The Long and Short of Financing Government Spending

J. Mankart
(Bundesbank)
R. Oikonomou
(UCLouvain)
R. Priftis
(ECB)

October 2022

The views expressed in this presentation represent the authors' personal opinions and do not reflect those of the ECB, the Deutsche Bundesbank, and the National Bank of Belgium.

Research Question

- Question: Does it matter how the US government finances its spending shocks?
- Does the size of fiscal multiplier depend on whether the debt used to finance government spending is of short or long maturity?
- This paper: Yes it does!

1. In US data financing short-term increases the fiscal multiplier.
2. We explore a theory that can rationalize this.
3. We explore the policy implications of theory and evidence.

Methodology

- Empirics:
- We present evidence from a battery of VARs identifying the maturity financing of spending shocks.
- We first use a proxy-SVAR where spending is instrumented with news about military spending.
- We also use projections using the both news based and Blanchard Perotti identification.
- (These empirical exercises are by and large based on Priftis and Zimic (2021, EJ) and Broner et al (2022, Restud).
- Results:
- The fiscal multiplier is larger when the US finances short-term, rather than long-term.
- This is accounted for (mainly) by consumption, which is crowded in with short term financing (STF) but crowded out with long term financing (LTF).

Methodology

- Theory:
- We present a (deliberately simple) model that can explain this new fact.
- Short bonds function like money, they provide liquidity services to the private sector (e.g. Greenwood, Hanson and Stein (JF, 2015)).
- The model is based on Hagerdorn (2018), a Diamond-Dybvig model where households can use short bonds to finance urgent consumption needs.
- The fiscal multiplier is larger under STF, when short debt relaxes a constraint on urgent consumption.

Policy implications

We can use the simple model to think about policy: How would an optimizing government choose the debt portfolio?

- ...when short bonds imply a larger fiscal multiplier...
- but long bonds provide fiscal hedging?
- e.g. Angeletos (2002); Buera and Nicolini (2004); Lustig, Sleet and Yeltekin (2008) (long bonds are optimal for tax smoothing purposes); Faraglia, Marcet, Oikonomou and Scott (2019); Debortoli, Nunes and Yared (2017); Bhandari, Golosov, Evans and Sargent (2019); Greenwood, Hanson and Stein (2015) (short bonds can also be beneficial for tax smoothing).
- We find that the optimizing government will focus on issuing short debt. When the fiscal multiplier is larger under STF, revenues rise (relatively) following a spending shock and this enables tax smoothing.

Empirical Analysis: Proxy VAR

Want to estimate:

$$
\begin{equation*}
\mathrm{AY}_{t}=\sum_{i=1}^{p} \mathrm{C}_{i} \mathrm{Y}_{t-i}+\varepsilon_{t} \tag{1}
\end{equation*}
$$

or equivalently:

$$
\begin{equation*}
\mathrm{Y}_{t}=\sum_{i=1}^{p} \delta_{i} \mathrm{Y}_{t-i}+\mathrm{B} \epsilon_{t} \tag{2}
\end{equation*}
$$

where $\mathrm{B}=\mathrm{A}^{-1}, \delta_{i}=\mathrm{A}^{-1} \mathrm{C}_{i}$ and let $\mathrm{u}_{t}=\mathrm{B} \varepsilon_{t}$.
Use covariance restrictions to identify $=\mathrm{B}$. Let m_{t} be the vector of proxy (defense news) variables. Identification conditions are:

$$
\begin{aligned}
& E\left[m_{t} \varepsilon_{g, t}^{\prime}\right]=\Psi \\
& E\left[m_{t} \varepsilon_{x, t}^{\prime}\right]=0
\end{aligned}
$$

where $\varepsilon_{g, t}$ is spending shocks and $\varepsilon_{x, t}$ are other shocks.

Empirical Analysis: Proxy VAR

To disentangle STF spending shocks from LTF shocks we define $m_{t}=\left[\begin{array}{l}m_{s, t} \\ m_{l, t}\end{array}\right]$ with

$$
\begin{aligned}
& m_{t}=m_{S, t}, \quad \text { if } \frac{\widehat{b_{S, t}}}{\frac{b_{L_{t}}}{}} \text { increases } \\
& m_{t}=m_{L, t}, \quad \text { if } \frac{\frac{b_{S, t}}{b_{L_{t}}}}{} \text { decreases, }
\end{aligned}
$$

where $\widehat{\widehat{b_{S, t}}} \frac{b_{L_{t}}}{}$ denotes the ratio of short-term debt to long-term debt.

Baseline Results: Proxy VAR

Impulse responses to spending shock (blue $=\mathrm{G}$ with short debt; red $=\mathrm{G}$ with long debt)

Difference output

Difference
consumption

investment

Difference investment

Baseline Results: Proxy VAR

Cumulative multipliers (blue $=\mathrm{G}$ with short debt; red $=\mathrm{G}$ with long debt)

Robustness

- Possible biases...

1. Endogeneity of Treasury's decision to finance short or long.

- STF when yield curve (YC) is upward sloping, LTF when downward sloping. (But downward sloping YCs predict recessions...). Treatment: add short and long rates (level and slope of the YC)
- LTF usually more in high debt periods (when distortionary taxes are more likely to rise, or political controversy about how to manage/finance debt).
Treatment: Run the estimates using high and low debt samples.

2. Shocks are of a different nature and thus affect the macroeconomy differently. (e.g. A STF shock may put more upward pressure on wages, when the government is hiring in certain sectors...)
Treatment: add wages, interest rates...
3. Monetary Policy response. Different for STF and LTF, also different post/pre 1980s and post 2008.
Treatment: Add short term interest rates, split sample post/pre 1980s, drop the Great recession observations.

Robustness

Cumulative multipliers: All variables (blue $=\mathrm{G}$ with short debt; red $=\mathrm{G}$ with long debt)

Theoretical model

- Incomplete Markets+ (temporarily) heterogeneous agents. (Based on Hagedorn (2018) and Diamond and Dybvig (1983)).
- Agents' utility:

$$
\begin{equation*}
u\left(C_{t}^{i}\right)+\theta v\left(c_{t}^{i}\right)-\chi \frac{h_{t}^{i, 1+\gamma}}{1+\gamma} \tag{3}
\end{equation*}
$$

- Agents decide (at the beggining of period) C_{t}^{i} and a portfolio of short and long bonds.
- Short bonds can be used to finance c_{t}^{i}. We have:

$$
c_{t}^{i} \leq b_{t, S}^{i}
$$

where $b_{t, S}^{i}$ is the real value of debt purchased by household h; Agents will hold short term debt for the services that it provides + return properties. Long bonds (perpetuities with decaying coupons) are only held for return properties.

Theoretical model

- Agents that have low θ are unconstrained. They will set (optimally)

$$
U^{\prime}\left(C_{t}^{i}\right)=\theta v^{\prime}\left(c_{t}^{i}\right)
$$

In contrast, agents that have high θ are constrained. They consume $c_{t}^{i}=b_{t, S}^{i}$.

- Cutoff θ satisfies: $U^{\prime}\left(C_{t}^{i}\right)=\widetilde{\theta}_{t} v^{\prime}\left(b_{t, S}^{i}\right)$
- All agents are part of a family. Excess short bonds are given to the family, so that agents will not differ in any state variable in the beginning of next period. We can thus drop i...

Theoretical Model

$$
\begin{equation*}
q_{t, S} u^{\prime}\left(C_{t}^{i}\right)=F\left(\widetilde{\theta}_{t}\right) \beta E_{t} \frac{u^{\prime}\left(C_{t+1}^{i}\right)}{\pi_{t+1}}+\int_{\tilde{\theta}_{t}}^{\infty} \theta v^{\prime}\left(b_{t, S}^{i}\right) d F_{\theta} \tag{4}
\end{equation*}
$$

prices short term debt.

$$
\begin{equation*}
q_{t, L} u^{\prime}\left(C_{t}^{i}\right)=\beta E_{t} \frac{u^{\prime}\left(C_{t+1}^{i}\right)}{\pi_{t+1}}\left(1+\delta q_{t+1, L}\right) \tag{5}
\end{equation*}
$$

prices the long term bond.

+ New Keynesian Frictions, Monetary/Fiscal Policy...

Fiscal Multipliers: Simple Analytics

- Assume lump sum taxes, log-log utility and consider a log-linear approximation of the model. The short bond Euler equation is:

$$
\begin{aligned}
\frac{\bar{q}_{S}}{\bar{C}} \hat{q}_{t, S}+F_{\overline{\widetilde{\theta}}} & \frac{\beta}{\bar{C}} E_{t} \hat{\pi}_{t+1}+F_{\overline{\widetilde{\theta}}} \frac{\beta}{\bar{C}} \hat{C}_{t+1}=\underbrace{\left(\frac{\bar{q}_{S}}{\bar{C}}+(1-\beta) \frac{1}{\bar{C}} f_{\overline{\widetilde{\theta}}} \overline{\tilde{\theta}}\right)}_{\alpha_{1}} \hat{C}_{t} \\
& -\underbrace{\left((1-\beta) \frac{1}{\bar{C}} f_{\overline{\tilde{\theta}}} \overline{\widetilde{\theta}}+\frac{1}{\bar{b}_{S}} \int_{\tilde{\tilde{\theta}}}^{\infty} \theta d F_{\theta}\right)}_{\alpha_{2}} \hat{b}_{t, S}
\end{aligned}
$$

where $\alpha_{1}, \alpha_{2}>0$.
Let us first assume that monetary policy sets the path of the nominal interest rate so that $\frac{\bar{q}_{S}}{\bar{C}} \hat{q}_{t, S}+F_{\bar{\theta}} \frac{\beta}{\bar{C}} E_{t} \hat{\pi}_{t+1}=0$.

Fiscal Multipliers: Simple Analytics

- then

$$
\hat{C}_{t}=\frac{\alpha_{2}}{\alpha_{1}} E_{t} \sum_{\bar{t} \geq 0}\left(F_{\bar{\theta}} \frac{\beta}{\alpha_{1} \bar{C}}\right)^{\bar{t}} \hat{b}_{t+\bar{t}, S}
$$

- Lets also assume that $\hat{b}_{t, S}=\varrho \hat{G}_{t}$ is sufficient to determine the response of the share to the spending shock. STF sets $\varrho>0$, LTF $\varrho<0$.

$$
\hat{T C_{t}}=\kappa_{1} \varrho \rho_{G}^{t} \hat{G}_{0}
$$

where $\kappa_{1}>0$
The impact multiplier is:

$$
\begin{equation*}
m_{0}=\frac{\bar{Y} d \hat{Y}_{0}}{\bar{G} d \hat{G}_{0}}=1+\frac{1}{\bar{G}}\left[\frac{\alpha_{2}}{\alpha_{1}} \frac{\bar{C}\left(1+\int_{0}^{\bar{\theta}} \theta d F_{\theta}\right)}{1-F_{\overline{\tilde{\theta}}} \frac{\beta}{\alpha_{1} \bar{C}} \rho_{G}}+\bar{b}_{S}\left(1-F_{\overline{\widetilde{\theta}}}\right)\right] \varrho \tag{6}
\end{equation*}
$$

Fiscal Multipliers: Simple Analytics

- The same can be shown with a Taylor rule:

$$
\begin{gathered}
\hat{i_{t}}=\phi_{\pi} \hat{\pi}_{t} \\
m_{0}=\alpha_{3}\left[1+\left(\frac{1}{\bar{G}} \frac{\alpha_{2}}{\alpha_{1}} \frac{\bar{C}\left(1+\int_{0}^{\overline{\tilde{\theta}}} \theta d F_{\theta}\right)}{1+\frac{1+\eta}{\omega} \frac{1}{\alpha_{1}} \frac{\bar{q}_{S}}{\bar{C}} \phi_{\pi}}+\bar{b}_{S}\left(1-F_{\overline{\widetilde{\theta}}}\right)\right) \varrho\right]
\end{gathered}
$$

where $\alpha_{3}<1$

Fiscal Multipliers: A calibrated model.

$$
\begin{equation*}
\hat{s}_{t}^{\text {Short/Long }}=\varrho \hat{G}_{t} \tag{7}
\end{equation*}
$$

where s is the share of short (defined as debt of maturity less than one year) over long.

$$
\hat{s}_{t}^{\text {Short/Long }}=\frac{1}{\bar{s}^{\text {Short/Long }}} \frac{\bar{b}_{S}}{\bar{b}_{L} \frac{\delta^{4}}{1-\delta}}\left(\hat{b}_{S, t}-\hat{b}_{L, t}\right)
$$

Baseline rule for lump sum taxes.

$$
\begin{equation*}
\hat{T}_{t}=\phi_{T} \hat{D}_{t-1} \tag{8}
\end{equation*}
$$

+Monetary policy follows a simple inflation targeting rule.

Fiscal Multipliers: A calibrated model.

Most of the calibration is standard. What is worth noting is the following:

1. We calibrate the short term return to be 1 percent per annum + the term spread is also 1 percent.
2. We set $\varrho=0.6$. (For proxy VAR, short term financing was identified in periods where the average increase in the share of 0.6 percent and the spending shock is 1 percent).
3. F is \log normal. The variance of F is so that the model matches the evidence presented in Greenwood et al (2015) (an increase in T-Bill ratio to GDP reduces the spread between T-bills and T-notes/bonds by 16 basis points in the case of 4 week bills and about 8 basis points for 10 week yields.

Fiscal Multipliers: Simple Taylor rule $\hat{i}_{t}=\phi_{\pi} \hat{\pi}_{t}$

Fiscal Multipliers: Inertial rule $\hat{i}_{t}=0.9 \hat{i}_{t-1}+.1 \phi_{\pi} \hat{\pi}_{t}$

Fiscal Multipliers: Fiscal Theory $\phi_{\pi}<1, \phi_{T}=0$

Optimal Policy

The Problem: Finance short or long?

- With distortionary taxes a higher multiplier will translate to lower fiscal deficits in times of high expenditures. This will enable the government to better smooth tax distortions across time.
- Short term yields are lower, and therefore issuing short bonds lowers the overall costs of servicing debt and hence lowers also the average level of taxes.
- However, an increase in the spending level leads to a drop in long bond prices (when consumption is crowded out). Thus, a government that issues long term debt, benefits from fiscal insurance and can smooth taxes through time.

Optimal Policy

Conclusions

Financing Short-term increases the fiscal multiplier.

- We provide evidence from structural VARs
- We explore a theory that can rationalize this finding
- An optimizing government will focus on issuing short term debt, to exploit the larger fiscal multiplier.

Appendix: Local Projections.

$$
\begin{gathered}
Y_{t+h}=I_{t-1}\left[a_{A, h}+\beta_{A . h} \varepsilon_{t}+\psi_{A, h}(L) X_{t-1}+\right] \\
+\left(1-I_{t-1}\right)\left[a_{B, h}+\beta_{B, h} \varepsilon_{t}+\psi_{B, h}(L) X_{t-1}\right]+\text { qtrend }+u_{t+h}
\end{gathered}
$$

Y is output, consumption, investment, h is the horizon. X is a vector of control variables (including lags of output, consumption investment to control for serial auto-correlation), $\psi_{A, h}(L)$ is polynomial in the lag operator, and ε is the shock.

Moreover, $I_{t-1}=1$ when the ratio of short over long debt increased between periods $t-2$ and $t-1$, and $I_{t-1}=0$ otherwise. ${ }^{1}$
${ }^{1}$ (Note we also experimented with I_{t} and with $\frac{1}{4}\left(I_{t-1}+I_{t}+I_{t+1}+I_{t+2}\right)$ it didn't make a difference).

Appendix: Local Projections.

IRFS, news instrument (blue $=\mathrm{G}$ with short debt; red $=\mathrm{G}$ with long debt)

Appendix: Local Projections.

IRFS, Blanchard-Perotti (blue $=\mathrm{G}$ with short debt; red $=\mathrm{G}$ with long debt)

