R&D, innovation, productivity, (and growth)

Bronwyn H. Hall

University of Maastricht and University of California at Berkeley

R&D, innovation and productivity

- Many researchers have looked at the links among these 3 using data from the Community Innovation Survey and other similar surveys
- This presentation
 - Reviews what we know
 - Provides a framework for interpreting results
 - Draws some conclusions about how we might improve the data/analysis
 - Thoughts on macro implications

Innovation and productivity

- What are the mechanisms connecting innovation and productivity?
 - Improvements within existing firms
 - Creation of new goods & services, leading to increased demand for firm's products
 - Process and organizational innovation leading to efficiency gains in production
 - Entry of more efficient firms
 - Entry of firms on technology frontier
 - Exit of less efficient firms

What do we know?

- A great deal about
 - the contribution of R&D and innovation to firm-level productivity as conventionally measured
- Something about
 - The contribution of entry of more efficient and exit of less efficient firms to aggregate productivity growth
 - The contribution of R&D to quality improvement and therefore productivity growth (via lower prices)
- Less about
 - Contribution of R&D and innovation to welfare and to poorly measured but important outputs (health, environmental quality, etc)
 - Aggregate growth implications in detail

R&D vs innovation

- Not all innovative firms do formal R&D
- R&D-doing firms do not innovate every year (or even every 3 years)

Italian firms 1995-2006			
	Non-innovator	Innovator	
Does not do R&D	30.9%	34.8%	
Does R&D	6.2%	34.3%	

- Especially in the service sector:
 - Many innovations are not technological, such as new ways of organizing information flow, new designs, etc.
 - Many innovations rely on purchased technology, such as adoption of computer-aided processes, CRM software, etc.

R&D vs innovation spending

- UK firms on the CIS 1998-2006 average breakdown of spending on innovative activities.
- Service sector firms spend more on new equipment and marketing and less on R&D.

	Manufacturing	Services & other	
Acquisition of machinery & computer			
hardware/software	43.2%	47.0%	
Internal R&D spending	25.1%	12.0%	
Marketing expense	10.6%	16.5%	
Training expense	5.4%	13.4%	
Design expense	8.8%	4.2%	
External R&D spending	4.2%	3.2%	
Acquisition of external knowledge	2.6%	3.7%	
Share with nonzero spending	71.1%	54.7%	
The shares shown are for firms that have some form of innovation spending reported.			

Measuring innovation

- Large literature using R&D (capitalized) as a proxy for innovation input
 - Hall, Mairesse, Mohnen 2010 survey, inter alia
- Smaller literature using patents as a proxy for intermediate innovation output
- Both measures have well-known weaknesses, especially outside the manfacturing sector.
 - Most surveys of the service sector find many innovating firms, fewer R&D-doers
- Now we have more direct measures do they help?

Innovation surveys contain....

- Data on innovation:
 - Product or process new to firm/market (yes/no)
 - Share of sales during past 3 years from new products
 - More recent surveys have expenditures on various kinds of innovation investments
- Data on productivity and employment:
 - Usually sales per worker (labor productivity)
 - Sometimes TFP (adjusted for changes in capital)
 - Issues arising from deflation and level of aggregation
 - of goods, and of enterprises

More information in Mairesse and Mohnen (2010)

Raw data

- Next slide share of process and product innovators in selected sectors:
 - Manufacturing, telecommunications, computer services and software publishing, finance, and some technical professional services
 - As close as we can get to matching OECD coverage to US coverage
- Suggests the difficulty in measuring innovation with a dummy

Interpretive framework

- Innovation-productivity regressions use revenue productivity data
 - Include coarse sectoral dummies
 - Relative within-sector price changes not accounted for
 - Quality change not generally accounted for
- In the case of innovative activity, omitting price change at the firm level is problematic
- Analysis of the implications of distinguishing productivity from revenue productivity
 - Based on Griliches and Mairesse 1984

Conventional productivity equation

$$q_{it} = a_{it} + \alpha c_{it} + \beta l_{it}$$
 $i = entity, t = time$

q = log value added (sometimes just output)

c = log tangible capital

/ = log labor input

 a_{it} = TFP (total factor productivity)

Coefficients α , θ measured as shares (growth accounting) or by regression (econometric)

R&D or innovation often added to this equation to measure productivity impacts

Revenue productivity

- Firm (enterprise) level: measure sales, value added, or revenue, the product of (relative) price and quantity, not quantity alone
- Equation in logarithms, so left hand side is sum of price and quantity
- Coefficients measure the sum of price and quantity impact from changes in capital, labor, and R&D or innovation

Revenue productivity

If firms have market power and idiosyncratic prices, we observe real revenue r, not output q:

$$r = p + q$$
 (all in logs)

Add a CES demand equation: $q_{it} \sim \eta p_{it}$, $\eta < 0$ Then the revenue productivity relationship is

$$r_{it} = \operatorname{const} + \left(\frac{\eta + 1}{\eta}\right) (a_{it} + \alpha c_{it} + \beta l_{it}) \sim \left(\frac{\eta + 1}{\eta}\right) q_{it}$$

If imperfect competition $(\eta > -\infty)$, revenue impact is dampened relative to output; if demand is inelastic $(0>\eta>-1)$, revenue falls with increased output

Adding innovation

Add two terms involving knowledge stock:

process: γk_{it} in the production function, $\gamma > 0$

product: φk_{it} in the demand function, $\varphi > 0$

This yields the following revenue function:

$$r_{it} = C + \left(\frac{\eta + 1}{\eta}\right) \left(a_{it} + \alpha c_{it} + \beta l_{it}\right) + \left(\frac{\gamma(\eta + 1) - \varphi}{\eta}\right) k_{it}$$

Product improvement from k (- φ/η) is always positive

Process improvement from k ($\gamma(\eta+1)/\eta$) could be small or even negative

Implication for prices

Recall that $q_{it} = \eta p_{it} + \varphi k_{it}$

Then

$$p_{it} = \left(\frac{1}{\eta}\right) \left(a_{it} + \alpha c_{it} + \beta l_{it}\right) + \left(\frac{\gamma - \varphi}{\eta}\right) k_{it}$$

If demand elasticity is constant, price falls with innovation if $\gamma - \varphi > 0$ (recall $\eta < 0$)

That is, if efficiency enhancement effect outweighs product improvement effect

Impact of innovation on price greater the more inelastic is demand, c.p.

Summary

- Innovation will affect both the price the firm can charge and the quantity it produces from a given set of inputs
- Assume the following:
 - Imperfect competition (nonzero markup; downward sloping demand with constant elasticity)
 - Process innovation reduces cost (same inputs produce more)
 - Product innovation shifts demand curve out (higher willingness to pay for the same good, or higher quality for the same price)
- Then we can conclude:
 - Product innovation unambiguously increases revenue productivity
 - Process innovation may increase *revenue productivity*, but impact will be weakened by the fact that lower costs lower equilibrium price (related to employment-tech change controversies)

An example of price impact

- U.S. deflators for the computer hardware industry and the communications equipment industry are hedonic (account for quality change)
 - see next slide
- Deflate firm sales by these 2-digit deflators instead of one overall deflator
- Result: true productivity is substantially higher than revenue productivity, because of hedonic price declines in the computer/electronics sector
- Benefits of "Moore's Law"

Hedonic Price Deflator for Computers

Shipments Deflators for U.S. Manufacturing NBER Bartlesman-Gray Productivity Database

Estimated R&D Elasticity – U.S. Manufacturing Firms

	Revenue	Quantity	Price
	Dep. Var = Log	Dep. Var = Log	
Period	Sales	Sales deflated	Difference
1974-1980	003 (.025)	.102 (.035)	-0.099
1983-1989	.035 (.030)	.131 (.049)	-0.096
1992-1998	.118 (.031)	.283 (.041)	-0.165

GMM-system estimation with lag 3 & 4 instruments. Sample sizes: 7156, 6507, and 6457 observations

Conclusion: much of the R&D in computing hardware went to lower prices for consumers

Progress needs better data

- Previous example effectively used hedonic price (measured by statistical agency) as a proxy for quality
- Availability of detailed price data in some countries allows estimation of more realistic demand functions and direct measurement of "quality" = willingness to pay
- See Petrin and Warczynski (2012) draft
 - they also have R&D at the product/process level within firm.
 - Allows estimation of the contribution of R&D to quality improvement (demand) and technical efficiency separately
 - Work in progress

What do the data say about the innovation –productivity relationship?

Results from a large collection of papers that used the CDM model for estimation (Crepon Duguet Mairesse 1998):

- Innovation survey data reveals that some non-R&D firms innovate and some R&D firms do not innovate during the relevant period
- Data is usually cross-sectional, so possible simultaneity between R&D, innovation, and productivity
- Sequential model:
 R&D→innovation→productivity

CDM model

- Proposed originally by Crépon, Duguet and Mairesse (CDM, 1998)
- Relationship among
 - innovation input (mostly, but not limited to, R&D)
 - innovation output (process, product, organizational)
 - productivity levels (sometimes growth rates)
- Closer look at the black box of the innovation process at the firm level:
 - unpacks the relationship between innovation input and productivity by looking at the innovation output

The model parts

- 1. The determinants of R&D choice: whether to do it and how much to do (generalized Tobit)
- Innovation production function with innovation variables as outcomes as a function of predicted R&D intensity.
- Production function including the predicted innovation outcomes to measure their contribution to the firm's productivity.

(Need bootstrap s.e.s if sequentially estimated)

CDM model applied to CIS data

- Estimated for 15+ countries
- Confirmed high rates of return to R&D found in earlier studies
- Like patents, innovation output statistics are much more variable ("noisier") than R&D,
 - R&D tends to predict productivity better, when available
- Next few slides summarize results for regressions of individual firm TFP on innovation
- Source: Hall (2011), Nordic Economic Policy Review and Hall and Mohnen (2013), Eurasian Business Review

National Bank of Belgium October 2014

Productivity-innovation relationship in TFP levels

		Elasticity with	Process
Sample	Time period	respect to innov	innovation
		sales share	dummy
Chilean mfg sector	1995-1998	0.18 (0.11)*	
Chinese R&D-doing mfg sector	1995-1999	0.035 (0.002)***	
Dutch mfg sector	1994-1996	0.13 (0.03)***	-1.3 (0.5)***
Finnish mfg sector	1994-1996	0.09 (0.06)	-0.03 (0.06)
French mfg sector	1986-1990	0.07 (0.02)***	
French Hi-tech mfg #	1998-2000	0.23 (0.15)*	0.06 (0.02)***
French Low-tech mfg #	1998-2000	0.05 (0.02)***	0.10 (0.04)***
German K-intensive mfg sector	1998-2000	0.27 (0.10)***	-0.14 (0.07)**
Irish firms #	2004-2008	0.11 (0.02)***	0.33 (0.08)***
Norwegian mfg sector	1995-1997	0.26 (0.06)***	0.01 (0.04)
Swedish K-intensive mfg sector	1998-2000	0.29 (0.08)***	-0.03 (0.12)
Swedish mfg sector	1994-1996	0.15 (0.04)***	-0.15 (0.04)***
Swedish mfg sector	1996-1998	0.12 (0.04)***	-0.07 (0.03)***
Swedish service sector	1996-1998	0.09 (0.05)*	-0.07 (0.05)

Source: author's summary from Appendix Table 1.

Innovative sales share and process innovation included separately in the production function.

TFP levels on innov sales share

- Robustly positive, supports the view that product innovation shifts the firm's demand curve out
 - Elasticities range from 0.04 to 0.29 with a typical standard error of 0.03
 - K-intensive and hi-tech firms have higher elasticities (=> equalized rates of return)
- Coefficient of process innovation dummy usually insignificant or negative, suggesting either inelastic demand or

(more likely) measurement error in the innovation variables

Productivity-innovation using dummies Time period Product innovation Process innovation Process innovation

Sample	Time period	Product innovation	Process innovation
		dummy	dummy
		0.00 (0.10)	
Argentinian mfg sector	1998-2000	-0.22 (0.15)	
Brazilian mfg sector	1998-2000	0.22 (0.04***	
Estonian mfg sector	1998-2000	0.17 (0.08)**	-0.03 (0.09)
Estonian mfg sector	2002-2004	0.03 (0.04)	0.18 (0.05)***
French mfg sector	1998-2000	0.08 (0.03)**	
French mfg sector	1998-2000	0.06 (0.02)***	0.07 (0.03)**
French mfg sector	1998-2000	0.05 (0.09)	0.41 (0.12)***
French mfg sector	2002-2004	-0.08 (0.13)	0.45 (0.16)***
French service sector	2002-2004	0.27 (0.52)	0.27 (0.45)
German mfg sector	1998-2000	-0.05 (0.03)	0.02 (0.05)
Irish firms #	2004-2008	0.45 (0.08)***	0.33 (0.08)***
Italian mfg sector	1995-2003	0.69 (0.15)***	-0.43 (0.13)***
Italian mfg sector SMEs	1995-2003	0.60 (0.09)***	0.19 (0.27)
Mexican mfg sector	1998-2000	0.31 (0.09)**	
Spanish mfg sector	2002-2004	0.16 (0.05)***	
Spanish mfg sector	1998-2000	0.18 (0.03)***	-0.04 (0.04)
Swiss mfg sector	1998-2000	0.06 (0.02)***	
UK mfg sector	1998-2000	0.06 (0.02)***	0.03 (0.04)

TFP level results with dummies

- Product dummy supports innovation sales share result, although noisier.
- There is substantial correlation between product and process innovation, especially when they are instrumented by R&D and other firm characteristics.
- Correlated measurement error can lead to bias in both coefficients (upward for the better measured one and downward for the other) – see Hall (2004)

http://bronwynhall.com/papers/BHH04 measerr.pdf

Summary

- Elasticity wrt innovative sales center on (0.09, 0.13)
 - higher for high tech and knowledge-intensive
 - Lower on average for low tech and developing countries, but also more variable
- With product innovation included, process innovation often negative or zero
- Without product innovation, process innovation positive for productivity
- When not instrumented, little impact of innovation variables in production function (unlike R&D)
 - See Mairesse & Mohnen (2005), Hall et al. (2012)
- What if we had spending on innovation (rather than just R&D, a component of innovation spending)?

UK – work in progress

- Broader definition: internal & external R&D; new equip & software; design expense; training; acq of patents & knowhow; marketing – all associated with intro of new products or processes
- Out of 10,500 firm obs 2001-2006
 - 6500 have some form of innovation spending (IS)
 - 3400 have internal R&D
 - R&D firms: median IS is 5 times median R&D
- Compared to R&D:
 - IS more strongly associated with info from suppliers and innovation to meet environmental or H&S stds; less strongly with exports, collaboration, and info from customers (that is, more process than product)
 - IS is a better predictor of inno probability
 - Doubling IS has the same impact on TFP as doubling R&D increase of 0.05

Discussion

- Innovation dummies at the firm level may be too noisy a measure to be useful.
 - Share of sales due to new products is more informative.
 - What measure would be useful (and reportable) for process innovation?
- Further exploration with innovation investment (instead of R&D) is warranted

Aggregation

- How does individual firm relationship aggregate up to macroeconomy?
 - productivity gains in existing firms
 - exit and entry
- Aghion et al (2009); Gorodnichenko et al (2010)
 - Competition and entry encourages innovation unless the sector is very far behind
- Djankov (2010) survey cross country
 - stronger entry regulation and/or higher entry costs associated with fewer new firms, greater existing firm size and growth, lower TFP, lower investment, and higher profits

Entry and exit

- Olley & Pakes, Haltiwanger & co-authors have developed decompositions that are useful
- Foster, Haltiwanger, and Syverson (2008) US data
 - Distinguish between revenue and quantity, and include exit & entry
 - Revenue productivity understates contribution of entrants to real productivity growth because entrants generally have lower prices
 - Demand variation is a more important determinant of firm survival than efficiency in production (consistent with productivity impacts)

Future work?

- Full set of links between innovation, competition, exit/entry, and productivity growth not yet explored
- Bartelsman et al. (2010): Size-productivity more highly correlated within industry if regulation is "efficient"
 - Evidence on Eastern European convergence
 - Useful approach to the evaluation of regulatory effects without strong assumptions
- Similar analysis could assess the economy-wide innovation impacts

Backup Slides

Technical detail for production function with innovation

Econometrics (1)

Only some firms report R&D; use standard selection model:

Selection eq

$$RDI_{i} = \begin{cases} 1 & if \quad RDI_{i} = w_{i}\alpha + \varepsilon_{i} > \overline{c} \\ 0 & if \quad RDI_{i} = w_{i}\alpha + \varepsilon_{i} \leq \overline{c} \end{cases}$$

Conditional on doing R&D, we observe the level:

$$RI_{i} = \begin{cases} RD_{i}^{*} = z_{i}\beta + e_{i} & if \quad RDI_{i} = 1\\ 0 & if \quad RDI_{i} = 0 \end{cases}$$

Assume joint normality => generalized tobit or Heckman selection model for estimation.

Econometrics (2)

Output of the KPF are various binary innovation indicators or the share of innovative sales. For example,

$$DI_i \sim \phi \left(RD_i^* \gamma + X_i \delta + u_i\right)$$

DI = Dummy for innovation (process, product, organizational)

 Φ (.) = normal density

Why include the latent R&D variable *RD**?

- 1. Account for informal R&D effort that is often not reported
- 2. Instrument for errors in variables and simultaneity

Estimation is via multivariate probit

Econometrics (3)

Production function:

$$y_{i} = \pi_{1}k_{i} + \sum_{j} \pi_{2j}DI_{ij} + Z_{i}\varphi + v_{i}$$

y = log sales per employee

k = log capital stock per employee

DI are predicted probabilities of innovation from second step or predicted share of innovative sales (with logit transform)

Z includes size, age, industry, region, year, wave Estimated by OLS