write the resource constraints as

\[
(C_t + G_t) \int_0^1 \left(\frac{p_t(i)}{P_t} \right)^{-\theta} di = A_t N_t.
\]

• A fraction \(\alpha_j\) firms set prices \(j\) periods in advance with \(j = 0, \ldots, J - 1\). Firms decide the price for period \(t\) with the information up to period \(t - j\) to maximize profits:

\[
E_{t-j} \left[Q_{t-j,t+1} (p_t(i)y_t(i) - W_t n_t(i)) \right],
\]

subject to

\[y_t(i) \leq A_t n_t(i)\]

and

\[y_t(i) = \left(\frac{p_t(i)}{P_t} \right)^{-\theta} Y_t,\]

where \(y_t(i) = c_t(i) + g_t(i)\) and \(Y_t = C_t + G_t\).
• The optimal price for a firm setting the price for period t, j periods in advance, is

$$p_t(i) \equiv p_{t,j} = \frac{\theta}{(\theta - 1)} E_{t-j} \left[\eta_{t,j} \frac{W_t}{A_t} \right],$$

where

$$\eta_{t,j} = \frac{Q_{t-j,t+1} P_t^\theta Y_t}{E_{t-j} \left[Q_{t-j,t+1} P_t^\theta Y_t \right]}.$$

• Substituting the state contingent prices $Q_{t-j,t+1}$ in the price setting conditions, and using the intertemporal condition as well as the households’ intratemporal condition, we obtain

$$E_{t-j} \left[\frac{u_C(t)}{R_t} P_t^{\theta-1} A_t (1 - L_t) - \frac{\theta}{(\theta - 1)} u_L(t) P_t^{\theta-1} (1 - L_t) \frac{P_t}{p_{t,j}} \right] = 0, \ j = 0, \ldots, J-1.$$
Proposition 2 When prices are set in advance, if policy is conducted with the interest rate feedback rule

\[R_t = \frac{\xi_t}{E_t^{\beta u_C(t+1)}}, \]

where \(\xi_t \) is an exogenous variable, there is a unique equilibrium.
\[
\frac{u_C(t)}{P_t} = \xi_t, \ t \geq 0
\]

\[
R_t = \frac{\xi_t}{\beta E_t \xi_{t+1}}, \ t \geq 0
\]

These conditions together with the resource constraints

\[
(C_t + G_t) \sum_{j=0}^{J-1} \alpha_j \left(\frac{p_{t,j}}{P_t} \right)^{-\theta} = A_t N_t,
\]

the intratemporal conditions

\[
E_{t-j} \left[\frac{u_C(t)}{R_t} P_t^{\theta-1} A_t (1 - L_t) - \frac{\theta}{(\theta - 1)} u_L(t) P_t^{\theta-1} (1 - L_t) \frac{P_t}{p_{t,j}} \right] = 0, \ j = 0, \ldots, J-1,
\]

the conditions for the price level

\[
P_t = \left[\sum_{j=0}^{J-1} \alpha_j (p_{t,j})^{1-\theta} \right]^{\frac{1}{1-\theta}}.
\]
and the cash in advance constraints with equality, determine uniquely the variables $C_t, L_t, P_t, p_{t,j}, j = 0, \ldots J - 1$, and M_t. $p_{0,j}, j = 1, \ldots J - 1$ are exogenous.
Calvo (1983) staggered prices

- Standard newkeynesian model.
- Exogenous velocity made arbitrarily large, so that it is a cashless economy.
- Log-linearized model.
• Cashless economies
\[\frac{P_t C_t}{v_t} \leq M_t, \]
where \(v_t \to \infty \).

• In the limit case, the households conditions are
\[\frac{u_C(t)}{u_L(t)} = \frac{P_t}{W_t}, \quad t \geq 0, \]
and
\[\frac{u_C(t)}{P_t} = E_t \left[R_{t+1} \frac{\beta u_C(t + 1)}{P_{t+1}} \right]. \]
• Calvo pricing

• In each period, a fraction $1 - \alpha$ of firms can choose optimally their prices, p_t^*.

• Optimal price

$$p_t^* = \frac{\theta}{\theta - 1} \frac{E_{t,j=0}^{\infty} (\alpha/\beta)^j u_c(t+j+1)P_t}{P_{t+j+1}} s_{t+j} \left(\frac{P_{t+j}}{P_t} \right)^{1+\theta} Y_{t+j}$$

$$s_{t+j} = \frac{W_{t+j}}{A_{t+j}P_{t+j}}$$

is the real marginal cost.

• The expression for the price level is

$$P_t^{1-\theta} = (1 - \alpha) p_t^{1-\theta} + \alpha (P_{t-1})^{1-\theta}$$
• Loglinearize around a steady-state with zero inflation. Let \(\pi_t = \frac{P_t}{P_{t-1}} \).

• Price setting condition (Phillips curve):

\[
\hat{\pi}_t = \frac{(1 - \alpha)(1 - \alpha \beta)}{\alpha} \hat{s}_t + \beta E_t \hat{\pi}_{t+1}
\]

where

\[
\hat{s}_t = \hat{\omega}_t - \hat{A}_t
\]
• The loglinearization of the intratemporal and intertemporal conditions gives

\[\phi_c \hat{C}_t + \phi_L \hat{L}_t = \hat{\omega}_t \]

where \(\phi_x = \frac{\partial u_L(t) u_C(t)}{\partial x} x, x = C, L, \) and

\[E_t \hat{R}_{t+1} - E_t (\hat{\pi}_{t+1}) = \hat{r}_t \]

where

\[\hat{r}_t \equiv - \left(\frac{u_{cc} C'}{u_c} \right) E_t (\hat{C}_{t+1} - \hat{C}_t) - \left(\frac{u_{cl} L}{u_c} \right) E_t (\hat{L}_{t+1} - \hat{L}_t) . \]

• The loglinearization of the resource constraints

\[(C_t + G_t) \int_0^1 \left(\frac{p_t(i)}{P_t} \right)^{-\theta} di = A_t N_t \]

is

\[\frac{C}{Y} \hat{C}_t + \frac{G}{Y} \hat{G}_t = \hat{A}_t + \hat{N}_t , \]
with

\[\hat{L}_t = -\kappa \hat{N}_t \]

where \(\kappa = \frac{N}{L} \).

- Using the households intratemporal conditions and the feasibility conditions, can write the allocations, \(\hat{C}_t, \hat{N}_t, \hat{L}_t \) as functions of the real wage \(\hat{\omega}_t \) and the shocks.

- The expression for the Phillips curve is

\[\hat{\pi}_t = \lambda \left(\hat{\omega}_t - \hat{A}_t \right) + \beta E_t \hat{\pi}_{t+1} \]
• Consider the following interest rate rule

\[\hat{R}_{t+1} = \hat{r}_t + \hat{P}_{t+1} - \xi_t \]

where \(\xi_t \) is an exogenous process.

• Together with

\[E_t \hat{R}_{t+1} - E_t (\hat{\pi}_{t+1}) = \hat{r}_t, \]

get

\[\hat{P}_t = \xi_t, \]

so that the price level is uniquely pinned down.

• Since \(\hat{\pi}_{t+1} = \hat{P}_{t+1} - \hat{P}_t = \xi_{t+1} - \xi_t \), from the Phillips curve, determine \(\hat{\omega}_t \) uniquely.

• From the intratemporal and resource constraints, get \(\hat{L}_t, \hat{N}_t \) and \(\hat{C}_t \).

• This pins down \(\hat{r}_t \) and therefore \(\hat{R}_{t+1} \).
In order to implement the equilibrium with zero inflation, need $\xi_t = 0$. Then $\hat{P}_t = 0$, so that inflation is the steady state zero inflation. From

$$\hat{\pi}_t = \lambda \left(\hat{\omega}_t - \hat{A}_t \right) + \beta E_t \hat{\pi}_{t+1},$$

have $\hat{\omega}_t = \hat{A}_t$, as under flexible prices.
• The rule is the same independently of the price setting restrictions.
• \(\hat{P}_t = \xi_t \). Under flexible prices we have, instead of the Phillips curve,
\[
\hat{\omega}_t = \hat{A}_t
\]
The allocations, \(\hat{L}_t, \hat{N}_t \) and \(\hat{C}_t \), are determined uniquely. With this can determine uniquely \(\hat{r}_t \) and therefore \(\hat{R}_{t+1} \).
• Share of firms $0 < \alpha < 1$ set prices one period in advance while the remaining $1 - \alpha$ firms set flexible prices

$$\hat{P}_t = \alpha \hat{P}_t^S + (1 - \alpha) \hat{P}_t^f, \quad t \geq 0$$

$$\hat{P}_t^S = E_{t-1} \left[\hat{P}_t \right], \quad t \geq 1,$$

$$\hat{P}_t^f = \hat{W}_t - \hat{A}_t.$$

• Then

$$\alpha \left[\hat{P}_t - E_{t-1} \hat{P}_t \right] = (1 - \alpha) \left[\hat{\omega}_t - \hat{A}_t \right], \quad t \geq 1$$

$$\alpha \left[\hat{P}_0 - \hat{P}_0^S \right] = (1 - \alpha) \left[\hat{\omega}_0 - \hat{A}_0 \right]$$

where \hat{P}_0^S is exogenous. Once \hat{P}_t is determined uniquely, so is $\hat{\omega}_t$. The nominal interest rates and the allocations are determined uniquely as above.
A simple endowment economy

- Euler equation for the representative household:

\[
\frac{u_c(Y_t)}{P_t} = R_t E_t E_t u_c(Y_{t+1}) \frac{\beta u_c(Y_{t+1})}{P_{t+1}}
\]

\{Y_t\} is the endowment process.

- In log deviations from a deterministic steady state with constant inflation \(\pi^*\):

\[
\hat{R}_t = \hat{r}_t + E_t \hat{P}_{t+1} - \hat{P}_t,
\]

where \(r_t = \frac{u_c(Y_t)}{\beta E_t u_c(Y_{t+1})}\), or

\[
\hat{R}_t = \hat{r}_t + E_t \hat{\pi}_{t+1}.
\]
Monetary policy in the endowment economy

- Interest rate target.
 - Unique path for the conditional expectation of inflation $E_t \hat{\pi}_{t+1}$,
 - but not for the initial price level, nor the distribution of realized inflation across states.

- Current feedback rule:
 $$\hat{R}_t = \hat{r}_t + \tau \hat{\pi}_t$$

- Equilibria:
 $$\tau \hat{\pi}_t - E_t (\hat{\pi}_{t+1}) = 0$$

 - Equilibrium with $\hat{\pi}_t = 0$ and $\hat{R}_t = \hat{r}_t$.
 - The equilibrium with $\hat{\pi}_t = 0$ is locally unique if $\tau > 1$ (Taylor principle).
 - Continuum of divergent solutions.
 - In the nonlinear model divergent solutions can converge to another steady state.
• Forward looking rules do not guarantee local determinacy:
\[\hat{R}_t = \hat{r}_t + \tau E_t \hat{\pi}_{t+1} \]
and
\[\hat{R}_t = \hat{r}_t + E_t \hat{\pi}_{t+1} \]
implies
\[(\tau - 1) E_t (\hat{\pi}_{t+1}) = 0 \]
• For \(\tau \neq 1 \), only expected inflation is pinned down, not the distribution of prices across states.
• With a backward rule
\[\hat{R}_t = \hat{r}_t + \tau \hat{\pi}_{t-1}, \]
the dynamic equation is
\[\tau \hat{\pi}_{t-1} - E_t (\hat{\pi}_{t+1}) = 0. \]
 - If \(\hat{\pi}_{-1} = 0 \), there is a solution with \(\hat{\pi}_t = 0 \) all \(t \).
 - There are again multiple solutions and a locally determinate solution, \(\hat{\pi}_t = 0 \), with \(\tau > 1 \), provided \(\hat{\pi}_{-1} = 0 \).
• Wicksellian interest rate rules (Woodford, 2003) have the interest rate respond to the price level rather than inflation.

• Policy rule

\[\hat{R}_t = \hat{r}_t + \phi \hat{P}_t, \]

where \(\phi > 0 \).

• Euler equation

\[\hat{R}_t = \hat{r}_t + E_t \hat{P}_{t+1} - \hat{P}_t, \]

• Equilibria:

\[(1 + \phi) \hat{P}_t - E_t \hat{P}_{t+1} = 0 \]

– Equilibrium with \(\hat{P}_t = 0 \) and \(\hat{R}_t = \hat{r}_t \).

– The equilibrium with \(\hat{P}_t = 0 \) is locally unique if \(\phi > 0 \).

– Continuum of divergent solutions.
Rules that implement unique equilibria

- Price level targeting rule:

\[
\hat{R}_t = \hat{r}_t + E_t \hat{P}_{t+1} + \hat{\xi}_t
\]

where \(\hat{\xi}_t \) is an exogenous random variable.

- Euler equation

\[
\hat{R}_t = \hat{r}_t + E_t \hat{P}_{t+1} - \hat{P}_t,
\]

- Equilibria

\[
\hat{P}_t = \hat{\xi}_t.
\]

Concluding remarks.

- Interest rate rules can implement unique local equilibria with stable prices. These are normally associated with multiple global equilibria.

- One way out is the rule proposed in this paper. Problems of robustness as in all this literature.