

VIVIEN LEWIS (KU Leuven & Bundesbank) STEFANIA VILLA (KU Leuven & University of Foggia)

NBB Conference: The transmission mechanism of new and traditional instruments for monetary and macroprudential policy 14th October 2016

The views expressed in this paper are solely the authors' and do not necessarily reflect the views of the Bundesbank or the Eurosystem.

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Policy Ir	iterdepen	dence			

- Macroprudential and monetary policy are interdependent (Smets, 2014; Leeper and Nason, 2014; Brunnermeier and Sannikov, 2012).
- There exist two constraints on monetary policy (MP):
 - On one hand, MP can be constrained by the zero lower bound (ZLB): Nominal interest rate cannot fall below zero ⇒ MP forced to be too tight in a downturn.
 - On the other hand, MP can be constrained by weak MacroPru: Financial dominance (Lewis and Roth, 2016)⇒ MP forced to be too accommodating in a (credit-fuelled) boom.

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Research	question				

- This paper investigates the implications of these two constraints on the effects and optimal conduct of MP and MacroPru policy in a DSGE model with financial frictions.
- We focus on the stability and dynamics of corporate debt
 - Macroprudential policy \Rightarrow bank capital \Rightarrow loss absorbing capacity \Rightarrow lending capacity \Rightarrow corporate debt
 - Monetary policy \Rightarrow inflation \Rightarrow real value of outstanding debt \Rightarrow repayment capacity \Rightarrow corporate debt

Financial frictions

- Entrepreneurs with risky projects and insufficient net worth \Rightarrow costly state verification problem (Townsend,1970; Bernanke, Gertler, Gilchrist, 1999)
- Debt contracts with non-state-contingent return: Zhang (2009), Benes and Kumhof (2011), Clerc et al. (2015), Lewis and Roth (2016)

New Keynesian features

Market power and price setting frictions

Policies

- Monetary policy: inflation target, Taylor-type interest rate rule
- **Macroprudential** policy: capital requirement rule or leaning against the wind (LATW)

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Main Mo	odel Feat	ures			

- Entrepreneurs fund investment projects using
 - Net worth
 - Bank loans

They are subject to idiosyncratic productivity shocks.

- Banks fund loans to entrepreneurs using
 - Deposits (from households)
 - Equity (from bankers)
- Since the loan contract specifies an interest rate on loans that is **not state-contingent**, banks can make loan losses if a larger number of loans defaults than what was expected at the time of setting the lending rate.

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Some key	y equatio	ns – Borrov	ving		

Entrepreneur's borrowing requirement

$$b_t = q_t \mathcal{K}_t - n_t^{\mathcal{E}} \tag{1}$$

- The gross return on capital is $\omega_{t+1}^{E} R_{t+1}^{E}$, where ω_{t+1}^{E} is an idiosyncratic disturbance to the entrepreneur's return, an i.i.d. log-normal variable with standard deviation σ_{t}^{E} .
- The lender can observe ω_{t+1}^E only by paying the monitoring cost, which is a proportion μ^E of the realized gross payoff to the entrepreneurial capital.
- The optimal financial contract specifies a cutoff value for the shock, $\overline{\omega}_{t+1}^E$, such that if $\omega_{t+1}^E \geq \overline{\omega}_{t+1}^E$ the entrepreneur is able to repay the loan. Alternatively, the borrower gets nothing, the lender pays the auditing costs.
- We define $x_t^E = \frac{Z_t^E b_t}{q_t K_t}$ the entrepreneur's leverage, where Z_t^E is the contractual loan rate.

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Banks					

Bank's borrowing requirement

$$n_t^B = b_t - d_t \tag{2}$$

Bank's profits

$$R_{t+1}^{F}b_{t} - R_{t+1}d_{t} = (1 - \Gamma_{t+1}^{F}) R_{t+1}^{F}b_{t}$$
(3)

where Γ_{t+1}^F is the share of the project return accruing to the banker after the bank has made interest payments to the depositors. Ex-post gross return on bank loans

$$R_{t+1}^{F} = \left(\Gamma_{t+1}^{E} - \mu^{E} G_{t+1}^{E}\right) \frac{R_{t+1}^{E} q_{t} K_{t}}{b_{t}}$$
(4)

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Rankors					_

Surviving bankers (fraction $1-\chi^{B})$ have net worth

$$\boldsymbol{\eta}_{t+1}^{B} = \left(1 - \chi^{B}\right) \mathcal{W}_{t+1}^{B}$$
(5)

Ex-post gross return on banker's equity

$$R_{t+1}^{B} = \left(1 - \Gamma_{t+1}^{F}\right) \frac{R_{t+1}^{F} b_{t}}{n_{t}^{B}}$$
(6)

Banker net worth dynamics

$$n_{t+1}^{B} = (1 - \chi^{B}) \left(\frac{R_{t+1}^{B}}{\Pi_{t+1}}\right) n_{t}^{B}$$
(7)

Stability depends on

• Survival rate of bankers, $1-\chi^B$

1

• Ex-post real equity return, $\frac{R_{t+1}^B}{\Pi_{t+1}}$

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Interest	Rate Rule	and Capita	l Requirer	nent Rule	

Monetary policy rule

$$\frac{R_t}{R} = \left(\frac{\Pi_t}{\Pi}\right)^{\tau_{\Pi}} \left(\frac{b_t}{b}\right)^{\tau_b} \tag{8}$$

Macroprudential policy rule

$$\frac{\phi_t}{\phi} = \left(\frac{b_t}{b}\right)^{\zeta_b}$$
, where $\phi_t = \frac{n_t^B}{b_t}$ (9)

We consider two special cases

 $\tau_b = 0 \iff$ Countercyclical Capital Buffer (CCB) $\zeta_b = 0 \iff$ Leaning Against the Wind (LATW)

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
					_
CCB M	odel: Stea	dy State Ca	apital Ratic	8%	

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
LATW N	lodel: St	eady State (Capital Ratio	8%	

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
The risk	shock ur	nder the ZLE	3		

- We use the piecewise linear perturbation method by Guerrieri and lacoviello (JME, 2015) to solve the model with ZLB constraint;
- We simulate a large risk shock (Christiano et al., 2014) so that the ZLB on the nominal interest rate is attained.
- The risk shock makes entrepreneurs more likely to declare default. Investment projects become riskier and, as a result, the external finance premium rises and investment falls.
- We consider the policy scenarios for which there is a unique stable equilibrium:
 - **(**) CCB and active MP: $\zeta_b \in [12, 20]$, $\tau_{\pi} = 1.2$, $\tau_b = 0$;
 - ② CCB and passive MP: $\zeta_b \in [0, 11]$, $\tau_{\pi} = 0.9$, $\tau_b = 0$;
 - **③** LATW and passive MP: $\zeta_b = 0$, $\tau_\pi = 0.9$, $\tau_b \in [0, 0.9]$;

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix

Peak responses – CCB and active MP

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix

Peak responses – CCB and passive MP

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Peak reg	snonses –				

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Optimal	simple rı	ıles			

- We investigate whether the LATW policy and the CCB policy are indeed optimal.
- We follow the literature on optimal simple rules (see Schmitt-Grohe and Uribe, 2007, and Levine et al., 2008, among many others).
- We numerically search for those feedback coefficients in the two policy rules to maximize the present value of life-time utility:

$$\Omega_t = E_t \left[\sum_{s=0}^{\infty} \beta^s U(c_{t+s}, 1 - l_{t+s}) \right]$$
(10)

• The welfare loss ω is implicitly defined as

$$E_t \left\{ \sum_{s=0}^{\infty} \beta^s \left[U \left((1-\omega) c_{t+s}^A, 1 - l_{t+s}^A \right) \right] \right\} = E_t \left\{ \sum_{s=0}^{\infty} \beta^s \left[U \left(c_{t+s}^B, 1 - l_{t+s}^B \right) \right] \right\},$$
(11)

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Results					

Table: Optimized monetary policy rules

τ_R	$ au_{\pi}$	$ au_{b}$	ζ_b	\mathcal{W}	100 x ω
	Ор	timized s	tandard Ta	aylor-type rule	
0	0.990	-	-	-34.55670	0.26
_	0.990	_	0.306	-34.55622	_
	0.990		0.500	-34.33022	_

Optimized augmented Taylor-type rule

- 0.000 0.000 - -34.55748 0.67

Note: The term ω represents the welfare loss relative to the reference regime, which is CCB. The optimized standard Taylor-type rule features interest rate smoothing and response to inflation; the optimized standard Taylor-type rule and CCB is the CCB policy coupled with a Taylor rule responding only to inflation; and the optimized augmented Taylor-type rule is LATW.

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Conclusic	n				

- A low feedback coefficient in the **CCB** rule forces **MP** to be **passive**. The determinacy region in which MP is active can be enlarged by raising the steady state minimum capital requirement imposed on banks.
- Irrespective on the value of the coefficient, the **LATW** policy always requires a **passive MP**.
- When monetary policy is active, an **aggressive CCB** is **detrimental** in terms of output losses in response to a risk shock. And the presence of the ZLB makes the simulated recession more severe.
- When monetary policy is passive, output trough is a decreasing function of the CCB/LATW policy. The ZLB, instead, has marginal effects.
- The **CCB** policy coupled with passive monetary policy is **optimal**, while the **LATW** policy is **detrimental** from a welfare perspective.

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Contract	ing Prob	lem			

Default by entrepreneur: $\omega_{t+1}^{E} < \overline{\omega}_{t+1}^{E}$

- Probability $1 F^{E}(\overline{\omega}_{t+1}^{E})$
- Entrepreneur not able to repay loan in full
- Bank gets whole return $\omega_{t+1}^{E} R_{t+1}^{E} q_t K_t$ less monitoring cost $\mu^{E} G_{t+1}^{E}$
- Entrepreneur gets nothing

Non-default by entrepreneur: $\omega_{t+1}^{\mathcal{E}} > \overline{\omega}_{t+1}^{\mathcal{E}}$

- Probability $F^{E}(\overline{\omega}_{t+1}^{E})$
- Entrepreneur repays loan in full
- Bank gets contractural agreed payment $\overline{\omega}_{t+1}^{E} R_{t+1}^{E} q_t K_t$
- Entrepreneur gets remainder, $(\omega_{t+1}^{E} \overline{\omega}_{t+1}^{E})R_{t+1}^{E}q_{t}K_{t}$

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Financia	I Contract:	Setup			

Entrepreneur's objective

$$\max_{x_t^E, K_t} \underbrace{\left[1 - \Gamma^E\left(\frac{x_t^E}{R_{t+1}^E}\right)\right]}_{\mathbf{X}_{t+1}^E \mathbf{X}_t} R_{t+1}^E q_t K_t$$

share to entrepreneur

s.t. bank's participation constraint

$$\mathbb{E}_t\left\{\mathsf{\Gamma}^{\mathsf{E}}\left(\frac{x_t^{\mathsf{E}}}{R_{t+1}^{\mathsf{E}}}\right) - \mu^{\mathsf{E}} \mathsf{G}^{\mathsf{E}}\left(\frac{x_t^{\mathsf{E}}}{R_{t+1}^{\mathsf{E}}}\right) \mathsf{R}_{t+1}^{\mathsf{E}} q_t \mathsf{K}_t\right\} = \mathbb{E}_t\left\{\mathsf{R}_{t+1}^{\mathsf{B}}(q_t \mathsf{K}_t - \mathsf{n}_t^{\mathsf{E}})\right\}$$

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
					
Financia	il Contrac	t: FUCs			

First order condition w.r.t. entrepreneur's leverage x_t^E

$$\mathbb{E}_{t}\left\{-\Gamma_{t+1}^{E\prime}+\xi_{t}^{E}\left(1-\Gamma_{t+1}^{F}\right)\left(\Gamma_{t+1}^{E\prime}-\mu^{E}G_{t+1}^{E\prime}\right)\right\}=0$$

First order condition w.r.t. capital K_t

$$\begin{split} \mathbb{E}_t \{ \left(1 - \Gamma_{t+1}^E\right) R_{t+1}^E + \xi_t^E \left[\left(1 - \Gamma_{t+1}^F\right) \left(\Gamma_{t+1}^E - \mu^E G_{t+1}^E\right) R_{t+1}^E - R_{t+1}^B \phi_t \right] \} = 0 \\ \end{split}$$
 where ξ_t^E Lagrange multiplier on bank's PC

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Bank's I	Expected	Return			

Expected return to bank

$$\mathbb{E}_t\left\{\left(\Gamma_{t+1}^E - \mu^E G_{t+1}^E\right) R_{t+1}^E q_t K_t\right\}$$

where share of gross return accruing to bank is

$$\Gamma_{t+1}^{\mathcal{E}} \equiv \Gamma^{\mathcal{E}}(\overline{\omega}_{t+1}^{\mathcal{E}}) = \int_{0}^{\overline{\omega}_{t+1}^{\mathcal{E}}} \omega_{t+1}^{\mathcal{E}} f^{\mathcal{E}}(\omega_{t+1}^{\mathcal{E}}) \mathrm{d}\omega_{t+1}^{\mathcal{E}} + \overline{\omega}_{t+1}^{\mathcal{E}} \int_{\overline{\omega}_{t+1}^{\mathcal{E}}}^{\infty} f^{\mathcal{E}}(\omega_{t+1}^{\mathcal{E}}) \mathrm{d}\omega_{t+1}^{\mathcal{E}}$$

Monitoring costs are $\mu^{\textit{E}}\textit{G}_{t+1}^{\textit{E}},$ with 0 $<\mu^{\textit{E}}<1$ and

$$G_{t+1}^{\mathcal{E}} \equiv G^{\mathcal{E}}(\overline{\omega}_{t+1}^{\mathcal{E}}) = \int_{0}^{\overline{\omega}_{t+1}^{\mathcal{E}}} \omega_{t+1}^{\mathcal{E}} f^{\mathcal{E}}(\omega_{t+1}^{\mathcal{E}}) \mathrm{d}\omega_{t+1}^{\mathcal{E}}$$

fraction of return lost due to entrepreneurial defaults

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Calibrati	on				

Parameter	Value	Description
β	0.99	Household discount factor
η	0.2	Inverse Frisch elasticity of labour supply
α	0.3	Capital share in production
ε	6	Substitutability between goods
κ_p	20	Price adjustment cost
δ	0.025	Capital depreciation rate
κ_I	2	Investment adjustment cost
χ^E	0.06	Consumption share of wealth entrepreneurs
χ^{B}	0.06	Consumption share of wealth bankers
μ^E	0.3	Monitoring cost entrepreneurs
σ^E	0.12	Idiosyncratic shock size entrepreneurs
ϕ	0.08	Bank capital requirement
σ^{A}	0.0716	Size technology shock
$ ho^{\mathcal{A}}$	0.8638	Persistence technology shock
σ^{ς}	0.0867	Size firm risk shock
ρ^{ς}	0.8033	Persistence firm risk shock

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Implied	Standy St	tate Values			
Implied	Steady St	tate Values			

Variable	Value	Description		
Interest Rates		·		
R	1.0152	Policy rate		
R^{D}	1.0152	Return on deposits (earned by depositors)		
R^F	1.0195	Return on loans (earned by banks)		
R ^E	1.0335	Return on capital (earned by entrepreneurs)		
R^{B}	1.0692	Return on equity (earned by bankers)		
Annualised Spreads and Default Probability				
400·(<i>R^F-R</i>)	1.73	Loan return spread p.a., in %		
400∙(<i>R^E-R</i>)	7.36	Capital return spread p.a., in %		
$400 \cdot (R^B - R)$	21.6	Equity return spread p.a., in %		
400∙ <i>F^E</i>	2.6	Default probability p.a., in %		
Leverage				
x ^E	0.7621	Leverage entrepreneurs		
$1-\phi$	0.92	Leverage banks		

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Determi	nacy Anal	lysis			

Figure with determinacy regions

- x-axis: MacPru rule coefficient ζ_b
- y-axis: Taylor Rule coefficient τ_{Π}

four quadrants

- Taylor Principle: satisfied $(au_{\Pi}>1)$ or violated $(au_{\Pi}<1)$
- MacPru Policy: stabilizing or not stabilizing

Result

• Determinacy if both policies similarly accommodating or aggressive

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
Financial	Domina	nco Pogione			

'Active' MacPru policy: ζ_b low

- Upper left: TP satisfied ($\tau_{\Pi} > 1$). Fischer debt-deflation increases real value of outstanding debt \Rightarrow debt unsustainable \Rightarrow explosive
- Lower left: TP violated ($\tau_{\Pi} < 1$). MP allows financial stability concerns to override price stability objective \Rightarrow determinacy

'Passive' MacPru policy: ζ_b high

- Upper right: TP satisfied ($\tau_{\Pi} > 1$). Sufficient bank capital to compensate debt-deflation channel \Rightarrow debt sustainable \Rightarrow determinacy
- Lower right: TP violated ($\tau_{\Pi} < 1$). Bank capital rises strongly with borrowing, but MP passive \Rightarrow indeterminacy

Introduction	Model	Determinacy	Dynamics	Optimal policy	Appendix
IRF of the	monetary	v nolicy rate			

