	Results	Other comments	Conclusion
	000000		

Discussion of "Monetary and Macroprudential Policy Games in a Monetary Union" by R. Dennis and P. Ilbas

Olivier Loisel CREST

2016 National Bank of Belgium Conference on "The Transmission Mechanism of New and Traditional Instruments of Monetary and Macroprudential Policy"

Brussels, October 14, 2016

Introduction				Conclusion
00	000	0000000	00	
Institutional	context			

- The recent crisis has highlighted the need for a **macroprudential** policy to ensure financial stability.
- Macroprudential-policy instruments will be set conditionally on the state of the economy [Basel Committee on Banking Supervision (2010)].
- This raises the issue of the **interactions** between monetary and macroprudential policies [see, e.g., IMF (2012, 2013)].
- On this issue, the euro area has some specificities:
 - a single monetary authority (ECB),
 - national macroprudential authorities,
 - a common macroprudential authority (ESRB and ECB).

- The paper studies the **game** between monetary and macroprudential authorities in a DSGE model of a monetary union.
- The model is Quint and Rabanal's (2014):
 - with two countries,
 - with intra- and inter-national financial frictions,
 - estimated on euro-area data.
- In my discussion, I will
 - I place the paper in the related literature,
 - discuss the results obtained,
 - Imake some suggestions.

	Literature			Conclusion
00	000	0000000	00	
Contribution	of the paper			

- The authors cite **two papers** about monetary and macroprudential policies in a monetary union:
 - Brzoza-Brzezina, Kolasa, and Makarski (2015),
 - Quint and Rabanal (2014).
- Against the background of these two papers, they view their **original contribution** as being about games with three players.
- There are many **other papers** about monetary and macroprudential policies in a monetary union.
- Against the background of all these papers, I view their original contribution as being about
 - games with three players,
 - Stackelberg games,
 - optimal discretionary policies.

	Literature		Conclusion
	000		
Related p	papers		

Papers about monetary and macroprudential policies in a monetary union

Code	Authors	Year	Status
ввкм	Brzoza-Brzezina, Kolasa & Makarski	2015	р
DG	Dehmej & Gambacorta	2015	wp
DI	Dennis & Ilbas	2016	wp
PS	Palek & Schwanebeck	2015	wp
PV	Poutineau & Vermandel	2016	р
QR	Quint & Rabanal	2014	р
R	Rubio	2014	wp
RCG	Rubio & Carrasco-Gallego	2015	wp
S	Sergeyev	2016	wp

Status: p = published; wp: working paper.

	Literature			Conclusion
00	000	0000000	00	
	- ·			

Some features of these papers

Paper	Nature of the results	Objective functions	Max. number of players	with diff. objectives	Nash or Stack.	Discretion vs. rules
BBKM	NC	AH & W	1	1	I	Ru
DG	А	AH	3	3	N	I
DI	NE	AH	3	3	N & S	D
PS	NC	W	3	1	N	D & Ru
PV	NE	W	3	1	N & S	Ru
QR	NE	W	3	1	N	Ru
R	NC	W	3	1 or 3	N	Ru
RCG	NC	W	3	1 or 3	N	Ru
S	A	W	3	1 or 3	Ν	Ra

Nature of the results: A: analytical; NC: numerical based on a calibration; NE: numerical based on an estimation. Objectives: AH = ad hoc; W = welfare. Nash or Stack.: I: irrelevant; N: Nash; S: Stackelberg. Discretion vs. rules: D = discretion; I = irrelevant; Ra = Ramsey; Ru = rules.

		Results		Conclusion
00	000	000000	00	
Cases consid	ered			

Union-wide MP				
Timing	Cooperation	No cooperation		
Nash	x	х		
CB leader	x	x		
MP leader	×	x		

Regional MPs

Timing	Cooperation	No cooperation
Nash	x	х
CB leader, MPs followers	×	х

Nash vs.	Stackelberg	under coopera	ition I	
00	000	000000	00	
		Results	Other comments	Conclusion

• Nash and Stackelberg give "qualitatively and quantitatively **similar**" results under cooperation:

<i>co o</i>	^p under	cooperation	(union-wide	MP
	Nash	CB leader	MP leader	_
	2.150	2.158	2.164	_

• Shouldn't they give exactly identical results?

L

- In static games, any Stackelberg equilibrium is a Nash equilibrium when the players have the same objective.
- Isn't it also the case in dynamic games under discretion?

 Introduction
 Literature
 Results
 Other comments
 Conclusion

 00
 00
 00
 00
 00

 Nash vs. Stackelberg under cooperation II

- Let $L(r, \eta)$ be the common loss function, abstracting from dynamics and discretion.
- Nash:

$$\frac{\partial L}{\partial r} = 0 \quad \Leftrightarrow \quad r = f(\eta),$$
$$\frac{\partial L}{\partial \eta} = 0 \quad \Leftrightarrow \quad \eta = g(r).$$

• CB leader:

$$\frac{\partial L}{\partial \eta} = 0 \quad \Leftrightarrow \quad \eta = g(r),$$
$$\frac{\partial L}{\partial r} + \frac{\partial L}{\partial \eta}g' = 0 \quad \Leftrightarrow \quad \frac{\partial L}{\partial r} = 0 \Leftrightarrow r = f(\eta).$$

• So the two coincide with each other.

Introduction	Literature	Results	Other comments	Conclusion
Cooperation	vs. no coope	ration under	Nash	

L under Nasii (union-wide MF)						
Objectives	Cooperation		No cooperation			
Benchmark Credit to GDP as common goal Spread instead of credit to GDP	2.150 2.150 4.843	< < <	2.179 2.213 5.275			

• Cooperation:
$$\frac{\partial L^{coop}}{\partial r} = \frac{\partial L^{coop}}{\partial \eta} = 0.$$

• No cooperation:
$$\frac{\partial L^{cb}}{\partial r} = \frac{\partial L^{mp}}{\partial \eta} = 0.$$

• Since $L^{coop} = L^{cb} + L^{mp}$, these results can obtain only if $\frac{\partial L^{cb}}{\partial n} \neq 0$ or $\frac{\partial L^{mp}}{\partial r} \neq 0.$

• So cooperation forces them to internalize some externalities.

Discussion of "Monetary and Macroprudential Policy Games..."

10 / 16

Nash vs.	Stackelberg	under no coop	eration	
00	000	0000000	00	
		Results	Other comments	Conclusion

L ^{coop} under no cooperation (uni	on-wide MP)
---	-------------

Objectives	CB leader		Nash		MP leader
Benchmark	2.210	>	2.179	<	2.224
Output growth as common goal	2.156	>	2.142	<	2.185
Credit to GDP as common goal	2.238	>	2.213	<	2.242
Spread instead of credit to GDP	5.277	>	5.275	<	5.285

• Since $L^{coop} = L^{cb} + L^{mp}$, these results say that the first-mover advantage is lower than the last-mover disadvantage.

		Results	Other comments	Conclusion
00	000	0000000	00	
The effects of	of discretion			

Objectives	Nash	CB leader
Benchmark	2.108 <	2.112
Output growth as common goal	1.121 <	1.123
Credit to GDP as common goal	2.159 <	2.164
Spread instead of credit to GDP	5.238 <	5.239

L^{cb} under no cooperation (union-wide MP)

L^{cb} under no cooperation (regional MPs)

Objectives	Nash		CB leader
Benchmark	2.107	<	2.111
Regional output growth as a goal	1.227	< <	1.229
Union-wide output growth as common goal	1.148	<	1.150

		Results	Other comments	Conclusion
		000000		
The effects of	of discretion			

L^{coop} under Nash (union-wide MP)

Objectives	Cooperation		No cooperation
Output growth as common goal	2.150	>	2.142

L^{cb+mpc+mpp} under Nash (regional MPs)

Objectives	Cooperation		No cooperation
Benchmark	2.378	> > >	2.366
Regional output growth as a goal	2.551		2.523
Union-wide output growth as common goal	2.378		2.358

• These results are surprising and interesting, and can be due only to **discretion**.

• They are not quantitatively important, however, and should be checked.

O. Loisel

Introduction	Literature	Results	Other comments	Conclusion
00	000	0000000		O
Other comm	ents I			

• Implementation:

- the periphery may benefit and the core lose or vice versa from the institutional arrangement (i.e. from the assigned objectives and timing),
- so what about considering the Pareto-improving arrangement maximizing euro-area welfare?
- i.e., the best arrangement, from the point of view of the euro area, satisfying the participation constraints of the core and the periphery?

• Timing:

- given that MPs will probably move less frequently than CB in reality, what about considering them as the leaders?
- what if the players also choose the timing?
- Role of MPs: what about considering also a flexible exchange-rate regime, so as to assess how much national MPs aim at making up for the absence of national CBs?

			Other comments	Conclusion	
00	000	000000	00		
Other comments II					

- **Union-wide loss**: what about considering the sum of the national losses, instead of a loss involving aggregate variables?
- Presentation: what about expressing losses in terms of inflation equivalents?
- **Delegation**: why not try to match the commitment cooperative equilibrium, instead of the discretion cooperative equilibrium?
- **Resolution method**: shouldn't the solution procedure take expectations as given prior to optimization?

				Conclusion
00	000	000000	00	•
Conclusion				

- **Nice paper**, with some surprising and interesting results (which need to be better explained).
- Original contribution in terms of
 - games with three players,
 - Stackelberg games,
 - optimal discretionary policies.
- Framework that can be used to address additional issues (e.g. endogenous timing).