Optimal Dynamic Capital Requirements (Optimal Sectoral Capital Requirements?)

Caterina Mendicino Kalin Nikolov (ECB/DGR) (ECB/DGR)

Javier Suarez (CEMFI) Dominik Supera (Wharton)

The Transmission Mechanism of New and Traditional Instruments of Monetary and Macroprudential Policy, NBB, 13-14 October 2016

Introduction

- Bank capital requirements (CRs) are still at the core of micro and macroprudential policies
- After the GFC adopting a macroprudential perspective has become compulsory
- Developing GE models that help understand the channels of tramission of macroprudential policies is a top research priority

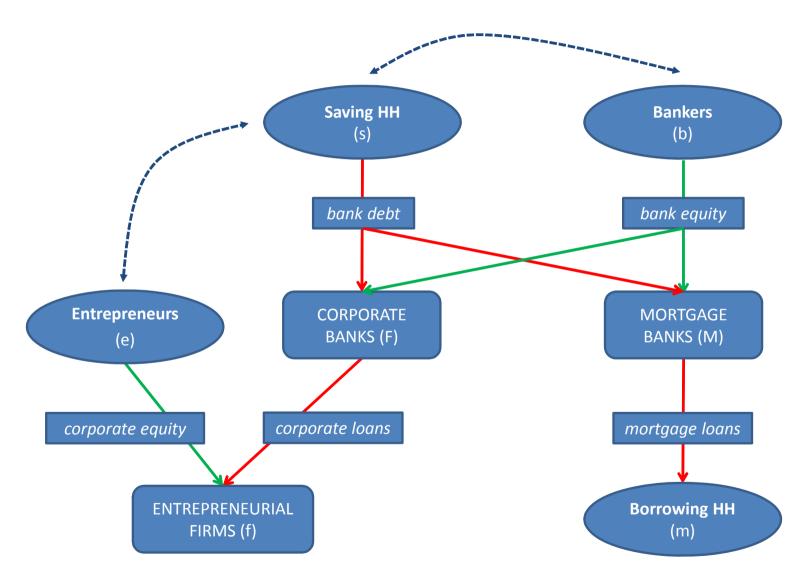
Within this research program, our paper focuses on two issues:

- Policy rules that mimic closely current Basel regulations (optimal level + default-sensitivity of sectoral CRs)
- Agent heterogeneity & redistributive impact of prudential policies

The setup

Bank fragility is key to bank-related transmission channels

- Key distortions:
 - Limited liability & safety net guarantees (bank debt partly insured)
 - Pricing of uninsured bank debt based on systemwide risk-taking
 - Net worth channel a la BGG, also for banks
- Main policy conclusions:
 - CRs must keep risk of bank failure low
 - Increasing CRs is Pareto-improving up to a point
 - CRs on corporate & mortgages loans should be higher...
 but less time-varying than implied by IRB formulas with PIT PDs


Related literature (growing)

- DSGE+banking: Curdia-Woodford'10, Gertler-Kiyotaki'10, Geraliet-al'10), Meh-Moran'10, Gertler-Kiyotaki-Queralto'12)
 [we add normative assessment of CRs]
- GE+bank fragility: Angeloni-Faia'13, Kashyap-Vardoulakis-Tsomocos'14, Aoki-Nikolov'15, Boissay-Collard-Smets'16, Martinez-Miera-Suarez'14, Clerc-et-al'15
- We build on Clerc-et-al'15, with significant improvements:
 - 1. Model: bankers/entrepreneurs integration in saving dynasty; insured/uninsured bank debt; bank/non-bank funding
 - 2. Policy rules: CR levels + PD-sensitivity for sector loans
 - 3. Calibration: 1st+2nd moments of EA macro & banking data
 - 4. Welfare: fully stochastic economy+2nd order methods

Plan for the talk

- 1. Sketch of the model
- 2. Determinants of bank lending standards
- 3. Calibration
- 4. Policy results
- 5. Understanding the results

Model structure

[Banks are centerpiece of credit allocation system]

Model overview

- Model with three interconnected networth channels (m, e, b)
 - Connection between leverage & default as in BGG (1999) but with non-contingent debt
 - Bank debt partly insured; bank leverage determined by capital regulation

Households

- Patient dynasty (savers s):
 - * supply (partly insured) debt to banks
 - * receive dividends from entrepreneurs, bankers & other firms
- Impatient dynasty (borrowers m):
 - * borrow to buy houses
 - * default if house is worth less than mortgage debt

- Entrepreneurs (e), ∞ -lived members of patient dynasty
 - Max. value of net worth returned to dynasty at retirement
 - Provide inside equity to firms (f) that buy&rent physical capital
 - Firms default if assets are worth less than loan repayments
- Bankers (b), ∞ -lived members of patient dynasty
 - Max. value of net worth returned to dynasty at retirement
 - Provide inside equity to banks
 - Banks (j = M, F)
 - * default if value of loan portfolio < deposit obligations
 - * enjoy deposit insurance (\simeq subsidy linked to default risk)
 - * are subject to regulatory capital requirements

- Production sector [standard; no financial frictions]
 - Perfectly competitive firms owned by saving households
 - Consumption good firms: combine capital rented from entrepreneurs with labor supplied by households
 - Capital / housing producing firms: optimize intertemporally subject to investment adjustment costs
- Key imperfections to deal with:
 - Limited liability & safety net guarantees (bank debt partly insured)
 - Pricing of uninsured bank debt based on systemwide risk-taking
 - Net worth channel a la BGG, also for banks

Some details on savers*

Budget constraint:

$$c_{s,t} + q_{h,t} (h_{s,t} - (1 - \delta_{h,t}) h_{s,t-1}) + (q_{k,t} + s_t) k_{s,t} + d_t \leq (r_{k,t} + (1 - \delta_{k,t}) q_{k,t}) k_{s,t-1} + w_t l_{s,t} + \widetilde{R}_t^d d_{t-1} + T_{s,t} + \Pi_{s,t} + \Xi_{s,t}$$

where

 d_{t-1} : bank debt with (risky) gross return \widetilde{R}_t^d

 $T_{s,t}$: lump-sum tax used to ex-post balance the DIA's budget

 $\Pi_{s,t}$: net transfers of earnings from entrepreneurs and bankers

 $\Xi_{s,t}$: profits from firms managing $k_{s,t}$

Importantly,

$$\widetilde{R}_t^d = R_{t-1}^d - (1 - \kappa)\Omega_t$$

with $R_{d,t-1}$: promised repayment (partly insured)

 κ : insured fraction of bank debt

 Ω_t : debt value losses due to bank failures [\rightarrow bank funding cost channel]

Some details on borrowers*

• Budget constraint (using typical BGG notation):

$$c_{m,t} + q_{h,t}h_{m,t} - b_{m,t} \leq w_t l_{m,t} + (1 - \Gamma_{m,t}(\overline{\omega}_{m,t})) R_t^H q_{h,t-1} h_{m,t-1} - T_{m,t}$$
 NET HOUSING EQUITY

Participation constraint of the bank

$$E_t \Lambda_{b,t+1}[(1-\Gamma_{M,t+1}(\overline{\omega}_{M,t+1}))(\Gamma_{m,t+1}(\overline{\omega}_{m,t+1})-\mu_m G_{m,t+1}(\overline{\omega}_{m,t+1}))R_{t+1}^H]q_{h,t}h_{m,t} \geq v_{b,t}\phi_{M,t}b_{m,t}$$
 Levered returns on loan portfolio

where $b_{m,t}$: non-contingent debt charging agreed gross rate R_t^M

 $\bar{\omega}_{m,t+1}$, $\bar{\omega}_{M,t+1}$: borrowers/banks idiosyncratic-shock default threshold

 $\Lambda_{b,t+1}$: bankers' stochastic discount factor

 μ_m : repossession cost, $v_{b,t}$: shadow value of bankers' wealth

 $\phi_{M,t}b_{m,t}$: bankers' equity involved in funding the loan

$$\bar{\omega}_{m,t+1} = \frac{x_{m,t}}{R_{t+1}^H}, \; x_{m,t} \equiv \frac{R_t^M b_{m,t}}{q_{h,t} h_{m,t}}, \; R_{H,t} \equiv \frac{\left(1 - \delta_{h,t}\right) q_{h,t}}{q_{h,t-1}}$$

Some details on entrepreneurs*

 ∞ -lived, return net worth to patient dynasty at retirement. They solve:

$$v_{e,t}n_{e,t} = \max_{a_t, dv_{e,t}} \left\{ dv_{e,t} + E_t \Lambda_{t+1} \left[1 - \theta_e + \theta_e \nu_{e,t+1} \right] n_{e,t+1} \right\}$$

Their firms maximize:

$$\max_{k_t, R_t^F} E_t \Lambda_{e,t+1} (1 - \Gamma_{f,t+1} (\overline{\omega}_{f,t+1})) R_{t+1}^K q_{k,t} k_{f,t}$$

subject to the participation constraint of their bank

$$E_t \Lambda_{b,t+1} (1 - \Gamma_{F,t+1} (\overline{\omega}_{F,t+1})) \widetilde{R}_{t+1}^F b_{f,t} \ge v_{b,t} \phi_{F,t} b_{f,t} \tag{1}$$

where $k_{f,t}$: capital purchased with net worth a_t & loan $b_{e,t} = (q_{k,t}k_{f,t} - a_t)$

 $b_{f,t}$: non-contingent debt charging agreed gross rate R_t^F

 $\overline{\omega}_{F,t+1}$: F banks' idiosyncratic-shock default threshold

 $\phi_{F,t}b_{f,t}$: bankers' equity involved in funding the loan

$$\bar{\omega}_{f,t+1} \equiv \frac{x_{f,t}}{R_{t+1}^K}, \ x_{f,t} = \frac{R_t^F b_{f,t}}{q_{k,t} k_{f,t}}, \ R_{t+1}^K \equiv \frac{r_{k,t+1} + (1 - \delta_{k,t+1}) q_{k,t+1}}{q_{k,t}}$$

Some details on bankers*

 ∞ -lived, return net worth to patient dynasty at retirement. They solve:

$$V_{b,t} = \max_{e_t^M, e_t^F, dv_{b,t}} \left\{ dv_{b,t} + E_t \Lambda_{t+1} \left[(1 - \theta_b) n_{b,t+1} + \theta_b V_{b,t+1} \right] \right\}$$

$$e_{M,t} + e_{F,t} + dv_{b,t} = n_{b,t}$$

$$n_{b,t+1} = \int_0^\infty \rho_{M,t+1}(\omega) dF_{M,t+1}(\omega) e_{M,t} + \int_0^\infty \rho_{F,t+1}(\omega) dF_{F,t+1}(\omega) e_{F,t}$$

$$dv_{b,t} \ge 0$$

Interior equilibrium requires:

$$E_t[\Lambda_{b,t+1}\rho_{M,t+1}] = E_t[\Lambda_{b,t+1}\rho_{F,t+1}] = v_{b,t}$$

Resulting laws of motion of e & b net worth*

$$n_{e,t+1} = \theta_e \rho_{f,t+1} a_t + \iota_{e,t}$$

$$n_{b,t+1} = \theta_b (\rho_{F,t+1} e_{F,t} + \rho_{M,t+1} e_{M,t}) + \iota_{b,t}$$

Macroprudential policy

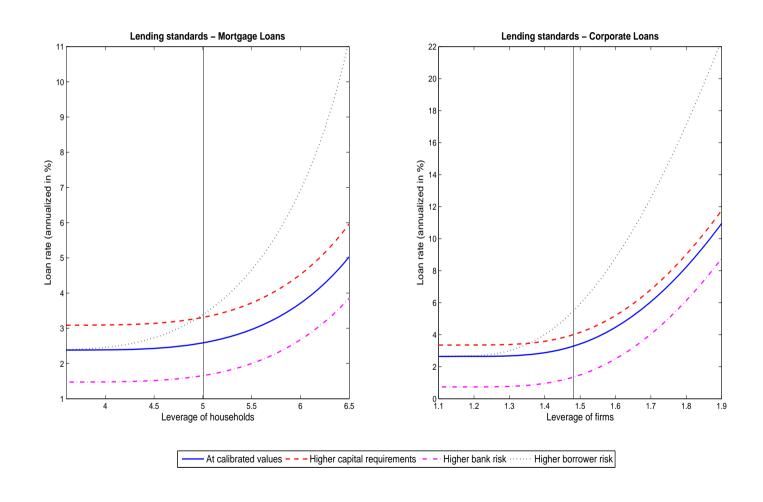
CRs applicable to each class of loans are determined by simple rules:

$$\phi_{M,t} = \phi_M + \tau_M (E_t \Psi_{m,t+1} - \Psi_m) \tag{2}$$

$$\phi_{F,t} = \phi_F + \tau_F (E_t \Psi_{f,t+1} - \Psi_f) \tag{3}$$

where: ϕ_i : steady-state level parameter

 τ_i : PD-sensitivity parameter


 $E_t \Psi_{j,t+1}$: expected PD of loans of class j

 $\Psi_{j,}$: steady-state PD of loans of class j

Interpretation: Linear approximation to the result of implementing formulas such as those of IRB approach of Basel II & III, possibly with countercyclical corrections such as using TTC (instead of PIT) PDs

Determinants of bank lending standards (F1)

Banks' PCs → loan pricing equation / lending standards

[Good PE summary of various forces acting in the model]

Calibration

- Stochastic steady state, explored through 2nd order approximate solution
- Based on linearly detrended quarterly data for EA (2001:1-2014:4)
- Reproduces salient features of the data (average ratios & volatilities of house prices, HH loans, NFC loans, spreads, write-offs)
- Implemented in two stages:
 - 1. Parameters tightly linked to one target or fixable by convention
 - 2. Rest of parameters found so as to match targeted moments [by minimizing equally weighted sum of distances between empirical & model-based moments]

Table 1. Calibration targets (1 of 2)

	<u> </u>		
Description	Definition	Data	Model
A) Stochastic means			
Fraction of borrowers	x_m	0.437	0.437
Share of insured deposits	κ	0.54	0.54
Equity return of banks	$\rho * 400$	6.734	9.278
Borrowers housing wealth share	$x_m q_h h_m$	0.525	0.495
Housing investment to GDP	I_h/GDP	0.060	0.062
HH loans to GDP	$x_m b_m/GDP$	2.120	2.126
NFC loans to GDP	$x_e b_f/GDP$	1.770	1.746
Write-off HH loans	$\Upsilon_m * 400$	0.118	0.205
Write-off NFC loans	$\Upsilon_f * 400$	0.650	0.640
Spread HH Ioans	$(R^M - R^d) * 400$	0.821	0.450
Spread NFC Ioans	$(R^F - R^d) * 400$	1.080	1.148
Capital owned by savers	k_s/k	0.220	0.223

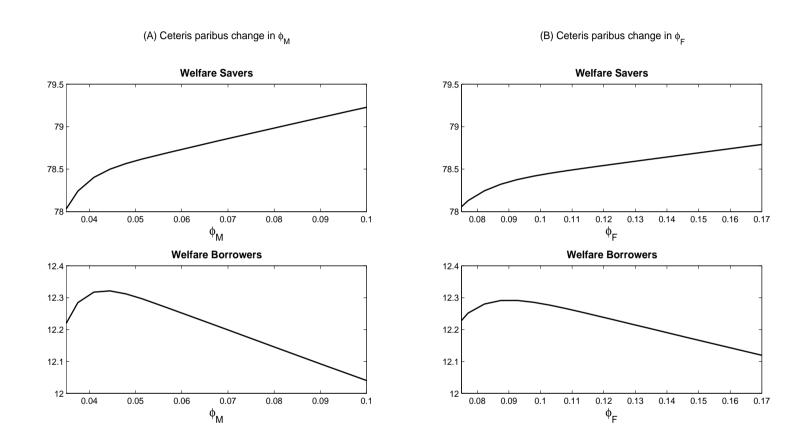
Interest rates, equity returns, write-offs and spreads reported in annualized percentage points

Table 1. Calibration targets (2 of 2)

Definition	Data	Model
$\sigma(q_{h,t})/\sigma(GDP_t)$	2.668	2.420
$\sigma(x_m b_{m,t})/\sigma(GDP_t)$	2.413	2.943
$\sigma(x_e b_{f,t})/\sigma(GDP_t)$	3.806	5.757
$\sigma(\Upsilon_{m,t})/\sigma(GDP_t)$	0.012	0.009
$\sigma(\Upsilon_{f,t})/\sigma(GDP_t)$	0.050	0.027
$\sigma(R^M-R^d)/\sigma(GDP_t)$	0.056	0.069
$\sigma(R^F - R^d)/\sigma(GDP_t)$	0.045	0.082
$\sigma(GDP_t) * 100$	2.310	2.617
	$ \frac{\sigma(q_{h,t})/\sigma(GDP_t)}{\sigma(x_m b_{m,t})/\sigma(GDP_t)} \\ \frac{\sigma(x_e b_{f,t})/\sigma(GDP_t)}{\sigma(\Upsilon_{m,t})/\sigma(GDP_t)} \\ \frac{\sigma(\Upsilon_{m,t})/\sigma(GDP_t)}{\sigma(R^M - R^d)/\sigma(GDP_t)} \\ \frac{\sigma(R^F - R^d)/\sigma(GDP_t)}{\sigma(GDP_t)} $	$\sigma(q_{h,t})/\sigma(GDP_t)$ 2.668 $\sigma(x_m b_{m,t})/\sigma(GDP_t)$ 2.413 $\sigma(x_e b_{f,t})/\sigma(GDP_t)$ 3.806 $\sigma(\Upsilon_{m,t})/\sigma(GDP_t)$ 0.012 $\sigma(\Upsilon_{f,t})/\sigma(GDP_t)$ 0.050 $\sigma(R^M - R^d)/\sigma(GDP_t)$ 0.056 $\sigma(R^F - R^d)/\sigma(GDP_t)$ 0.045

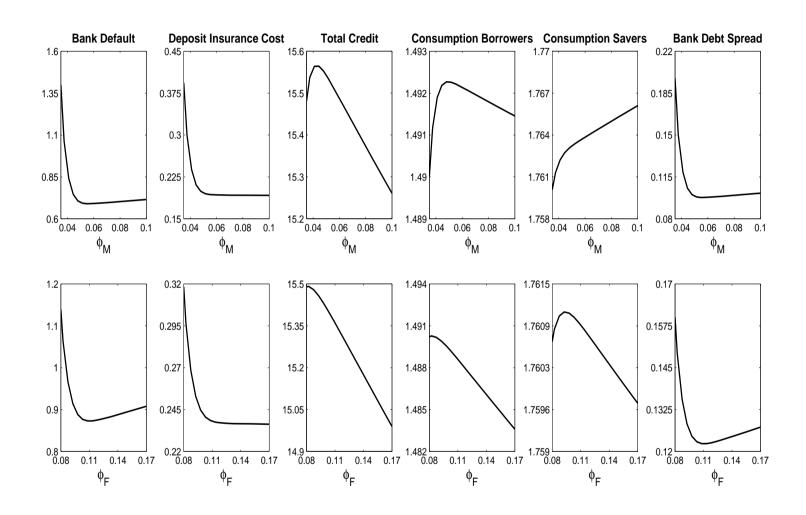
The standard deviation of GDP is in quarterly percentage points

• We calibrate the CR policy rules feeding the corresponding IRB formulas with the steady-state PDs of the loans


 $\Rightarrow \phi_M$ =3.4%, ϕ_F =7.2% [Implied bank failure probability: 1.53%]

• We set $\tau_M = \tau_F = 0$, as if using strict TTC PDs

Table 2. Parameter values


Description	Par.	Value	Description	Par.	Value
Housing weight in s utility	v_s	0.1	HH bankruptcy cost	μ_m	0.3
Disutility of labor $(\varkappa = s, m)$	φ_{\varkappa}	1	NFC bankruptcy cost	μ_f	0.3
Frisch elasticity of labor	η	1	Bank M bankruptcy cost	μ_M	0.3
Capital share in production	α	0.3	Bank F bankruptcy cost	μ_F	0.3
Capital depreciation	δ_k	0.03	Survival rate entrepreneurs	$ heta_e$	0.975
Shocks persistence (all ϱ)	$ ho_arrho$	0.9	Survival rate bankers	$ heta_b$	0.975
Fraction of borrowers	x_m	0.437	Share of insured deposits	κ	0.54
Discount factor savers	β_s	0.995	Entrepreneurs' endowment	χ_e	0.3666
Discount factor borrowers	β_m	0.971	Bankers' endowment	χ_b	0.1032
Housing weight in m utility	v_m	0.202	Capital managerial cost	ξ	0.0014
Housing adjustment cost	ψ_h	2.422	Capital adjustment cost	ψ_k	4.567
Housing depreciation	δ_h	0.012	Std. housing pref. shock ($\varkappa = s, m$)	$\sigma_{v_{\varkappa}}$	0.061
Std. productivity shock	σ_z	0.0316	Std. housing depr. shock	σ_{δ_h}	0.002
Mean std of iid HH shocks	$ar{\sigma}_{\omega_m}$	0.069	Std. capital depr. shock	σ_{δ_k}	0.002
Mean std of iid NFC shocks	$ar{\sigma}_{\omega_f}$	0.399	Std. HH risk shock	$\sigma_{\scriptscriptstyle m}$	0.001
Mean std of iid M bank shocks	$ar{\sigma}_{\omega_M}$	0.012	Std. NFC risk shock	σ_f	0.039
Mean std of iid F bank shocks	$ar{\sigma}_{\omega_F}$	0.027	Std. banks' risk shock $(j = M, F)$	σ_{j}	0.059

Welfare impact of changes in CR levels (F2)

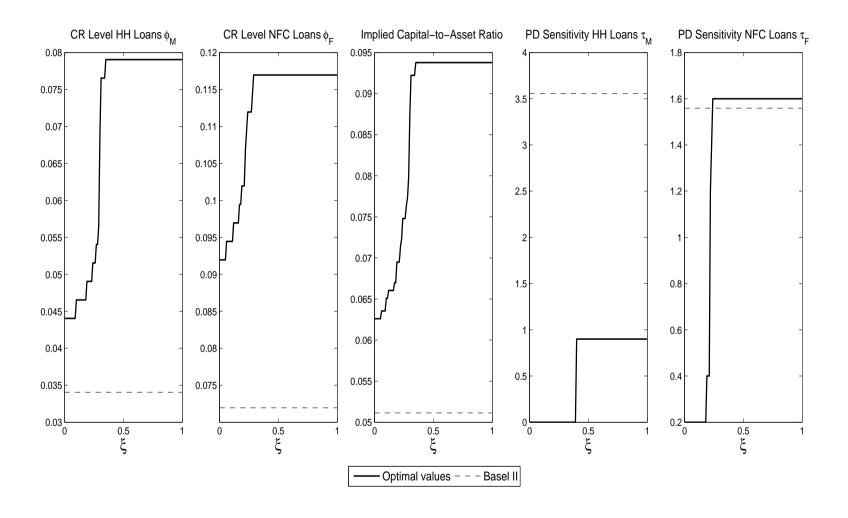
[Welfare=Expected lifetime utility of savers s & borrowers m]

Impact of CR levels on key variables (F3)

Optimal dynamic CRs: Welfare metrics

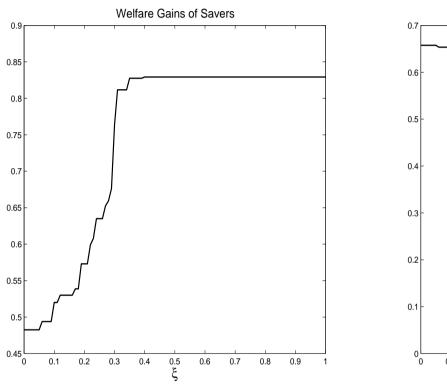
Social welfare function

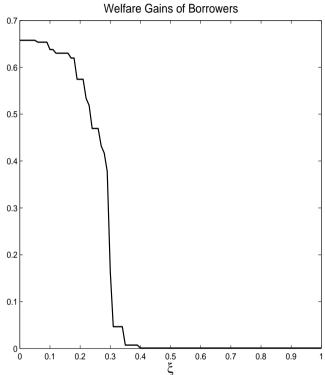
$$\tilde{V}_t \equiv \left[\zeta V_{s,t} + (1 - \zeta) V_{m,t} \right]$$


where: $V_{\varkappa,t}$: expected lifetime utility of savers s & borrowers m $\zeta \in [0,1]$: weight on savers' welfare

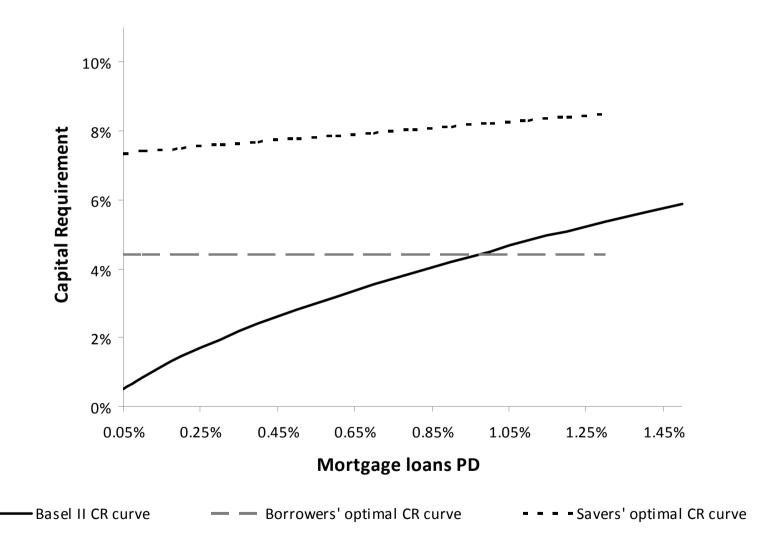
• We explore the whole Pareto frontier; for each ζ , we solve

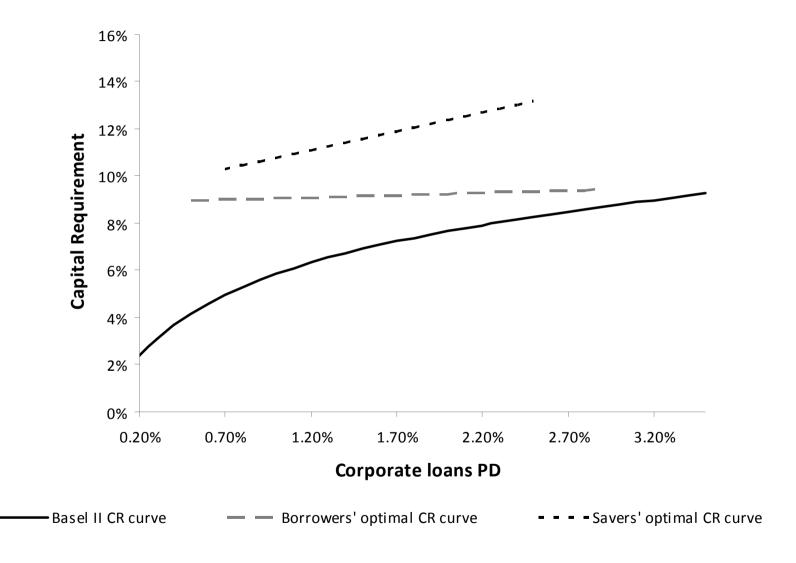
$$\max_{\{\phi_j,\tau_j\}_j} \tilde{V}_t$$
s.t.: $V_{s,t} \geq \bar{V}_{s,t}, \ V_{m,t} \geq \bar{V}_{m,t}$ (Pareto-improvement const.)
$$(\bar{V}_{\varkappa,t}: \text{ expected lifetime utility under } \textit{calibrated CR rule})$$


• Explored grid: $\phi_M \in [0.02, 0.2], \phi_F \in [0.05, 0.2], \tau_j \in [0, 5]$

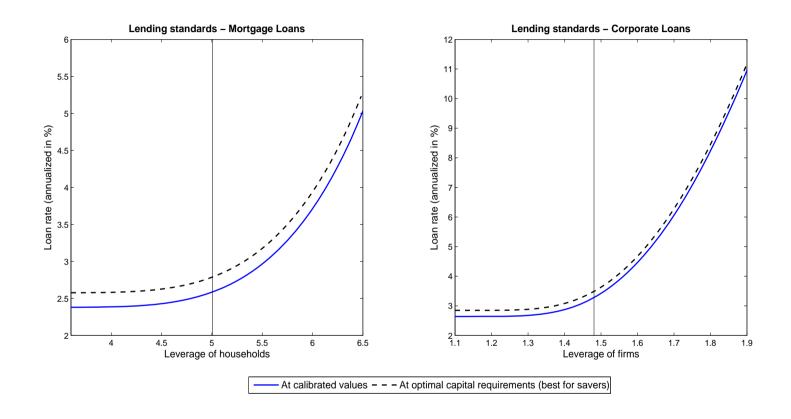

Optimal dynamic CRs (F4)

[ζ : weight on savers' welfare]


Welfare gains (F5)



[ζ : weight on savers' welfare]


Basel vs. optimal CRs: mortgage loans (F6)

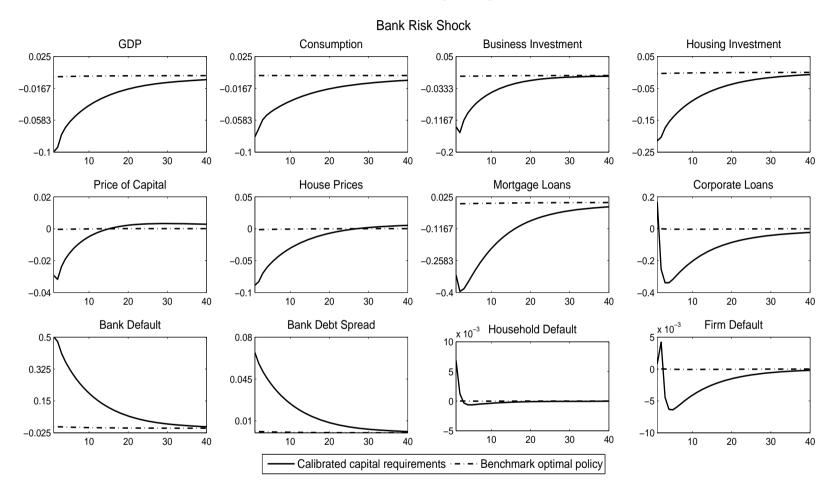
Basel vs. optimal CRs: corporate loans (F7)

Impact of optimal CRs on lending standards (F8)

- Focus: policy rule that implies equal (consumption equivalent) welfare gains for both groups
- PE effects + bank debt funding cost effects

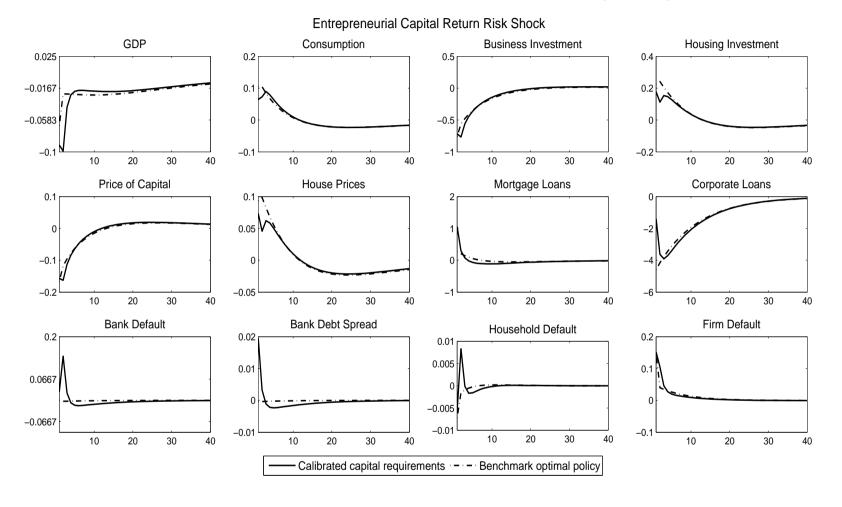
Sources of the welfare gains*

Individual welfare gains when one or several aggregate shocks are shut down


Table 3. Welfare Gains

	Savers	Borrowers
(i) All shocks	0.60	0.60
(ii) No risk shocks	0.44	0.15
- No <i>bank risk</i> shocks	0.46	0.21
- No housing return risk shocks	0.60	0.60
- No entrepreneurial capital return risk shocks	0.59	0.51
(iii) No other shocks	0.60	0.57
(iv) No aggregate uncertainty	0.43	0.11

Welfare gains from benchmark optimized policy rule vs. calibrated policy rule

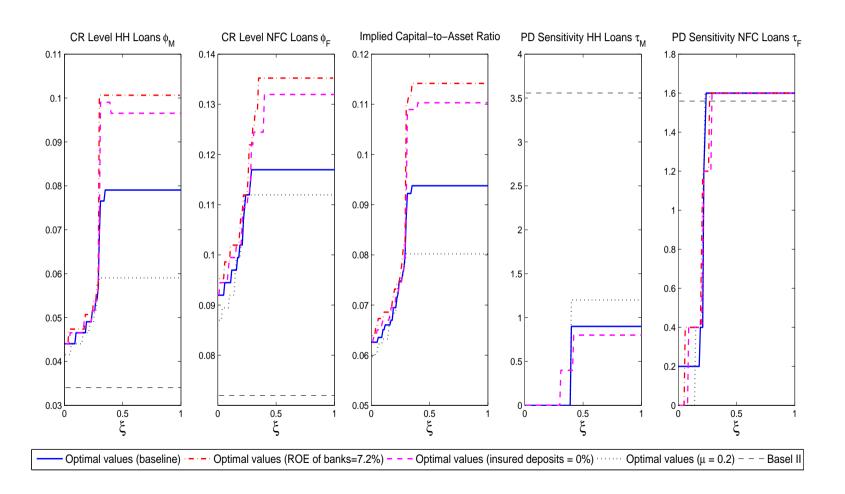

- Borrowers' welfare gains fall drastically in absence of risk shocks
- ullet Risk shocks account for about 1/3 of savers' welfare gains
 - ... Optimized policy brings both micro- & macro-prudential gains

Transmission of bank risk shocks (F9)

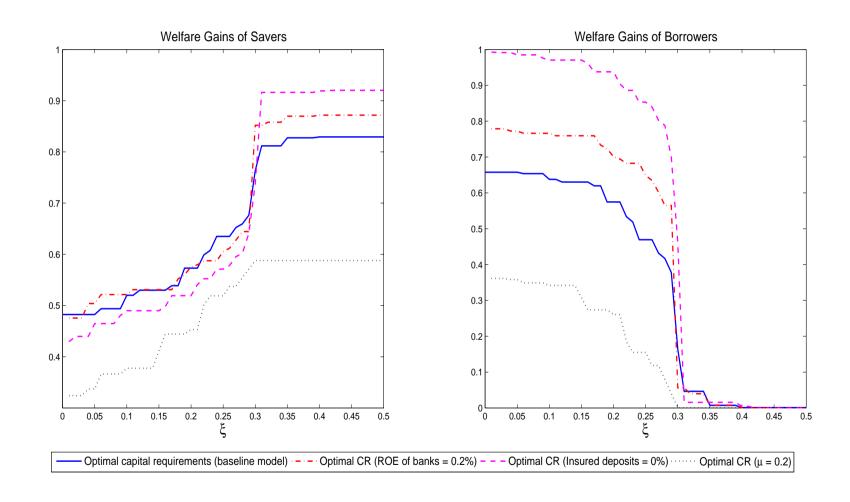
- The effects are completely offset by the optimized policy
- Bank default risk & bankers' net worth losses are close to zero, preventing contractionary impact of rise in bank funding costs

Transmission of entrepreneurial risk shocks (F10)*

- Fully offsetting the effects is not possible, since they have a non-bank root (entrepreneurs react by deleveraging ⇒ demand side effect)
- Role of policy: not to make things worse


Conclusions

- We have calibrated an augmented version of the 3D model to EA data (2001-2014) and characterized optimal Basel-type dynamic capital requirement rules
- We have addressed up-front potential conflicts between savers and borrowers
- Starting from low levels, both groups benefit from higher CR levels, especially for mortgages
 - So as to keep risk of bank failure & bank-related channels of shock transmission under control
 - Above some point, opposite effects on savers & borrowers
- Borrowers and, to a lesser extent savers, also benefit from a lower PD-sensitivity than under a PIT implementation of the IRB formulas


THANK YOU!

COMPLEMENTARY MATERIALS

Sensitivity analysis: Optimal dynamic CRs (F11)*

Sensitivity analysis: Welfare gains (F12)*

