Income Inequality in General Equilibrium

NBB Colloquium

Bastien Bernon

Joep Konings Glenn Magerman

ECARES (ULB)

KU Leuven GSB Nazarbayev CEPR

ECARES (ULB) CEPR

October 20, 2022

Motivation

• Covid-19 has affected both firms and households

- forced closures
- temporary unemployment

• Leading to changes in welfare

- lower wages
- workers moving across sectors
- lower output

• This paper: how do labor, wages and GDP change?

- in response to a labor-specific productivity shock
- due to changes in labor mobility

Production and consumption

• Households/consumers identical homothetic preferences

$$\mathcal{Y} = D\left(\{c_i\}_{i \in \mathcal{N}}\right)$$

• **Production** $i \in \mathcal{N}$ sectors, with constant returns-to-scale

$$y_i = F_i(z_{il}, l_i, \{x_{ij}\}_{j \in \mathcal{N}})$$

Labor markets and the production network

• Households supply labor in sector *i* based on preferences and wages

$$l_i = \frac{\Phi_i w_i^{\kappa}}{\mathcal{W}^{\kappa}}$$

where the wage index $\mathcal{W} = \left(\sum_j \Phi_j w_j^\kappa
ight)^{1/\kappa}$

Labor mobility

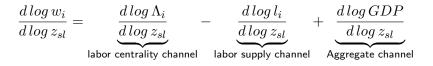
- $\kappa \to 0$, perfect immobility of workers across sectors
- $\kappa \to \infty$, perfect mobility
- **Real GDP contribution** of a sector (λ_i) and its share of workers (Λ_i)

$$\lambda_i = \sum_j \Omega_{cj} \Psi_{ji} \; ; \qquad \qquad \Lambda_i = \Omega_{il} \lambda_i$$

with Leontief multiplier of input i for the production of j, Ψ_{ji} , final demand share of good j, Ω_{cj} , and the labor share in sector i, Ω_{il}

Comparative statics

• Change in wage in sector *i* from labor productivity shock in *s*



• Wage inequality

- inequality-neutral result in Cobb-Douglas models
- only change in real GDP, keeping wage gaps constant
- more generally, inequality arises from two labor channels

A CES network economy

• CES production and consumption to take to the Belgian data

$$y_i = \left(\omega_{il}^{\frac{1}{\sigma_y}} l_i^{\frac{\sigma_y - 1}{\sigma_y}} + \sum_j \omega_{ij}^{\frac{1}{\sigma_y}} x_{ij}^{\frac{\sigma_y - 1}{\sigma_y}}\right)^{\frac{\sigma_{y,i}}{\sigma_y - 1}} ; \quad U = \left(\sum_j \omega_{cj}^{\frac{1}{\sigma_c}} c_j^{\frac{\sigma_c - 1}{\sigma_c}}\right)^{\frac{\sigma_c}{\sigma_c - 1}}$$

• Two exercises

- Impact of labor productivity shock on GDP and sector wages
- Impact of change in labor mobility on GDP and sector wages

Data and calibration

• Belgium IO tables (64 sectors, 2015)

- intermediate good matrix Ω_X
- labor and capital shares Ω_L, Ω_K
- employment L_i

sectoral elasticity	σ_{y}	0.5	[Oberfield and Raval, 2021];
	v		[Atalay, 2017]
final demand elasticity	σ_c	0.9	[Herrendorf et al., 2013];
			[Oberfield and Raval, 2021]
mobility	κ	1.4	[Galle and Lorentzen, 2021]
worker preferences	Φ	from κ	and employment and wages data

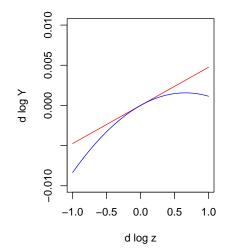
Results 1: A labor productivity shock in the energy sector

$$d\log \mathcal{Y} = \frac{d\log \mathcal{Y}}{d\log z_{El}} d\log z_{El} + \frac{1}{2} \frac{d^2 \log \mathcal{Y}}{d\log z_{El}^2} (d\log z_{El})^2$$

$(\sigma_y, \sigma_c, \kappa)$	$\frac{d \log \mathcal{Y}}{d \log z_{El}}$	$\frac{d^2 \log \mathcal{Y}}{d \log z_{El}^2}$	
(0.5, 0.9, 1.4)	0.005	-0.007	

- $\bullet~1st~order:~1\%$ increase in productivity $\rightarrow~0.005\%$ increase in real GDP
- 2nd order: amplifies negative shocks, dampens positive shocks

Results 1: First- and second-order effects on GDP



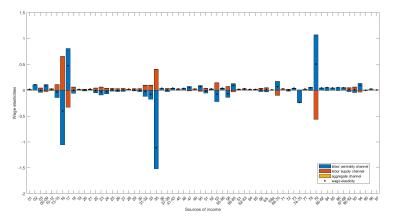
Red line: first-order effect. Blue line: total effect.

Results 1: Changes in sector wages

mean wage elasticities	_	25th percentile	75th percentile
0.004	0.18	0.00006	0.04

• Wage changes around zero, some sectors with large changes

Results 1: Decomposition of wage elasticities



- Productivity shock energy sector (35) decreases wages in own sector
- Offsetting effects: labor centrality vs labor supply channels

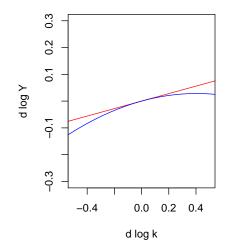
Results 2: A change in labor mobility

$$d\log \mathcal{Y} = \frac{d\log \mathcal{Y}}{d\log \kappa} d\log \kappa + \frac{1}{2} \frac{d^2 \log \mathcal{Y}}{d\log \kappa^2} (d\log \kappa)^2$$

$(\sigma_y, \sigma_c, \kappa)$	$\frac{d\log \mathcal{Y}}{d\log \kappa}$	$\frac{d^2 \log \mathcal{Y}}{d \log \kappa^2}$
(0.5, 0.9, 1.4)	0.14	-0.34

• Total effect on real GDP > 0 when workers are reallocated towards sectors that are more important for final demand

Results 2: First- and second-order effects on GDP



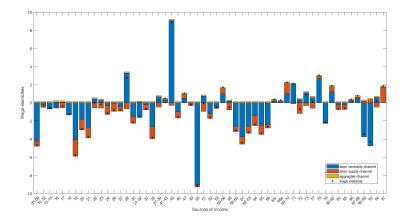
- 1st order effect: positive
- 2nd order effect: amplifies negative shocks, dampens positive shocks

Results 2: Changes in sectoral wages

mean wage elasticities	-	25th percentile	75th percentile
-0.82	10.58	- 2.74	0.39

- Wages experience a negative change when mobility between sectors increases
- There is a large dispersion between wage changes

Results 2: Decomposition of wage elasticities



• The correlation between the labor centrality and the labor supply effects now depends on the initial situation

Conclusion

• We demonstrate new sources of income inequality

- sector wages can change in response to shocks in other sectors
- ► how much depends on IO structure of production and labor mobility

• We provide a model of income inequality

- shocks to labor productivity
- changes in labor mobility
- shocks to one sector can affect wages and labor supply in others
- affecting real GDP

Policy implications

- spillover effects from one sector to another: unintended consequences?
- direct and indirect effects from increasing labor mobility
- total effect mobility depends on initial equilibrium

Thank you

- bastien.bernon@ulb.be
- joep.konings@kuleuven.be
- glenn.magerman@ulb.be

Appendix: Sectoral employment in Belgium

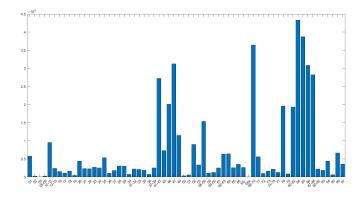


Figure: Sectoral employment in Belgium • calibration

Appendix: Sectoral wage in Belgium

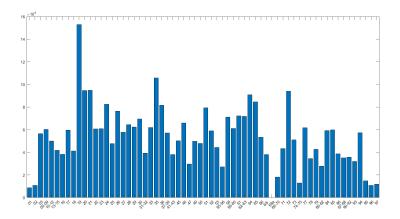


Figure: Sectoral wages in Belgium and capital incomes Calibration

Appendix: Ω_X matrix

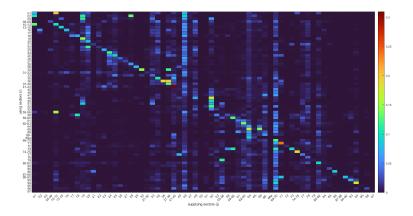
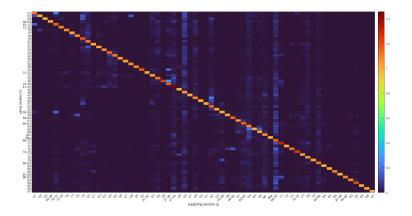


Figure: Ω_X matrix • Calibration

Appendix: Ψ matrix



Appendix: Off-diagonal Ψ matrix

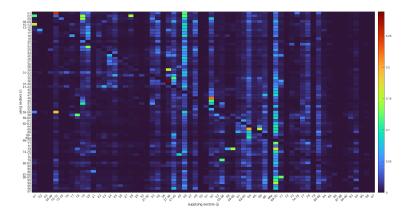


Figure: Off-diagonal Ψ matrix \bullet Calibration

Appendix: Ω_X matrix with imports/exports

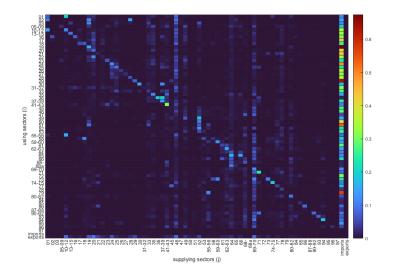


Figure: Ω_X matrix with imports/exports \bullet Calibration

Appendix: Ψ matrix with imports/exports

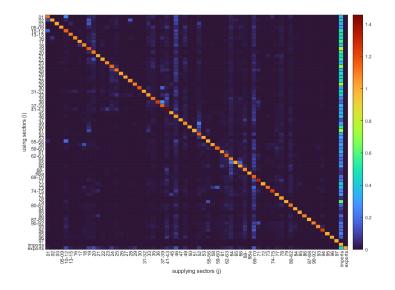


Figure: Ψ matrix with imports/exports \bullet Calibration

Appendix: Vectors Ω_L , Ω_K , λ and Λ

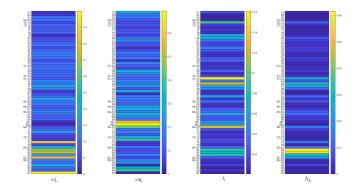


Figure: Vectors Ω_L , Ω_K , λ and Λ Calibration

A CES network economy: Labor-specific sectoral productivity shock

• Impact on real GDP:

$$d\log \mathcal{Y} = \underbrace{\Lambda_s d\log z_{sl}}_{\text{1st order effect}} + \underbrace{\frac{1}{2} \frac{d\Lambda_s}{d\log z_{sl}} (d\log z_{sl})^2}_{\text{2nd order effect}}$$

• Heterogeneous impact on wages:

$$\frac{d\log w_i}{d\log z_{sl}} = \hat{\sigma}_{y,i} d\log \left(\frac{w_i}{p_i}\right) + \frac{1}{\lambda_i} \hat{\sigma}_c \sum_o \Omega_{co} \Psi_{oi} d\log \left(\frac{p_o}{\mathcal{P}}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{ko} \Psi_{oi} d\log \left(\frac{p_o}{p_k}\right) + \sum_k \frac{\lambda_k}{\lambda_i} \hat{\sigma}_{y,k} \sum_o \Omega_{i} \sum$$

labor centrality channel

$$-\underbrace{\kappa}_{\text{labor supply channel}} \underbrace{\frac{\Phi_i}{l_i} \ d \log \ \left(\frac{w_i}{\mathcal{W}}\right)}_{\text{aggregate channel}} + \underbrace{\Lambda_s}_{\text{aggregate channel}}$$

▶ back

A CES network economy: Shock to workers' mobility

$$d\log \mathcal{Y} = \underbrace{\left(\kappa \sum_{j} \Lambda_{j} \left(\log w_{j} - \sum_{o} l_{o} \log w_{o}\right)\right) d\log \kappa}_{\text{1st order effect}} + \underbrace{\frac{1}{2} \left(\frac{d\log \mathcal{Y}}{d\log \kappa} + \kappa \sum_{j} \frac{d\Lambda_{j}}{d\log \kappa} \left(\log w_{j} - \sum_{o} l_{o} \log w_{o}\right) + \kappa \sum_{j} \Lambda_{j} \left(\frac{d\log w_{j}}{d\log \kappa} - \sum_{o} l_{o} \frac{d\log w_{o}}{d\log \kappa}\right)\right)}_{\text{2nd order effect}} + \underbrace{\frac{\chi (d\log \kappa)^{2}}{2nd \text{ order effect}}}_{\text{2nd order effect}} + \underbrace{\frac{\chi (d\log \kappa)^{2}}{2nd \text{ order effect}}}_{\text{1abor centrality channel}} + \underbrace{\sum_{k} \frac{\lambda_{k}}{\lambda_{i}} \hat{\sigma}_{y,k} \sum_{o} \Omega_{ko} \Psi_{oi} \left(\frac{d\log p_{o}}{d\log \kappa} - \frac{d\log \mathcal{P}}{d\log \kappa}\right)}_{\text{1abor centrality channel}} + \underbrace{\kappa \left(\log w_{i} - \sum_{o} l_{o} \log w_{o}\right)}_{o} + \underbrace{\left(\kappa \sum_{j} \Lambda_{j} \left(\log w_{j} - \sum_{o} l_{o} \log w_{o}\right)\right)}_{o} \right)}_{\text{1abor centrality channel}}$$

labor supply channel

Results: 2nd order decomposition and nonlinearities for the shock to workers' mobility

$$\frac{d^2 \log \mathcal{Y}}{d \log \kappa^2} = \underbrace{\kappa \sum_j \Lambda_j \left(\log w_j - \sum_o l_o \log w_o \right)}_{\text{scale effect of } \kappa \text{ change}} + \underbrace{\kappa \sum_j \frac{d \Lambda_j}{d \log \kappa} \left(\log w_j - \sum_o l_o \log w_o \right)}_{\text{change in final demand importance}} + \kappa \sum_j \Lambda_j \left(\frac{d \log w_j}{d \log \kappa} - \sum_o l_o \frac{d \log w_o}{d \log \kappa} \right)$$

change in comparative wages

▶ back

Appendix: Different specifications for the shock to labor-specific productivity

$(\sigma_y,\sigma_c,\kappa)$	$rac{d \log \mathcal{Y}}{d \log z_{El}}$	$rac{d^2 \log \mathcal{Y}}{d \log z_{El}^2}$	mean wage	s.d. wage
		5 Et	elasticities	elasticities
(0.5, 0.9, 1.4)	0.005	-0.007	0.004	0.18
(0.1, 0.9, 1.4)	0.005	0.0008	0.002	9.39
(0.5, 0.9, 1.1)	0.005	-0.007	0.004	0.85
(0.5, 0.9, 2)	0.005	-0.007	-0.06	0.73

Table: Results of the real GDP elasticities to workers' mobility shocks Dack

Appendix: Different specifications for the shock to workers' mobility

$(\sigma_y,\sigma_c,\kappa)$	$\frac{d \log \mathcal{Y}}{d \log \kappa}$	$\frac{d^2 \log \mathcal{Y}}{d \log \kappa^2}$	mean wage	s.d. wage
		5	elasticities	elasticities
(0.5, 0.9, 1.4)	0.14	0.19	-1.57	26.45
(0.1, 0.9, 1.4)	0.14	-0.69	-0.23	16.78
(0.5, 0.9, 1.1)	0.11	-0.19	-0.64	8.31
(0.5, 0.9, 2)	0.20	-0.79	-1.17	15.12

Table: Results of the real GDP elasticities to workers' mobility shocks back

Bibliography I


```
Atalay, E. (2017).
```

How important are sectoral shocks? American Economic Journal: Macroeconomics, 9(4):254–80.

Galle, S. and Lorentzen, L. (2021).

The unequal effects of trade and automation across local labor markets.

Available at SSRN 3800962.

Herrendorf, B., Rogerson, R., and Valentinyi, A. (2013).
 Two perspectives on preferences and structural transformation.
 American Economic Review, 103(7):2752–89.

Oberfield, E. and Raval, D. (2021). Micro data and macro technology. *Econometrica*, 89(2):703–732.