Asymmetric Shocks in a Currency Union with Monetary and Fiscal Handcuffs

Christopher J. Erceg and Jesper Lindé

Federal Reserve Board

June 21, 2010
To mitigate the effects of the financial crisis in the fall of 2008, many countries implemented large fiscal stimulus packages.
To mitigate the effects of the financial crisis in the fall of 2008, many countries implemented large fiscal stimulus packages. A number of influential papers were supportive of these policy actions (e.g. Eggertson (2008) and Christiano, Eichenbaum and Rebelo (2009)) because monetary policy was unlikely to raise interest rates. The rise in sovereign spreads in a number of European countries since late 2009, especially in those countries with high government debt and/or deficit levels, has spurred plans for substantial and accelerated fiscal consolidation perceived as prerequisite for restoring confidence of bond markets, and for drawing on European financial assistance package announced in May.
Motivation

To mitigate the effects of the financial crisis in the fall of 2008, many countries implemented large fiscal stimulus packages.

A number of influential papers were supportive of these policy actions (e.g. Eggertson (2008) and Christiano, Eichenbaum and Rebelo (2009)) because monetary policy was unlikely to raise interest rates.

The rise in sovereign spreads in a number of European countries since late 2009, especially in those countries with high government debt and/or deficit levels, has spurred plans for substantial and accelerated fiscal consolidation.
Motivation

- To mitigate the effects of the financial crisis in the fall of 2008, many countries implemented large fiscal stimulus packages
 - A number of influential papers were supportive of these policy actions (e.g. Eggertson (2008) and Christiano, Eichenbaum and Rebelo (2009) because monetary policy was unlikely to raise interest rates

- The rise in sovereign spreads in a number of European countries since late 2009, especially in those countries with high government debt and/or deficit levels, has spurred plans for substantial and accelerated fiscal consolidation
 - Perceived as prerequisite for restoring confidence of bond markets, and for drawing on European financial assistance package announced in May
Use an open economy DSGE model similar to the one developed by Erceg, Guerrieri and Gust (2005) to analyze how asymmetric shocks concentrated in a subset of member states in a currency union affect the union at an aggregate level and differentially across members.
Motivation

What we do

- Use an open economy DSGE model similar to the one developed by Erceg, Guerrieri and Gust (2005) to analyze how asymmetric shocks concentrated in a subset of member states in a currency union affect the union at an aggregate level and differentially across members.

- This question has a long tradition in the optimal currency area literature.
Motivation

What we do

- Use an open economy DSGE model similar to the one developed by Erceg, Guerrieri and Gust (2005) to analyze how asymmetric shocks concentrated in a subset of member states in a currency union affect the union at an aggregate level and differentially across members.
- This question has a long tradition in the optimal currency area literature.
- Conventional wisdom: The effects of a given sized asymmetric shock (e.g. fiscal contraction) in a single small economy is considerably more severe than if a sizeable group of its neighbors are exposed to the same shock.
Motivation

What we do

- Use an open economy DSGE model similar to the one developed by Erceg, Guerrieri and Gust (2005) to analyze how asymmetric shocks concentrated in a subset of member states in a currency union affect the union at an aggregate level and differentially across members.

- This question has a long tradition in the optimal currency area literature.

- Conventional wisdom: The effects of a given sized asymmetric shock (e.g. fiscal contraction) in a single small economy is considerably more severe than if a sizeable group of its neighbors are exposed to the same shock.
 - Reflecting the fact that monetary policy essentially leaves interest rates unchanged for a small periphery country in a currency union, while reducing interest rates considerably in the case of a concerted shock hitting several countries.
Motivation

What we do

- Use an open economy DSGE model similar to the one developed by Erceg, Guerrieri and Gust (2005) to analyze how asymmetric shocks concentrated in a subset of member states in a currency union affect the union at an aggregate level and differentially across members.
- This question has a long tradition in the optimal currency area literature.
- Conventional wisdom: The effects of a given sized asymmetric shock (e.g. fiscal contraction) in a single small economy is considerably more severe than if a sizeable group of its neighbors are exposed to the same shock.
 - Reflecting the fact that monetary policy essentially leaves interest rates unchanged for a small periphery country in a currency union, while reducing interest rates considerably in the case of a concerted shock hitting several countries.
 - According to this logic, Greece and Portugal would be better off if e.g. Germany and France cut spending at the same time.
Our contribution is to study this issue in a liquidity trap.
Our contribution is to study this issue in a liquidity trap

We define a liquidity trap as a situation where nominal interest rates cannot be lowered for a protracted period due to the zero lower bound constraint.
Motivation

What we do

- Our contribution is to study this issue in a liquidity trap
- We define a liquidity trap as a situation where nominal interest rates cannot be lowered for a protracted period due to the zero lower bound constraint
- In this environment, the impact of shocks in the periphery (and core) depends on agents’ perceptions of long the liquidity trap would last in the absence of additional shocks, and the severity of the associated recession
Motivation
What we find

- Interestingly, we find that the logic of the conventional wisdom is reversed in a liquidity trap
Motivation
What we find

- Interestingly, we find that the logic of the conventional wisdom is reversed in a liquidity trap.
- In this environment the effects a negative asymmetric shock (e.g. fiscal contraction) on periphery output is larger the larger the size of the periphery.
Motivation
What we find

- Interestingly, we find that the logic of the conventional wisdom is reversed in a liquidity trap.
- In this environment the effects a negative asymmetric shock (e.g. fiscal contraction) on periphery output is larger the larger the size of the periphery.
 - This result obtains because monetary policy is constrained by the ZLB.
Motivation
What we find

- Interestingly, we find that the logic of the conventional wisdom is reversed in a liquidity trap.
- In this environment the effects a negative asymmetric shock (e.g. fiscal contraction) on periphery output is larger the larger the size of the periphery.
 - This result obtains because monetary policy is constrained by the ZLB.
- Moreover, if shock hits both periphery and core, then effects strongly enhanced on both periphery and core.
Interestingly, we find that the logic of the conventional wisdom is reversed in a liquidity trap.

In this environment the effects a negative asymmetric shock (e.g. fiscal contraction) on periphery output is larger the larger the size of the periphery.

This result obtains because monetary policy is constrained by the ZLB.

Moreover, if shock hits both periphery and core, then effects strongly enhanced on both periphery and core.

For instance, in the case of a coordinated aggressive fiscal spending cut of 1% to baseline GDP, output contraction so large (-2.8%) that government debt to output ratio increases for a 4(3) year period in periphery(core).
Our algorithm for computing the equilibrium makes the duration of the liquidity trap endogenous.
Motivation

What we find

- Our algorithm for computing the equilibrium makes the duration of the liquidity trap endogenous.

- In this framework, the marginal impact on currency union GDP of asymmetric shocks in the periphery grows with the size of the asymmetric shock.
Our algorithm for computing the equilibrium makes the duration of the liquidity trap endogenous.

In this framework, the marginal impact on currency union GDP of asymmetric shocks in the periphery grows with the size of the asymmetric shock.

For example, a spending cut of 1% in a large periphery has an impact multiplier slightly above unity (for large periphery), but a spending cut of 3% in large periphery is associated with a multiplier of 1.5 (again, for large periphery), reflecting that the larger cut extends the duration of the liquidity trap by two quarters.
Discussion outline

- Model
- Parameterization of model
- Effects of fiscal shocks
- (Effects of financial shocks)
- Sensitivity analysis
- Concluding remarks
DSGE model with two countries, each produces a single final good by aggregating a continuum of domestically-produced intermediate goods.
Model

Key structure of model

- DSGE model with two countries, each produces a single final good by aggregating a continuum of domestically-produced intermediate goods
- Nominal and real rigidities CEE (2005), SW (2003, 2007):
DSGE model with two countries, each produces a single final good by aggregating a continuum of domestically-produced intermediate goods.

Nominal and real rigidities CEE (2005), SW (2003, 2007):

- Staggered price and wage contracts

Habit persistence in consumption

Investment adjustment costs

"Hand-to-mouth" households following Erceg, Guerrieri and Gust (2005)

Imports are utilized in combination with final domestic output good to produce consumption and investment goods (CES baskets), costly to adjust import shares

Imperfect financial integration and producer currency pricing

Financial accelerator mechanism following BGG (1999) and CMR (2007)
Model

Key structure of model

- DSGE model with two countries, each produces a single final good by aggregating a continuum of domestically-produced intermediate goods.
- Nominal and real rigidities CEE (2005), SW (2003, 2007):
 - Staggered price and wage contracts
 - Habit persistence in consumption

Imports are utilized in combination with final domestic output good to produce consumption and investment goods (CES baskets), costly to adjust import shares.

Imperfect financial integration and producer currency pricing.

Financial accelerator mechanism following BGG (1999) and CMR (2007).

Erceg and Lindé (Federal Reserve Board)
DSGE model with two countries, each produces a single final good by aggregating a continuum of domestically-produced intermediate goods.

Nominal and real rigidities CEE (2005), SW (2003, 2007):
- Staggered price and wage contracts
- Habit persistence in consumption
- Investment adjustment costs
Model

Key structure of model

- DSGE model with two countries, each produces a single final good by aggregating a continuum of domestically-produced intermediate goods
- Nominal and real rigidities CEE (2005), SW (2003, 2007):
 - Staggered price and wage contracts
 - Habit persistence in consumption
 - Investment adjustment costs
- “Hand-to-mouth” households following Erceg, Guerrieri and Gust (2005)
DSGE model with two countries, each produces a single final good by aggregating a continuum of domestically-produced intermediate goods.

Nominal and real rigidities CEE (2005), SW (2003, 2007):
- Staggered price and wage contracts
- Habit persistence in consumption
- Investment adjustment costs

“Hand-to-mouth” households following Erceg, Guerrieri and Gust (2005)

Imports are utilized in combination with final domestic output good to produce consumption and investment goods (CES baskets), costly to adjust import shares.
DSGE model with two countries, each produces a single final good by aggregating a continuum of domestically-produced intermediate goods.

Nominal and real rigidities CEE (2005), SW (2003, 2007):
- Staggered price and wage contracts
- Habit persistence in consumption
- Investment adjustment costs

“Hand-to-mouth” households following Erceg, Guerrieri and Gust (2005)

Imports are utilized in combination with final domestic output good to produce consumption and investment goods (CES baskets), costly to adjust import shares.

Imperfect financial integration and producer currency pricing.
Model
Key structure of model

- DSGE model with two countries, each produces a single final good by aggregating a continuum of domestically-produced intermediate goods
- Nominal and real rigidities CEE (2005), SW (2003, 2007):
 - Staggered price and wage contracts
 - Habit persistence in consumption
 - Investment adjustment costs
- “Hand-to-mouth” households following Erceg, Guerrieri and Gust (2005)
- Imports are utilized in combination with final domestic output good to produce consumption and investment goods (CES baskets), costly to adjust import shares
- Imperfect financial integration and producer currency pricing
- Financial accelerator mechanism following BGG (1999) and CMR (2007)
Maximize an intertemporal utility functional; the period utility function depends on a composite consumption good (external habit), leisure and real balances (separability)
Model
Optimizing households

- Maximize an intertemporal utility functional; the period utility function depends on a composite consumption good (external habit), leisure and real balances (separability)

- Accumulate capital by purchasing a composite investment good subject to investment adjustment costs
Model

Optimizing households

- Maximize an intertemporal utility functional; the period utility function depends on a composite consumption good (external habit), leisure and real balances (separability)
- Accumulate capital by purchasing a composite investment good subject to investment adjustment costs
- Monopolistically competitive sellers of differentiated labor services, Calvo-style wage stickiness, dynamic indexation for non-wage optimizers

Note: The consumption and investment goods are composite of the domestically-produced good and the imported good (in different combinations)
Model
Optimizing households

- Maximize an intertemporal utility functional; the period utility function depends on a composite consumption good (external habit), leisure and real balances (separability)
- Accumulate capital by purchasing a composite investment good subject to investment adjustment costs
- Monopolistically competitive sellers of differentiated labor services, Calvo-style wage stickiness, dynamic indexation for non-wage optimizers
- Face distortionary taxes on labor income
Model

Optimizing households

- Maximize an intertemporal utility functional; the period utility function depends on a composite consumption good (external habit), leisure and real balances (separability)
- Accumulate capital by purchasing a composite investment good subject to investment adjustment costs
- Monopolistically competitive sellers of differentiated labor services, Calvo-style wage stickiness, dynamic indexation for non-wage optimizers
- Face distortionary taxes on labor income
- Note: The consumption and investment goods are composite of the domestically-produced good and the imported good (in different combinations)
We assume that a fraction ς of households are purely “Keynesian” and do not save so that:

$$P_{C,t}C_t^{HM}(h) = (1 - \tau_{N,t})W_t(h)N_t(h) + TR_t(h) - T_t$$
Model

Hand-to-mouts households

- We assume that a fraction ζ of households are purely “Keynesian” and do not save so that:

$$P_{C,t} C_t^{HM}(h) = (1 - \tau_{N,t}) W_t(h) N_t(h) + TR_t(h) - T_t$$

- The Hand-to-mouth (HM) households set their wage at the average wage of the optimizing households, and since they face same labor demand curve, they work the same amount as optimizing households in equilibrium.
There are three types of producers in each country: intermediate-goods producers, producers of the aggregate domestic good, and distributors.
There are three types of producers in each country: intermediate-goods producers, producers of the aggregate domestic good, and distributors.

Producers of the intermediate-goods are monopolistically competitive and set prices in Calvo-style contracts, dynamic indexation for non-optimized producers. Rent capital and labor from households (CES).
There are three types of producers in each country: intermediate-goods producers, producers of the aggregate domestic good, and distributors.

Producers of the intermediate-goods are monopolistically competitive and set prices in Calvo-style contracts, dynamic indexation for non-optimized producers. Rent capital and labor from households (CES).

Producers of the aggregate domestic good bundle the continuum of intermediate goods, and take prices as given in input and product markets.
There are three types of producers in each country: intermediate-goods producers, producers of the aggregate domestic good, and distributors.

Producers of the intermediate-goods are monopolistically competitive and set prices in Calvo-style contracts, dynamic indexation for non-optimized producers. Rent capital and labor from households (CES).

Producers of the aggregate domestic good bundle the continuum of intermediate goods, and take prices as given in input and product markets.

Distributors purchase both the domestically-produced good and imported goods, and resell the final consumption and investment goods to households (CES). Face quadratic costs of changing the composition of imported to domestic goods.
Government purchase part of the final consumption good produced by the Distributors.
Government purchase part of the final consumption good produced by the Distributors

Government spending does not affect OH utility or production but requires real resources
Government purchase part of the final consumption good produced by the Distributors

Government spending does not affect OH utility or production but requires real resources

Finances its expenditures with distortionary labor income taxes, lump-sum taxes, seigniorage and debt issue
Government

- Government purchase part of the final consumption good produced by the Distributors
- Government spending does not affect OH utility or production but requires real resources
- Finances its expenditures with distortionary labor income taxes, lump-sum taxes, seigniorage and debt issue
 - Labor income tax rule stabilizes the evolution of government debt
Government

- Government purchase part of the final consumption good produced by the Distributors
- Government spending does not affect OH utility or production but requires real resources
- Finances its expenditures with distortionary labor income taxes, lump-sum taxes, seigniorage and debt issue
 - Labor income tax rule stabilizes the evolution of government debt
- Monetary policy follows rule

\[i_t = \max \left\{ -i, (1 - \gamma_i) \left(\gamma_{\pi} \tilde{\pi}_t + \gamma_x \tilde{x}_t \right) + \gamma_i i_{t-1} \right\} \]

where \(\tilde{\pi}_t \) and \(\tilde{x}_t \) are member size weighted inflation and output gaps
Government purchase part of the final consumption good produced by the Distributors

Government spending does not affect OH utility or production but requires real resources

Finances its expenditures with distortionary labor income taxes, lump-sum taxes, seigniorage and debt issue

Labor income tax rule stabilizes the evolution of government debt

Monetary policy follows rule

\[i_t = \max \{ -i, (1 - \gamma_i) (\gamma_\pi \tilde{\pi}_t + \gamma_x \tilde{x}_t) + \gamma_i i_{t-1} \} \]

where \(\tilde{\pi}_t \) and \(\tilde{x}_t \) are member size weighted inflation and output gaps

Hebden, Lindé and Svensson (2009): Perfect foresight solution
Parameterization of model

- Small and Large periphery, $\zeta = 0.02$ and $\zeta = 1/2$ (implies large periphery 1/3 or curr union)
Parameterization of model

- Small and Large periphery, \(\zeta = 0.02 \) and \(\zeta = 1/2 \) (implies large periphery 1/3 or curr union)

- Import shares determined by intra-Euro trade data for 2006-08 for Greece and PIGIS. Periphery import share of output 14%, while core import share 0.3% and 7% for small and large periphery, respectively. Import intensity of consumption 3/4 that of investment
Parameterization of model

- Small and Large periphery, $\zeta = 0.02$ and $\zeta = 1/2$ (implies large periphery 1/3 or curr union)

- Import shares determined by intra-Euro trade data for 2006-08 for Greece and PIGIS. Periphery import share of output 14%, while core import share 0.3% and 7% for small and large periphery, respectively. Import intensity of consumption 3/4 that of investment

- Many other deep parameters taken from literature on estimated DSGE models ("Sophisticated Calibration"), which the following exceptions
Parameterization of model

- Small and Large periphery, $\zeta = 0.02$ and $\zeta = 1/2$ (implies large periphery 1/3 or curr union)
- Import shares determined by intra-Euro trade data for 2006-08 for Greece and PIGIS. Periphery import share of output 14%, while core import share 0.3% and 7% for small and large periphery, respectively. Import intensity of consumption 3/4 that of investment
- Many other deep parameters taken from literature on estimated DSGE models ("Sophisticated Calibration"), which the following exceptions
 - 50% of households are Keynesian (conduct sensitivity analysis w.r.t. this parameter)
Parameterization of model

- Small and Large periphery, $\zeta = 0.02$ and $\zeta = 1/2$ (implies large periphery 1/3 or curr union)

- Import shares determined by intra-Euro trade data for 2006-08 for Greece and PIGIS. Periphery import share of output 14%, while core import share 0.3% and 7% for small and large periphery, respectively. Import intensity of consumption 3/4 that of investment

- Many other deep parameters taken from literature on estimated DSGE models (“Sophisticated Calibration”), which the following exceptions
 - 50% of households are Keynesian (conduct sensitivity analysis w.r.t. this parameter)
 - Slope of pricing and wage schedules on the low side (0.007, compare well with often-cited papers in empirical literature 0.009-0.014)
Parameterization of model

- Small and Large periphery, $\zeta = 0.02$ and $\zeta = 1/2$ (implies large periphery $1/3$ or curr union)

- Import shares determined by intra-Euro trade data for 2006-08 for Greece and PIGIS. Periphery import share of output 14%, while core import share 0.3% and 7% for small and large periphery, respectively. Import intensity of consumption $3/4$ that of investment

- Many other deep parameters taken from literature on estimated DSGE models (“Sophisticated Calibration”), which the following exceptions
 - 50% of households are Keynesian (conduct sensitivity analysis w.r.t. this parameter)
 - Slope of pricing and wage schedules on the low side (0.007, compare well with often-cited papers in empirical literature 0.009-0.014)
 - Policy rule more aggressive to inflation that standard Taylor rule ($\gamma_\pi = 2.5$)
It is important for our analysis that the model embodies a plausible monetary transmission mechanism, and has spending multipliers that squares reasonably well with conventional wisdom.
Parameterization of model
Important aspect of calibration

- It is important for our analysis that the model embodies a plausible monetary transmission mechanism, and has spending multipliers that squares reasonably well with conventional wisdom.

- These considerations are met for our calibration of the model when it comes to the effects of monetary shocks.
It is important for our analysis that the model embodies a plausible monetary transmission mechanism, and has spending multipliers that squares reasonably well with conventional wisdom.

These considerations are met for our calibration of the model when it comes to the effects of monetary shocks.

VAR evidence less favorable to model for spending shocks; output response plausible (spending multiplier about 0.9-1 on impact) in normal times, but real exchange rate depreciates instead of appreciating for fiscal spending cuts (see e.g. Monacelli and Perotti, 2010). Well known problem with open economy macro models.
Parameterization of model
Important aspect of calibration

- It is important for our analysis that the model embodies a plausible monetary transmission mechanism, and has spending multipliers that squares reasonably well with conventional wisdom.
- These considerations are met for our calibration of the model when it comes to the effects of monetary shocks.
- VAR evidence less favorable to model for spending shocks; output response plausible (spending multiplier about 0.9-1 on impact) in normal times, but real exchange rate depreciates instead of appreciating for fiscal spending cuts (see e.g. Monacelli and Perotti, 2010). Well known problem with open economy macro models.
 - However, identification of fiscal shocks in VAR models arguably more difficult (issues pertaining to fiscal foresight, see e.g. Leeper, Walker and Yang, 2009).
In models where the zero lower bound bind, the baseline scenario for the nominal interest rate is important.
In models where the zero lower bound bind, the baseline scenario for the nominal interest rate is important.

In our baseline scenario, we assume that both the periphery and the core is hit by a common negative consumption demand shock in period 0 which induces a symmetric persistent decline in output with a low of -6% relative to trend.
In models where the zero lower bound bind, the baseline scenario for the nominal interest rate is important.

In our baseline scenario, we assume that both the periphery and the core is hit by a common negative consumption demand shock in period 0 which induces a symmetric persistent decline in output with a low of -6% relative to trend.

- Inflation declines from 2% (steady state) to about -1%
In models where the zero lower bound bind, the baseline scenario for the nominal interest rate is important.

In our baseline scenario, we assume that both the periphery and the core is hit by a common negative consumption demand shock in period 0 which induces a symmetric persistent decline in output with a low of -6% relative to trend.

Inflation declines from 2% (steady state) to about -1%.

Against this background, the currency union enters into a liquidity trap in period 2 that is expected to last 8 quarters.
In models where the zero lower bound bind, the baseline scenario for the nominal interest rate is important.

In our baseline scenario, we assume that both the periphery and the core is hit by a common negative consumption demand shock in period 0 which induces a symmetric persistent decline in output with a low of -6% relative to trend.

Inflation declines from 2% (steady state) to about -1%.

Against this background, the currency union enters into a liquidity trap in period 2 that is expected to last 8 quarters.

- Note: With symmetric calibration and symmetric shock, baseline identical for small and large periphery calibration.
Baseline Scenario in model
Solution when interest rates are unconstrained and subject to ZLB
In Figure 2, we plot the effects of a close to permanent (AR(1) root 0.99) cut in fiscal spending in the SMALL periphery the first period the ZLB bind (i.e. period 2).
In Figure 2, we plot the effects of a close to permanent (AR(1) root 0.99) cut in fiscal spending in the SMALL periphery the first period the ZLB bind (i.e. period 2)

- For comparison purposes, we also compare results to the flexible exchange rate case and currency union case when the ZLB does not bind
In Figure 2, we plot the effects of a close to permanent (AR(1) root 0.99) cut in fiscal spending in the SMALL periphery the first period the ZLB bind (i.e. period 2)

For comparison purposes, we also compare results to the flexible exchange rate case and currency union case when the ZLB does not bind

Since periphery here assumed to be small, whether currency union is at the ZLB or not does not matter
In Figure 2, we plot the effects of a close to permanent (AR(1) root 0.99) cut in fiscal spending in the SMALL periphery the first period the ZLB bind (i.e. period 2)

- For comparison purposes, we also compare results to the flexible exchange rate case and currency union case when the ZLB does not bind

Since periphery here assumed to be small, whether currency union is at the ZLB or not does not matter

- Bigger effects of asymmetric shock in a currency union relative to flexible exchange rate case
Effects of fiscal shocks

Government spending cut in small periphery in alternative situations

Figure 2: Responses to a Front-Loaded Decrease in Government Spending in Small Periphery under Flexible Exchange Rate and in a Currency Union

- Periphery Nominal Interest Rate (APR)
- Core Nominal Interest Rate (APR)
- Periphery Real Interest Rate (APR)
- Core Real Interest Rate (APR)
- Periphery CPI Inflation (APR)
- Core CPI Inflation (APR)
- Periphery Output
- Core Output
- Periphery/Core Real Exchange Rate
- Periphery/Core Nominal Exchange Rate
- Periphery Government Debt as Share of GDP
- Core Government Debt as Share of GDP
- Periphery Government Spending (trend GDP share)
- Core Government Spending (trend GDP share)

Legend:
- Black: Flex ex rate: Normal
- Red: Curr Union: Normal
- Green: Curr Union: ZLB
In Figure 3, we plot the effects of a close to permanent (AR(1) root 0.99) cut in fiscal spending in the LARGE periphery the first period the ZLB bind (i.e. period 2)
In Figure 3, we plot the effects of a close-to-permanent (AR(1) root 0.99) cut in fiscal spending in the LARGE periphery the first period the ZLB bind (i.e. period 2)

As before, we also compare results to the flexible exchange rate case and currency union case when the ZLB does not bind
In Figure 3, we plot the effects of a close to permanent (AR(1) root 0.99) cut in fiscal spending in the LARGE periphery the first period the ZLB bind (i.e. period 2)

As before, we also compare results to the flexible exchange rate case and currency union case when the ZLB does not bind

Comparing results in Figures 2 and 3, classical optimal currency area argument obtains because output contraction smaller in large periphery in normal times relative to small periphery because monetary responds by cutting interest rates more
In Figure 3, we plot the effects of a close to permanent (AR(1) root 0.99) cut in fiscal spending in the LARGE periphery the first period the ZLB bind (i.e. period 2).

As before, we also compare results to the flexible exchange rate case and currency union case when the ZLB does not bind.

Comparing results in Figures 2 and 3, classical optimal currency area argument obtains because output contraction smaller in large periphery in normal times relative to small periphery because monetary responds by cutting interest rates more.

However, when the economy is at the ZLB, we obtain larger drop in periphery output when periphery is large,
Effects of fiscal shocks

Large periphery

- In Figure 3, we plot the effects of a close to permanent \((AR(1)\) root 0.99) cut in fiscal spending in the LARGE periphery the first period the ZLB bind (i.e. period 2)
 - As before, we also compare results to the flexible exchange rate case and currency union case when the ZLB does not bind

- Comparing results in Figures 2 and 3, classical optimal currency area argument obtains because output contraction smaller in large periphery in normal times relative to small periphery because monetary responds by cutting interest rates more

- However, when the economy is at the ZLB, we obtain larger drop in periphery output when periphery is large,
 - Bigger effects of symmetric shocks when monetary policy is at the ZLB, in contrast to results when policy is unconstrained, contrary to conventional wisdom
Effects of fiscal shocks
Government spending cut in large periphery in alternative situations

Figure 3: Responses to a Front-Loaded Decrease in Government Spending in Large Periphery under Flexible Exchange Rate and in a Currency Union

- Periphery Nominal Interest Rate (APR)
- Core Nominal Interest Rate (APR)
- Periphery Real Interest Rate (APR)
- Core Real Interest Rate (APR)
- Periphery CPI Inflation (APR)
- Core CPI Inflation (APR)
- Periphery Output
- Core Output
- Periphery/Core Real Exchange Rate
- Periphery/Core Nominal Exchange Rate
- Periphery Govt Debt as Share of GDP
- Core Govt Debt as Share of GDP
- Periphery Govt Spend (trend GDP share)
- Core Govt Spend (trend GDP share)

Erceg and Lindé (Federal Reserve Board) Monetary and Fiscal Handcuffs June 21, 2010 20 / 29
In our solution algorithm, the duration of the liquidity trap is endogenous. This means the adverse effects of the spending cut is increasing in the size of the cut.
Effects of fiscal shocks
Size of spending cut important in large periphery

- In our solution algorithm, the duration of the liquidity trap is endogenous. This means the adverse effects of the spending cut is increasing in the size of the cut.
- In Figure 4, we illustrate this for three different spending cut sizes (-1, 2, and -3%).

Since large periphery is 1/3 of total currency union, a 3% cut is equivalent to a one percent aggregate cut. Since aggregate currency union output fall with about 2.8 percent, the multiplier is as high as 2.8 for the largest spending cut. Notice also budgetary implication, larger cuts in the periphery are associated with a runup in debt in the short run for the periphery, and persistent rise in debt in core.
In our solution algorithm, the duration of the liquidity trap is endogenous. This means the adverse effects of the spending cut is increasing in the size of the cut.

In Figure 4, we illustrate this for three different spending cut sizes (-1, 2 and -3%).

Since large periphery is 1/3 of total currency union, a 3% cut is equivalent to a one percent aggregate cut.
In our solution algorithm, the duration of the liquidity trap is endogenous. This means the adverse effects of the spending cut is increasing in the size of the cut.

In Figure 4, we illustrate this for three different spending cut sizes (-1, 2, and -3%).

Since large periphery is 1/3 of total currency union, a 3% cut is equivalent to a one percent aggregate cut.

Since aggregate currency union output fall with about 2.8 percent, the multiplier is as high as 2.8 for the largest spending cut.
In our solution algorithm, the duration of the liquidity trap is endogenous. This means the adverse effects of the spending cut is increasing in the size of the cut.

In Figure 4, we illustrate this for three different spending cut sizes (-1, 2, and -3%).

Since large periphery is 1/3 of total currency union, a 3% cut is equivalent to a one percent aggregate cut.

- Since aggregate currency union output fall with about 2.8 percent, the multiplier is as high as 2.8 for the largest spending cut.
- Notice also budgetary implication, larger cuts in the periphery are associated with a runup in debt in the short run for the periphery, and persistent rise in debt in core.
Effects of fiscal shocks
Different sized government spending cuts in large periphery

Figure 4: Responses to Government Spending Cuts of Different Magnitudes for Large Periphery Currency Union Member in a Liquidity Trap

- Periphery Nominal Interest Rate (APR)
- Core Nominal Interest Rate (APR)
- Periphery Real Interest Rate (APR)
- Core Real Interest Rate (APR)
- Periphery CPI Inflation (APR)
- Core CPI Inflation (APR)
- Periphery Output
- Core Output
- Periphery/Core Real Exchange Rate
- Aggregate Currency Union Output
- Periphery Govt Debt as Share of GDP
- Core Govt Debt as Share of GDP
- Periphery Govt Spend (trend GDP share)
- Core Govt Spend (trend GDP share)

Quarter

- 1% decrease: ZLB
- 2% decrease: ZLB
- 3% decrease: ZLB
We now consider the effects of a coordinated spending cut in large periphery and core.
We now consider the effects of a coordinated spending cut in large periphery and core.

The idea is that policymakers in periphery and core want to reduce deficit and debt levels against the background of the severe recession scenario.
Effects of fiscal shocks
Coordinated spending cut in large periphery and core

- We now consider the effects of a coordinated spending cut in large periphery and core
 - The idea is that policymakers in periphery and core want to reduce deficit and debt levels against the background of the severe recession scenario
- In Figure 5, we show results of this spending coordinated spending cut
Effects of fiscal shocks

Coordinated spending cut in large periphery and core

- We now consider the effects of a coordinated spending cut in large periphery and core
 - The idea is that policymakers in periphery and core want to reduce deficit and debt levels against the background of the severe recession scenario

- In Figure 5, we show results of this spending coordinated spending cut

- Given our parameterization of the large periphery, this spending cut equals the -3% periphery cut in previous figure at the aggregate union level, and as a consequence the results for aggregate currency union are identical to those in Figure 4
We now consider the effects of a coordinated spending cut in large periphery and core.

- The idea is that policymakers in periphery and core wants to reduce deficit and debt levels against the background of the severe recession scenario.

In Figure 5, we show results of this spending coordinated spending cut.

- Given our parameterization of the large periphery, this spending cut equals the -3% periphery cut in previous figure at the aggregate union level, and as a consequence the results for aggregate currency union are identical to those in Figure 4.
 - But compositional effects on periphery and core output levels.
We now consider the effects of a coordinated spending cut in large periphery and core.

The idea is that policymakers in periphery and core want to reduce deficit and debt levels against the background of the severe recession scenario.

In Figure 5, we show results of this spending coordinated spending cut.

Given our parameterization of the large periphery, this spending cut equals the -3% periphery cut in previous figure at the aggregate union level, and as a consequence, the results for aggregate currency union are identical to those in Figure 4.

But compositional effects on periphery and core output levels.

In normal times, cuts would be very effective in reducing deficits and debts; opposite results obtain when nominal interest rate is at the zero lower bound.
Effects of fiscal shocks
Coordinated spending cut in large periphery and core

- We now consider the effects of a coordinated spending cut in large periphery and core.
 - The idea is that policymakers in periphery and core wants to reduce deficit and debt levels against the background of the severe recession scenario.

- In Figure 5, we show results of this spending coordinated spending cut.

- Given our parameterization of the large periphery, this spending cut equals the -3% periphery cut in previous figure at the aggregate union level, and as a consequence the results for aggregate currency union are identical to those in Figure 4.
 - But compositional effects on periphery and core output levels.

- In normal times, cuts would be very effective in reducing deficits and debts; opposite results obtain when nominal interest rate is at the zero lower bound.
 - Policymakers chasing their own tail.
Effects of fiscal shocks
Coordinated and non-coordinated government spending cuts

Figure 5: Responses to Government Spending Cut in Large Periphery Currency Union Member With and Without Core Spending Adjustment

Periphery Nominal Interest Rate (APR)
Periphery Real Interest Rate (APR)
Periphery CPI Inflation (APR)
Periphery Output
Periphery/ Core Real Exchange Rate
Periphery Govt Debt as Share of GDP
Periphery Govt Spend (trend GDP share)

Core Nominal Interest Rate (APR)
Core Real Interest Rate (APR)
Core CPI Inflation (APR)
Core Output
Aggregate Currency Union Output
Core Govt Debt as Share of GDP
Core Govt Spend (trend GDP share)
Sensitivity analysis
No HM households in the model

- Results above also holds for financial spread shocks that affects the borrowing costs of firms and the government.
Results above also holds for financial spread shocks that affects the borrowing costs of firms and the government.

Therefore, instead do sensitivity analysis w.r.t. shown results above.
Sensitivity analysis
No HM households in the model

- Results above also holds for financial spread shocks that affects the borrowing costs of firms and the government.
- Therefore, instead do sensitivity analysis w.r.t. shown results above
- First, take out the HM consumers of the model, i.e. we set $\varsigma = 0$
Sensitivity analysis
No HM households in the model

- Results above also holds for financial spread shocks that affects the borrowing costs of firms and the government.
- Therefore, instead do sensitivity analysis w.r.t. shown results above
- First, take out the HM consumers of the model, i.e. we set $\varsigma = 0$
- Consider the effects of spending cuts in large periphery only and coordinated spending cut in the currency union as a whole with 1% of baseline GDP
Sensitivity analysis
No HM households in the model

- Results above also holds for financial spread shocks that affects the borrowing costs of firms and the government.
- Therefore, instead do sensitivity analysis w.r.t. shown results above
- First, take out the HM consumers of the model, i.e. we set $\varsigma = 0$
- Consider the effects of spending cuts in large periphery only and coordinated spending cut in the currency union as a whole with 1% of baseline GDP
 - Results reported in figure below
Sensitivity analysis
No HM households in the model

- Results above also holds for financial spread shocks that affects the borrowing costs of firms and the government.
- Therefore, instead do sensitivity analysis w.r.t. shown results above
- First, take out the HM consumers of the model, i.e. we set $\varsigma = 0$
- Consider the effects of spending cuts in large periphery only and coordinated spending cut in the currency union as a whole with 1% of baseline GDP
 - Results reported in figure below
- Qualitative aspects unchanged, but need larger cuts to see as large quantitative effects as in the model with HM households
Sensitivity analysis
Non-coordinated and coordinated spending cuts with no HM households in model

Figure X: Responses to Government Spending Cut in Large Periphery
Curr Union Member With and Without Core Spending Adjustment: No HM

Periphery Nominal Interest Rate (APR)
Core Nominal Interest Rate (APR)

Periphery Real Interest Rate (APR)
Core Real Interest Rate (APR)

Periphery CPI Inflation (APR)
Core CPI Inflation (APR)

Periphery Output
Core Output

Periphery/ Core Real Exchange Rate

Periphery Govt Debt as Share of GDP
Core Govt Debt as Share of GDP

Periphery Govt Spend (trend GDP share)
Core Govt Spend (trend GDP share)

Quarter
How should then a spending cut be designed to prevent rise in government debt and mitigating the effects on output in a liquidity trap?
Sensitivity analysis
Gradual spending decline profile helpful

- How should then a spending cut be designed to prevent rise in government debt and mitigating the effects on output in a liquidity trap?

- As the potential real interest rate is related to the growth rate of government consumption, spending cut should be gradual so that most of the spending cut occurs when monetary policy is no longer constrained by the ZLB
How should then a spending cut be designed to prevent rise in government debt and mitigating the effects on output in a liquidity trap?

As the potential real interest rate is related to the growth rate of government consumption, spending cut should be gradual so that most of the spending cut occurs when monetary policy is no longer constrained by the ZLB.

Illustrate this by allowing spending in large periphery to follow an AR(2) where coefficients are set so that net present value of spending decline identical to the front-loaded spending decline.
Sensitivity analysis
Gradual spending decline profile helpful

- How should then a spending cut be designed to prevent rise in government debt and mitigating the effects on output in a liquidity trap?
- As the potential real interest rate is related to the growth rate of government consumption, spending cut should be gradual so that most of the spending cut occurs when monetary policy is no longer constrained by the ZLB
- Illustrate this by allowing spending in large periphery to follow an AR(2) where coefficients are set so that net present value of spending decline identical to the front-loaded spending decline
- Results of this exercise reported in figure below
Sensitivity analysis
Effects of a coordinated gradual spending decline

Figure X: Responses to Government Spending Cuts in Large Periphery Currency Union Member Under Perfect and Imperfect Credibility in a Liquidity Trap

- Periphery Nominal Interest Rate (APR)
- Core Nominal Interest Rate (APR)
- Periphery Real Interest Rate (APR)
- Core Real Interest Rate (APR)
- Periphery CPI Inflation (APR)
- Core CPI Inflation (APR)
- Periphery Output
- Core Output
- Periphery/Core Real Exchange Rate
- Aggregate Currency Union Output
- Periphery Govt Debt as Share of GDP
- Core Govt Debt as Share of GDP
- Periphery Govt Spend (trend GDP share)
- Core Govt Spend (trend GDP share)

Legend:
- Black: Front-Load Perfect Cred: ZLB
- Red: Gradual Perfect Cred: Normal
- Green: Gradual Perfect Cred: ZLB
- Blue: Gradual Imperfect Cred: ZLB
Concluding remarks

- Overall, our results indicate that the usual optimal currency argument suggesting that the effects of shocks are mitigated to the extent that they are common across members of a currency union is not valid in an environment with monetary and fiscal constraints.
Concluding remarks

- Overall, our results indicate that the usual optimal currency argument suggesting that the effects of shocks are mitigated to the extent that they are common across members of a currency union is not valid in an environment with monetary and fiscal constraints.

- From a European policy perspective, our analysis suggests that fiscal consolidation via spending cuts should be announced but come into full effect first when monetary policy is unconstrained by the ZLB.
Concluding remarks

- Overall, our results indicate that the usual optimal currency argument suggesting that the effects of shocks are mitigated to the extent that they are common across members of a currency union is not valid in an environment with monetary and fiscal constraints.

- From a European policy perspective, our analysis suggests that fiscal consolidation via spending cuts should be announced but come into full effect first when monetary policy is unconstrained by the ZLB.
 - Economies where policy is deemed to be on a sustainable path (e.g. Germany) should not cut spending.