
Import Competition, Productivity and Multi-Product Firms

E. Dhyne (NBB, UMons), A. Petrin (U. Minnesota), V. Smeets (Aarhus U.), F. Warzynski (Aarhus U.)

Disclaimer: The opinions expressed are strictly those of the authors and do not necessarily reflect the views of the National Bank of Belgium.

Eurosystem

Motivation

- Import may affect efficiency in various ways :
 - Improves productivity of importers through sourcing of better and cheaper inputs (see the theoretical model in Antras et al., 2014, and Amiti et al., 2014, for empirical evidence for Belgium)
 - May have spillovers effects on domestic customers of Belgian importers
 - BUT also increases competitive pressures on domestic producers of imported goods
- Product market competition = mechanism to enhance efficiency (Aghion, Howitt, 1996, Holmes, Schmitz, 2010)
- Purpose : Does import competition enhance productivity ?
- To answer this question, one needs a good measure of import competition at the product or firm level and a good measure of productivity at the firm or firm x product level.

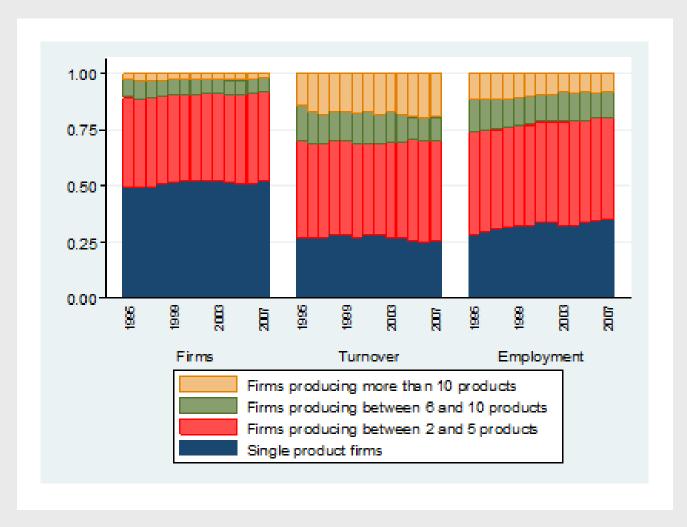
Structure

- The quarterly dataset of Belgian manufacturing firms
- Methodological issues
 - Measuring TFP at the firm and firm x product level
 - Measuring import competition in a small open economy
- Production function estimation using firm and firm x product data Some results
- TFP responses to changes in import competition
- Some tentative conclusions and avenues for future research

Quarterly Dataset of Belgian manufacturing firms

Based on 5 data sources

- Industrial Production Survey (PRODCOM) + Individual VAT declarations + National Social Security declarations + Central Balance Sheet Office + IntraStat and ExtraStat international trade declarations
- Construct quarterly time series, at the firm level, for the 1995Q1 – 2007Q4 period
 - Output variables: total turnover, production by PRODCOM8 products in monetary and physical units
 - **Prices** : PRODCOM8 product specific unit values, Törnqvist price index
 - **Input variables:** total material inputs consumption, total employment, capital stock (computed using PIM with constant 8 % depreciation rate)
 - **Trade variables:** imports and exports by CN8 products
 - Other variables: investments and wages



Total sample

- Sample coverage : 1995Q1 2007Q4
 - **# of firms:** 11,485
 - # of products : 3,792
 - # of firms x products: 42,568 (avg. 3,7 products per firm)
 - **# of observations:** 925,641 (avg. 21,5 quarters per firm x product)
- Why ending in 2007 ?
 - Revision of NACE classification ⇒ complete revision of PRODCOM classification ⇒ may introduce a major break in the product definitions
 - Revision of PRODCOM reporting threshold ⇒ reduction of the number of sample firms

Single product and multi product firms

Measuring total factor productivity

Should be easy : TFP = residuals of production function estimation

BUT **many** estimation problems (see Griliches, Mairesse, 1995), e. g.

- Input endogeneity
 - Some inputs are correlated with the TFP shock
 ⇒ biased estimates of the production function coefficients
 - Specific estimation procedures: OP, LP, ACF, W-OP or W-LP

• Pricing heterogeneity

- LHS of production function: revenue or value added at the firm level, deflated using sector-level price deflator
- Firm-specific relative price changes are included in the TFP shock
- Solution : use firm-level specific price deflator or output in physical units
- How to deal with multi-product firms ?
 - Is multi-product firms' technology the same as single product firms ? (De Loecker *et al.*, 2012)
 - Inputs allocation to multiple outputs

Measuring total factor productivity – Our estimation framework

- 2 main specifications of production functions
 - At the firm level
 - Traditional Cobb-Douglas production function using deflated revenue as LHS

 $y_{it} = \beta_l \, l_{it} + \beta_k \, k_{it} + \beta_m \, m_{it} + \omega_{it} + \varepsilon_{it}$

- Two deflators : sector-level domestic PPI vs Törnqvist firm-level price index
- Three levels of analysis : Manufacturing, NACE 2 digit, NACE 4 digit
- At the product x firm level

Measuring total factor productivity – Our estimation framework

- 2 main specifications of production functions
 - At the firm level
 - At the product x firm level
 - Extension of Dhyne, Petrin, Warzynski (2014) : production function for two product firms (Belgian bakeries producing bread and cakes)
 - Use production in physical units at the PRODCOM 8 digit level as LHS, based on Diewert (1973)

$$q_{ijt} = \beta_l l_{it} + \beta_k k_{it} + \beta_m m_{it} + \beta_{-j} r_{i,-j,t} + \omega_{ijt} + \varepsilon_{ijt}$$

- Pooling firm x product data at the PRODCOM 2, 4 and 8 digit levels
- Needs no explicit assumption on input allocation
- Controls for the deflated revenue of the other products $r_{i,-j,t}$, using firm-specific price index based only on the other products or a sectoral deflator
- Allows to estimate a firm x product specific TFP

Measuring total factor productivity – Our estimation framework

- To estimate production function at very disaggregated level, one needs large sample
- Belgian manufacturing firms = small sample for some specific sectors
 ⇒ to increase sample size, we moved from annual to quarterly data
- Assumption : when making expectations on TFP in t, firms used 1 year lagged info, instead of 1 quarter lagged info

 $E[\omega_{t} | \omega_{t-4}] = q(\mathbf{c}(i_{t-4}, k_{t-4})'\beta_{\omega}) \text{ or } E[\omega_{t} | \omega_{t-4}] = q(\mathbf{m}(m_{t-4}, k_{t-4})'\beta_{\omega})$

- Wooldridge valid instruments : k_t , k_{t-4} , i_{t-4} or m_{t-4} , m_{t-1} , l_{t-1}
- For MPPF : add $r_{(-i)t-1}$ as valid instrument

Production function estimation using firm level data

- Estimation by NACE rev 2. 2 digit level
- LHS : quarterly real total turnover (in logs)

Only present W-OP estimation with firm specific price deflator

	β_l	β_k	β_m	# obs.		β_l	β_k	β_m	# obs.
Manufacture of food products	0.126***	0.084***	0.807***	18,613	Manufacture of other non-	0.184***	0.059***	0.767***	8,424
	(0.00)	(0.01)	(0.00)		metallic mineral products	(0.00)	(0.01)	(0.00)	0,424
Manufacture of beverages	0.098***	0.126**	0.769***	1,636	Manufacture of basis motols	0.161***	0.047	0.800***	0.004
J. J	(0.01)	(0.05)	(0.01)	,	Manufacture of basic metals	(0.01)	(0.03)	(0.00)	2,861
Manufacture of textiles	0.157***	0.106***	0.775***	4,510	Manufacture of fabricated metal	0.263***	0.100***	0.673***	21,155
	(0.01) 0.159***	(0.02) 0.011	(0.01) 0.812***		products	(0.00)	(0.01)	(0.00)	
Manufacture of wearing apparel	(0.01)	(0.04)	(0.012	2,745	Manufacture of computer,	0.199***	0.045	0.775***	4 0 4 4
Manufacture of wood and of	0.151***	0.070***	0.769***	4 405	electronic and optical products	(0.02)	(0.05)	(0.01)	1,341
products of wood and cork	(0.01)	(0.02)	(0.01)	4,465	Manufacture of electrical	0.243***	0.149***	0.740***	1,905
Manufacture of paper and paper	0.190***	0.108***	0.760***	3,305	equipment	(0.01)	(0.04)	(0.01)	
products	(0.01)	(0.02)	(0.01)	3,303	Manufacture of machinery and	0.279***	0.056**	0.697***	7 000
Printing and reproduction of	0.308***	0.115***	0.607***	9,014	equipment n.e.c.	(0.01)	(0.02)	(0.01)	7,622
recorded media	(0.01)	(0.01)	(0.01)	0,011	Manufacture of motor vehicles,	0.167***	0.031	0.795***	4 077
Manufacture of chemicals and	0.102***	0.089***	0.846***	5,320	trailers and semi-trailers	(0.01)	(0.04)	(0.01)	1,677
chemical products	(0.01)	(0.02)	(0.01)	,	Manufacture of furniture	0.224***	0.116***	0.719***	6,988
Manufacture of pharmaceutical	0.136***	0.076	0.815***	1,046		(0.01)	(0.02)	(0.01)	
products	(0.02)	(0.05)	(0.02)			0.207***	0.057	0.762***	
Manufacture of rubber and plastic products	0.168*** (0.01)	0.129*** (0.02)	0.753*** (0.01)	7,033 Other manufacturing		(0.01)	(0.04)	(0.01)	1,911
	(0.01)	(0.02)	(0.01)			(0.01)	(0.04)	(0.01)	

Production function estimation using firm level data

- Estimation for 114 NACE rev 2. 4 digit level industries
- LHS : deflated total quarterly income
- Only present W-OP estimation with firm specific price deflator
- Only present sub-sectors of "Manufacture of food products"

	β_l	β_k	β_m	# obs.		β_l	β_k	β_m	# obs.
Manufacture of food products	0.123*** (0.00)	0.084*** (0.01)	0.813*** (0.00)	16,903 Manufacture of food products		0.123*** (0.00)	0.084*** (0.01)	0.813*** (0.00)	16,903
Processing and preserving	0.126***	-0.05	0.863***	370	Manufacture of grain mill	0.121***	0.095**	0.829***	439
meat	(0.01)	(0.05)	(0.01)	570	products	(0.02)	(0.04)	(0.01)	439
Processing and preserving of	0.103***	0.127***	0.873***	813	912 Manufacture of based and asks		0.116***	0.668***	F 00F
poultry meat	(0.01)	(0.04)	(0.01)	015	Manufacture of bread and cake	(0.01)	(0.02)	(0.01)	5,235
Production of meat and poultry	0.094***	0.106***	0.876***	2,595	Manufacture of rusks and	0.107***	0.020	0.851***	941
meat products	(0.01)	(0.03)	(0.01)	2,000	biscuits	(0.02)	(0.03)	(0.01)	941
Processing and preserving of	0.050**	0.03	0.910***	469	Manufacture of cocoa,	0.141***	0.113***	0.826***	1,973
fish	(0.02)	(0.04)	(0.010)	403	chocolate and sugar	(0.01)	(0.04)	(0.01)	1,975
Processing and preserving of	0.030	-0.057	0.880***	386	Processing of tea and coffee	0.071**	0.240***	0.821***	313
potatoes	(0.05)	(0.15)	(0.03)	500	Frocessing of tea and conee	(0.02)	(0.06)	(0.02)	313
Processing and preserving of	-0.033	-0.037	0.949***	671	Manufacture of condiments	0.184***	0.080	0.836***	476
fruits and vegetables	(0.02)	(0.09)	(0.03)	071	and seasonings	(0.02)	(0.06)	(0.01)	470
Manufacture of ice cream	-0.015	0.455***	0.828***	212	Manufacture of other food	0.041*	0.136**	0.921***	656
	(0.07)	(0.14)	(0.03)	212	products N.E.C	(0.02)	(0.04)	(0.02)	000

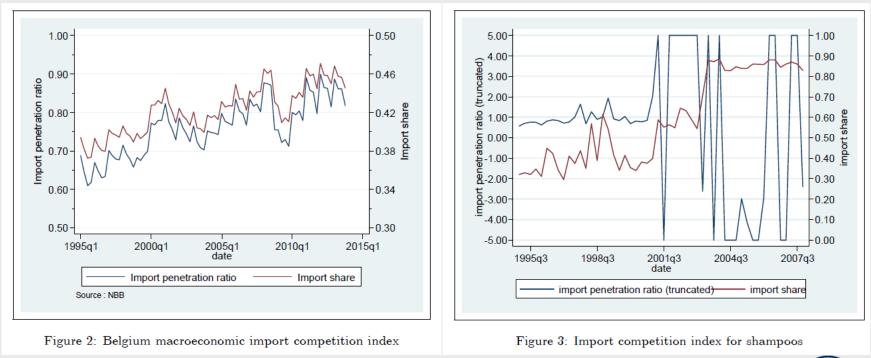
Production function estimation using firm x product level data

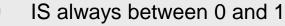
- Pooling of PRODCOM products by PRODCOM 2, 4 or 8 digit level
- LHS : production in physical units (in logs)
- Only pooling products expressed in the same (most common) unit
- Only considering the 3 main products of a firm
- The revenue coming from the remaining products of the firm's product portfolio is deflated using a firm specific price index for the remaining products or the NACE 2 digit PPI
- We only present results for PRODCOM2 digit level
- For more refined level of analysis, estimation is very data demanding is we only get reasonable estimates for the largest samples at PRODCOM4 or PRODCOM8 level

Production function estimation using firm x product level data

Results for PRODCOM2 digit level (W-OP)

	β_l	β_k	β_m	β_{-j}	# obs.	
Food products and boverages	0.211***	0.115***	1.192***	-0.534***	17,565	
Food products and beverages	(0.02)	(0.04)	(0.02)	(0.02)	17,505	
Textiles	-0.041	0.421***	1.391***	-0.451***	1,656	
Textiles	(0.05)	(0.12)	(0.07)	(0.03)	1,000	
Wearing apparel; fur	0.343**	0.114	1.230***	-0.714***	1,249	
Wearing apparei, rai	(0.11)	(0.23)	(0.15)	(0.17)	1,210	
Pulp, paper and paper products	0.015	0.158	1.003***	-0.375***	1,568	
i dip, paper and paper products	(0.07)	(0.15)	(0.06)	(0.03)	1,000	
Chemicals, chemical products and	0.045	0.170*	1.491***	-0.444***	3,905	
man-made fibers	(0.05)	(0.08)	(0.05)	(0.03)	0,000	
Rubber and platic products	0.098	0.372***	1.267***	-0.563***	3,982	
Rubbel and platte products	(0.06)	(0.11)	(0.06)	(0.04)	0,002	
Other non metallic mineral products	0.271***	0.376***	0.775***	-0.399***	3,875	
Other non-metallic mineral products	(0.06)	(0.10)	(0.05)	(0.02)	5,675	
Basic metals	0.185**	0.125	1.501***	-0.741***	1,935	
	(0.07)	(0.17)	(0.07)	(0.06)	1,000	
Fabricated metal products	0.906***	0.447***	0.458***	-0.543***	3,456	
i abridated metal products	(0.07)	(0.13)	(0.05)	(0.03)	0,100	
Machinery and equipment	0.082	0.981***	1.232***	-0.455***	1,204	
	(0.12)	(0.19)	(0.07)	(0.07)	.,201	
Electrical machinery and aparatus	-0.422	0.122	1.590***	-0.268*	643	
N.E.C.	(0.24)	(0.14)	(0.25)	(0.14)	040	
Furnitures; other manufactured goods	0.770***	1.014***	1.001***	-0.439***	4,147	
N.E.C.	(0.07)	(0.12)	(0.07)	(0.03)	4,147	




Measuring import competition in a small open economy

How to measure import competition ?

$$IPR_t = \frac{M_t}{Y_t + M_t - X_t}$$
 or $IS_t = \frac{M_t}{Y_t + M_t}$

Macro IPR OK but product specific IPR noisy (IPR < 0, |IPR| >>>0)

 $\widehat{}$

Introduction Data Methology (5/6) PF & MPPF Results Link betw

Link between TFP and IS

Conclusions

Measuring import competition in a small open economy

Import competition in a small open economy

- Belgium = small economy with a world class harbor
- Belgium = entry into EU => large share of imports are re-exported
- Need to correct for re-export : net imports at the product x firm level

$$\sum_i Max\{M_{ijt} - X_{ijt}, 0\}$$

controlling for transfer pricing

- ⇒ 3 measures of import shares at the product level :
- using imports in monetary units (IS1) or physical units (IS2)
- using net imports in physical units (IS3) (our preferred measure)
- Import competition at the firm level
 - weighted average of product specific import shares using the product portfolio of the firm

Production efficiency and import competition

- Production efficiency and firm-specific import competition
 - Only select firms with positive import shares for all the products in their product mix
 - Cleaning of TFP outliers (Q2 +/- 3 IQR) by NACE 4 digit industries
 - $\omega_{it} = \delta_{jt} + \gamma IS_{i,t-4} + \epsilon_{it}$ or $\omega_{it} = \delta_{jt} + \gamma IS_{i,t-4} + \rho \omega_{i,t-4} + \epsilon_{it}$
 - Results presented for firm-level TFP based on W-OP
 - Only considering NACE rev. 2 industries with positive coef. for 3 inputs + return to scale between 0.7 and 1.4

		•	ire in value S1)		Net import share in quantities (IS3)				
	NACE 2 digit NACE 4			4 digit	NACE	2 digit	NACE 4 digit		
L4.ISx	0.043***	0.009	0.087***	0.026***	0.033***	0.008	0.082***	0.024***	
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	
L4.TFP		0.593***		0.656***		0.593***		0.656***	
		(0.00)		(0.00)		(0.00)		(0.00)	
Nobs	53,901	38,893	46,090	33,169	53,901	38,893	46,090	33,169	
R-sq	0.895	0.938	0.973	0.986	0.895	0.938	0.973	0.986	

Production efficiency and import competition

Does the firms' response to increased foreign competition vary according to relative importance of the products in product mix ?

TFP at the firm x product level and product specific import competition

- Only consider 3 main products at the firm level
- Cleaning of TFP outliers (Q2 +/- 3 IQR) by product
- 6 specifications
 - $\omega_{jit} = \delta_j + \delta_t + \gamma_1 I S_{j,t-4} + \epsilon_{jit}$

•
$$\omega_{jit} = \delta_j + \delta_t + \delta_k + \gamma_1 IS_{j,t-4} + \epsilon_{jit}$$

•
$$\omega_{jit} = \delta_j + \delta_t + \gamma_1 IS_{j,t-4} + \rho \omega_{ji,t-4} + \epsilon_{jit}$$

- $\omega_{jit} = \delta_j + \delta_t + \delta_k + \gamma_1 I S_{j,t-4} + \rho \omega_{ji,t-4} + \epsilon_{jit}$
- $\omega_{jit} = \delta_j + \delta_t + \gamma_1 I S_{j,t-4} + \sum_{k=2}^{3} \gamma_k I S_{j,t-4} \times (Rank_{ji,t-4} = k) + \rho \omega_{ji,t-4} + \epsilon_{jit}$

•
$$\omega_{jit} = \delta_j + \delta_t + \delta_k + \gamma_1 I S_{j,t-4} + \sum_{k=2}^3 \gamma_k I S_{j,t-4} \times (Rank_{ji,t-4} = k) + \rho \omega_{ji,t-4} + \epsilon_{jit}$$

Conclusions

Production efficiency and import competition

- Results presented for firm-level TFP based on W-OP
- Only considering estimation at the PRODCOM2 digit level, with positive coef. for the 3 inputs + return to scale between 0.7 and 1.4

	(1)	(2)	(3)	(4)	(5)	(6)
S1						
Import share (t-4)	-0.348***	-0.298***	0.068	0.074	0.259***	0.165***
	(0.086)	(0.081)	(0.049)	(0.048)	(0.050)	(0.051)
Productivity (t-4)			0.889***	0.869***	0.872***	0.868***
			(0.003)	(0.003)	(0.003)	(0.003)
2nd product		-0.400***		-0.076***		-0.035***
		(0.011)		(0.006)		(0.010)
3rd product		-0.977***		-0.211***		-0.175***
		(0.018)		(0.010)		(0.018)
Import share*2nd product					-0.256***	-0.168***
					(0.021)	(0.033)
Import share*3rd product					-0.570***	-0.151***
					(0.030)	(0.053)
R ²	0.981	0.983	0.997	0.997	0.997	0.997
S3						
Import share (t-4)	-0.386***	-0.330***	0.012	0.014	0.201***	0.079*
	(0.073)	(0.068)	(0.042)	(0.041)	(0.044)	(0.046)
Productivity (t-4)			0.896***	0.873***	0.880***	0.872***
			(0.003)	(0.004)	(0.003)	(0.004)
2nd product		-0.366***		-0.065***		-0.046***
		(0.011)		(0.006)		(0.009)
3rd product		-1.015***		-0.201***		-0.175***
		(0.017)		(0.010)		(0.015)
Import share*2nd product					-0.232***	-0.103***
					(0.024)	(0.035)
Import share*3rd product					-0.558***	-0.131***
- 					(0.034)	(0.050)
R^2	0.934	0.942	0.988	0.988	0.988	0.988

Introduction

Data

Methology PF & MPPF Results

Link between TFP and IS (3/3)

Conclusions

Main conclusions and implications

- Multiple products matter
- Product level seems to be the correct level of analysis
- Allows to disentangle the various effects of import competition on the firm's efficiency.
- Increasing foreign competition in the core product of the firm seems to increase efficiency
- But increasing foreign competition in the non core products may have a negative impact in the efficiency of production of those non core products

Steps for future research

- What is the impact of import competition on other key variables ?
 - Prices
 - # of products, product entry / exit
 - Diversification of the product portfolio
 - Quality of the products
 - Mark-ups and marginal costs

Thanks for your attention

