### The risk-taking channel of monetary policy - exploring all avenues

#### Diana Bonfim and Carla Soares Banco de Portugal

5th Research Workshop of the MPC Task Force on Banking Analysis for Monetary Policy

These are our views and not those of Banco de Portugal or the Eurosystem.

1-2 February 2018

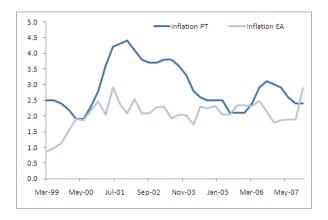
#### Motivation

- Risk-taking channel: when policy rates are low for a prolonged period of time, financial institutions adopt risk-taking strategies.
  - search for yield
  - risk shifting

#### Motivation

- Empirically, when interest rates are low there is more risk taking:
  - banks increase lending to riskier borrowers (Spain: Jiménez, Ongena, Peydró and Saurina, 2014; Bolivia: Ioannidou, Ongena and Peydró, 2015)
  - banks offer relatively lower spreads when lending to riskier borrowers (US: Paligorova and Santos, 2017)
  - banks soften lending standards (US and EA: Maddaloni and Peydró, 2011)
  - banks increase their portfolio risk (cross-country: Altunbas, Gambacorta and Marques-Ibanez, 2010; euro area: Delis and Kouretas, 2011)
  - smaller, non-traditional banks have a more aggressive behavior (Spain: Jiménez, Ongena, Peydró and Saurina, 2014)

#### Motivation


- This literature has been growing quickly, leading to scattered evidence.
- We examine this channel through different angles, to gain a more encompassing understanding about how it works.

### Methodology

- The risk-taking channel ex-ante:
  - The intensive margin: Do riskier firms get more credit when policy rates are lower?  $\rightarrow$  Panel regression on firm loan growth
  - The extensive margin: Are riskier firms more likely than others to obtain a loan when interest rates decrease? → Discrete choice models
- The risk-taking channel ex-post:
  - $\textbf{0} \ \ \, \text{Does the level of the policy rate when loans are granted influence the} \\ \text{(ex-post) probability of default?} \ \to \textit{Survival analysis}$
  - ② Are loans granted when policy rates are lower more likely to default when rates increase? → Differences-in-differences

#### Identification

Monetary policy set by the ECB Governing Council since 1999 
 monetary policy setting not dependent on Portuguese economic conditions.



#### Data

**Central Credit Register** (CRC) has data on bank loans (type of loan, amount and debtor). We select:

debtors: non-financial corporations

period: 1999-2007

Supervisory balance sheet for data on banks balance sheet items:

 we select only banks with a market share of at least 0.1% in the corporate loan market

#### Firms' balance sheet data:

- Annual balance sheet data of non-financial corporations
- Survey data → data is provided voluntarily (until 2005)

#### Outline

- The risk-taking channel ex-ante:
  - $\begin{tabular}{ll} \textbf{0} & \textbf{The intensive margin: Do riskier firms get more credit when} \\ & \textbf{policy rates are lower?} & \rightarrow \textbf{Panel regression on firm loan growth} \\ \end{tabular}$
  - The extensive margin: Are riskier firms more likely than others to obtain a loan when interest rates decrease? → Discrete choice models
- The risk-taking channel ex-post:
  - Does the level of the policy rate when loans are granted influence the (ex-post) probability of default? → Survival analysis
  - ② Are loans granted when policy rates are lower more likely to default when rates increase? → Differences-in-differences

### Do riskier firms get more credit when policy rates are lower?

$$\begin{aligned} \textit{loan\_growth}_{ijt} = \\ c_{ij} + \alpha i_{t-1}^{\textit{ECB}} \times \textit{bad\_hist}_{it-1} + \beta i_{t-1}^{\textit{ECB}} + \gamma \textit{bad\_hist}_{it-1} + \delta' X_{ijt-1} + \epsilon_{ijt} \end{aligned}$$

Indices: i firm, j bank, t quarter.

 $X_{ijt}$  includes bank and loan characteristics and macro variables.

## Do riskier firms get more credit when policy rates are lower?

| i*bad hist <sub>it-1</sub> | -0.018       | **  | -0.018         |     | 0.001          |  |
|----------------------------|--------------|-----|----------------|-----|----------------|--|
| i ECB $eoq_{t-1}$          | 0.016        |     | 0.016          |     | -0.006         |  |
| bad hist $_{it-1}$         | 0.112        | *** | 0.112          | *** | -0.026         |  |
| bank and loan variables    | yes          |     | yes            |     | yes            |  |
| firm and macro variables   | yes          |     | yes            |     | yes            |  |
| unused credit lines        | no           |     | no             |     | yes            |  |
| fixed effects              | relationship |     | relationship   |     | relationship   |  |
| cluster s.e.               | quarter      |     | quarter & bank |     | quarter & bank |  |
| Nº obs.                    | 6,427,685    |     | 6,427,685      |     | 6,927,838      |  |

### Do riskier firms get more credit when policy rates are lower?

- No evidence in favor of the risk-taking channel at the intensive margin: when interest rates are lower, credit does not increase more for riskier firms (also when using Taylor residuals).
- No role for bank characteristics (triple interactions for liquidity, capital and size).
- No differences between small and large firms or small and large banks.

#### Outline

#### The risk-taking channel ex-ante:

- The intensive margin: Do riskier firms get more credit when policy rates are lower? → Panel regression on firm loan growth
- The extensive margin: Are riskier firms more likely than others to obtain a loan when interest rates decrease? → Discrete choice models
- The risk-taking channel ex-post:
  - Does the level of the policy rate when loans are granted influence the (ex-post) probability of default? → Survival analysis
  - ② Are loans granted when policy rates are lower more likely to default when rates increase? → Differences-in-differences

Probit model: Whenever there is a new loan granted, what is the probability that the borrower is considered to be risky?

$$\Pr\left(\textit{risky}_{\textit{it}} = 1 \middle| \textit{new\_loan}_{\textit{ijt}} = 1\right) = \Phi\left(\alpha \textit{i}_{t-1}^{\textit{ECB}} + \delta' X_{\textit{ijt}-1} + \varepsilon_{\textit{ijt}}\right)$$

 $\Phi\left(\cdot\right)$  is the normal cdf.

| i ECB $eoq_{t-1}$        | -0.043 ** | -0.043 **      | -0.048 ***     |
|--------------------------|-----------|----------------|----------------|
| bank and loan variables  | yes       | yes            | yes            |
| firm and macro variables | yes       | yes            | yes            |
| unused credit lines      | no        | no             | yes            |
| cluster s.e.             | quarter   | quarter & bank | quarter & bank |
| Nº obs.                  | 2,655,604 | 2,655,604      | 2,479,691      |

Lower policy rates prior to loan concession increase the probability of banks granting a loan to a riskier borrower.

| i ECB $eoq_{t-1}$        | 0.028          |   | -0.152         | *** | -0.157         |  |
|--------------------------|----------------|---|----------------|-----|----------------|--|
| $i*liquidity_{t-1}$      | -0.004         | * |                |     |                |  |
| $i*capital_{t-1}$        |                |   | 0.024          | *** |                |  |
| $i*assets_{t-1}$         |                |   |                |     | 0.005          |  |
| bank and loan variables  | yes            |   | yes            |     | yes            |  |
| firm and macro variables | yes            |   | yes            |     | yes            |  |
| unused credit lines      | yes            |   | yes            |     | yes            |  |
| cluster s.e.             | quarter & bank |   | quarter & bank |     | quarter & bank |  |
| Nº obs.                  | 2,479,691      |   | 2,479,691      |     | 2,479,691      |  |

Risk-taking behaviors are more relevant for banks with more liquidity and less capital.

|                        | Small firms   | Large firms   | Small banks   | Large banks   |
|------------------------|---------------|---------------|---------------|---------------|
| i $ECB_{t-1}$          | -0.025        | -0.094 ***    | -0.062 ***    | -0.091 ***    |
| bank and loan variab.  | yes           | yes           | yes           | yes           |
| firm and macro variab. | yes           | yes           | yes           | yes           |
| unused credit lines    | yes           | yes           | yes           | yes           |
| cluster s.e.           | quart. & bank | quart. & bank | quart. & bank | quart. & bank |
| Nº obs.                | 835,022       | 387,385       | 845,868       | 1,633,823     |

Risk-taking behaviors at the extensive margin occur only for large firms (which are arguably less risky than smaller firms).

#### Outline

- 1 The risk-taking channel ex-ante:
  - The intensive margin: Do riskier firms get more credit when policy rates are lower? → Panel regression on firm loan growth
  - The extensive margin: Are riskier firms more likely than others to obtain a loan when interest rates decrease? → Discrete choice models
- The risk-taking channel ex-post:
  - Does the level of the policy rate when loans are granted influence the (ex-post) probability of default? → Survival analysis
  - ② Are loans granted when policy rates are lower more likely to default when rates increase? → Differences-in-differences

# Does the level of the policy rate when loans are granted influence the (ex-post) probability of default?

- Dependent variable: hazard rate
- Hazard function: instantaneous probability of a firm defaulting on the bank conditional on having no default up to time t
- Consider Weibull hazard function

$$h_{ij}\left(t
ight) = p \exp\left(lpha i_{ au-1}^{ECB} + \gamma bad\_hist_{i au-1} + \delta' X_{ij au-1}
ight)t^{p-1}$$

- For p > 1 (p < 1), the hazard function is monotonically increasing (decreasing).
- Consider time invariant covariates (except macro controls)
  - at the time the loan is granted, banks do not know what will happen to the firm.

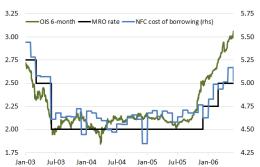
# Does the level of the policy rate when loans are granted influence the (ex-post) probability of default?

| i ECB $eoq_{t-1}$       | 0.019     |     | 0.021     |     | 0.023     |     |
|-------------------------|-----------|-----|-----------|-----|-----------|-----|
| $bad\_hist_{t-1}$       | 2.350     | *** | 1.770     | *** | 2.013     | *** |
| $i*bad_hist_{t-1}$      |           |     |           |     | -0.061    |     |
| bank and loan variables | yes       |     | yes       |     | yes       |     |
| sectoral variables      | no        |     | yes       |     | no        |     |
| macro variables         | yes       |     | yes       |     | yes       |     |
| cluster s.e.            | quarter   |     | quarter   |     | quarter   |     |
| Nº obs.                 | 1,384,696 |     | 1,053,493 |     | 1,384,696 |     |

The policy rate level at the moment the loan is granted is not a relevant determinant of the probability of default in the future.

# Does the level of the policy rate when loans are granted influence the (ex-post) probability of default?

|                        | Small firms | Large firms | Small banks | Large banks |
|------------------------|-------------|-------------|-------------|-------------|
| i $ECB_{t-1}$          | 0.012       | 0.070       | 0.106 *     | -0.115 ***  |
| bank and loan variab.  | yes         | yes         | yes         | yes         |
| firm and macro variab. | yes         | yes         | yes         | yes         |
| cluster s.e.           | quarter     | quarter     | quarter     | quarter     |
| Nº obs.                | 489,228     | 206,849     | 397,071     | 987,625     |


Ex-post, there are no different risk-taking strategies for small and large firms.

Loans granted by larger banks when rates are low are more likely to default later.

#### Outline

- 1 The risk-taking channel ex-ante:
  - $\hbox{\bf 0} \quad \hbox{The intensive margin: Do riskier firms get more credit when policy rates are lower?} \quad \to \hbox{Panel regression on firm loan growth}$
  - The extensive margin: Are riskier firms more likely than others to obtain a loan when interest rates decrease? → Discrete choice models
- The risk-taking channel ex-post:
  - ullet Does the level of the policy rate when loans are granted influence the (ex-post) probability of default? o Survival analysis
  - ② Are loans granted when policy rates are lower more likely to default when rates increase? → Differences-in-differences

- Interest rates were very low and stable for a long period: June 2003 -December 2005.
- Around October 2005, the ECB's communication changed, signaling a possible increase in interest rates.
- This lead to a sharp revision of interest rate expectations.
- Monetary policy rates indeed increased in December 2005.



$$\begin{array}{l} \Pr\left(\textit{bad\_hist}_{\textit{it}} = 1\right) = \\ \Phi\left(\alpha \textit{Treatment}_{\textit{ijt}} \times \textit{After}_t + \gamma \textit{Treatment}_{\textit{ijt}} + \beta \textit{After}_t + \delta' X_{\textit{ijt}-1} + \varepsilon_{\textit{ijt}}\right) \end{array}$$

- $Treatment_{i,t} = 1$  for new loans granted immediately before interest rates started to increase, when rate expectations were still anchored at low levels (January to September 2005).
- Treatment<sub>i,t</sub> = 0 for new loans granted immediately before interest rates started to increase, but when rate expectations had already increased markedly (October 2005 to March 2006).
- The effective interest rate was similar for the two groups, but **expectations** were very different.

Do banks' expectations affect risk-taking?

ullet After<sub>t</sub> = 1 for the period after interest rates start to increase.

| treatment <sub>i,t</sub> | -0.273    | *** | -0.273         | *** | -0.273              | *** |
|--------------------------|-----------|-----|----------------|-----|---------------------|-----|
| after <sub>t</sub>       | -0.164    | *** | -0.164         |     | -0.164              |     |
| $interaction_{i,t}$      | 0.242     | *** | 0.242          | *** | 0.242               | *** |
| bank and firm variables  | yes       |     | yes            |     | yes                 |     |
| macro variables          | yes       |     | yes            |     | yes                 |     |
| clustered s.e.           | quarter   |     | quarter & bank |     | quater, bank & firm |     |
| Observations             | 1,640,137 |     | 1,640,137      |     | 1,640,137           |     |

Loans granted in the period of low and stable interest rates are more likely to default when interest rates increase, compared to loans granted when policy rate rises were already expected.

| $interaction_{i,t}$                                  | 0.199     | *** | 0.253     | *** | -0.062    |   |
|------------------------------------------------------|-----------|-----|-----------|-----|-----------|---|
| interaction <sub>i,t</sub> *liquidity <sub>t-1</sub> | 0.003     | *** |           |     |           |   |
| interaction <sub>i,t</sub> *capital <sub>t-1</sub>   |           |     | -0.002    |     |           |   |
| $interaction_{i,t}$ *assets <sub>t-1</sub>           |           |     |           |     | 0.013     | * |
| bank and firm variables                              | yes       |     | yes       |     | yes       |   |
| macro variables                                      | yes       |     | yes       |     | yes       |   |
| clustered s.e.                                       | quarter   |     | quarter   |     | quarter   |   |
| Observations                                         | 1,640,137 |     | 1,640,137 |     | 1,640,137 |   |

There is more risk-taking for larger banks and, especially, for banks with larger liquidity ratios (risk-shifting due to poor managerial incentives, Acharya and Naqvi, 2012).

|                            | Small firms |     | Large firms |   | Small banks |     | Large banks |     |
|----------------------------|-------------|-----|-------------|---|-------------|-----|-------------|-----|
| interaction <sub>i,t</sub> | 0.337       | *** | 0.101       | * | 0.256       | *** | 0.267       | *** |
| bank and firm variables    | yes         |     | yes         |   | yes         |     |             |     |
| macro variables            | yes         |     | yes         |   | yes         |     |             |     |
| clustered s.e.             | quarter     |     | quarter     |   | quarter     |     |             |     |
| Observations               | 692,727     |     | 189,480     |   | 605,002     |     | 1,035,135   |     |

This type of risk-taking is common for all firm and bank size categories (though somewhat stronger for smaller firms).

#### Main takeaways

- Evidence in favor of the risk-taking along different dimensions:
  - When policy rates are lower, Portuguese banks increase lending to ex-ante riskier borrowers (but only at the extensive margin).
  - When we track loans granted in these periods over time, risk-taking does not seem to affect the overall quality of the loan book.
  - However, when we zoom in on a period that allows to nail down the
    role of expectations, we see that loans granted when rates are expected
    to remain low are more likely to default than when rates are expected
    to increase soon, once rates start to increase.
- There is a role for bank and firm heterogeneity.
  - More risk-taking from larger and less capitalized banks, who are less likely to internalize the potential consequences of the risks taken (Jiménez et al, 2014, Diamond and Rajan, 2012).

### Policy implications

- Interactions between monetary policy and financial stability should be especially taken into account when rates are too low for too long. Macroprudential policy might have a role in avoiding the building up of certain risks in these periods, most notably for less capitalized banks.
- This may be especially important after a decade of massive central bank intervention. This prolonged **environment** of abundant and cheap liquidity may have offered incentives for risk-taking strategies, which might become apparent only when rates increase.

THANK YOU!