The response of euro area sovereign spreads to the ECB unconventional monetary policies *

Hans Dewachter $^{1\ 2}$ $\$ Leonardo Iania 3 $\$ J-C Wijnandts 3

¹KU Leuven ²NBB ³UCL

October 13^{th} , 2016

*The opinions expressed are strictly those of the authors and do not necessarily reflect the views of the National Bank of Belgium $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Motivation

Motivation, research question and contribution

(日) (同) (三) (三)

Motivation: Why UMPs in the EA?

• Fragmented response to changes in ECB policy rate (MRO)

Lehman Brothers collapse: heightened concerns about counterparty credit and liquidity risk on EA interbank market

- $\Rightarrow\,$ Disconnect between main policy rate and interbank rate
- \Rightarrow Some banks couldn't access market funding
- $\Rightarrow\,$ Threat to financial stability $\Rightarrow\,$ implication for medium-term price stability

Sovereign credit rating affects rating of domestic banks

- \Rightarrow Impact on borrowing and lending conditions
- \Rightarrow Transmission to real economy
- \Rightarrow Implication for medium-term price stability

Redenomination risk negative feedback loop

- \Rightarrow Markets require higher compensation for redenomination/breakout risk
- \Rightarrow Worsening of sovereign borrowing conditions
- $\Rightarrow \text{ Upward revision of redenomination/default probability}$

・ロト ・回ト ・ヨト ・ヨト

Dewachter et al.

13/10/16 4 / 30

Table: Identified event dates for unconventional monetary policy announcements

Announcement date	Program	Event
10/05/2010	SMP	Initial announcement
8/08/2011	SMP	Extension to Italy and Spain
1/12/2011	VLTRO	Draghi's speech at European parliament
8/12/2011	VLTRO	Announcement of 3-year LTROs
26/07/2012	OMT	Draghi's "whatever it takes" speech
2/08/2012	OMT	OMT mentionned at conference press
6/09/2012	OMT	Official announcement
4/07/2013	FG	"expects the key ECB interest rates to remain at present or
		lower levels for an extended period of time"
9/01/2014	FG	Governing Council "firmly reiterated" its forward guidance
6/03/2014	FG	Governing Council reinforced the guidance formulation
5/06/2014	TLTRO	ABSPP and announcement of 4-year TLTROs
22/08/2014	APP	Draghi's speech at Jackson Hole
4/09/2014	APP	ABSPP and CBPP3
2/10/2014	APP	ABSPP and CBPP3
6/11/2014	APP	"Should it become necessary () commitment to using
		additional unconventional instruments within its mandate.".
		Also mention of preparatory work for additional measures.
21/11/2014	APP	Draghi's speech at the Frankfurt European Banking Congress
22/01/2015	APP	PSPP
10/03/2016	APP	CSPP and announcement of new 4-year TLTROs

・ロト ・ 四ト ・ ヨト ・ ヨト

Research question

- By what channels of transmission have ECB's unconventional monetary policies impacted EA yields/spreads?
- Channel(s) of transmission?

$$y_t^i(\tau) = ec_t^{rf}(\tau) + tp_t^{rf}(\tau) + es_t^{spr}(\tau) + rr_t^{spr}(\tau)$$

- $ec_t^{rf}(\tau) =$ Signalling channel
- $tp_t^{rf}(\tau) = Portfolio$ rebalancing channel
- $es_t^{spr}(\tau) =$ Fragmentation channel: Expected average short term spread
- $rr_t^{spr}(\tau) =$ Repricing of risk channel: risk premium for unexpected changes in average future short term spreads

・ロト ・四ト ・ヨト ・ヨト

Summary of results

- Accounting for the lower bound results in less volatile and less negative term premia
- For Spain and Italy UMP worked both via the ES and RR components
- For Belgium and France UMP worked via the RR component

Methodology and Contribution

- Methodology
 - ▶ Event study: Christensen and Rudebusch (2012)
 - Spread decomposition: Expected component and risk premium (Pan and Singleton (2008), Dubecq et al. (2016))
 - Multi-market SR-DTSM with default risk
- Contribution
 - Comprehensive study of ECB's unconventional monetary policy interventions
 - Impact of the different programs on EA yield spreads
 - Multi market EA model + SR-DTSM

Modelling

Dewachter et al.

▶ Ξ ∽ ۹ (~ 13/10/16 9 / 30

・ロト ・回ト ・ヨト ・ヨト

Summary of modelling strategy

Mix of two models

- Shadow-rate (SR) model OIS
- Affine specification for spreads

Modeling strategy: two-step procedure

- First estimate the OIS curve
- Fix the OIS parameters/factors and estimate country yield curve

ML estimation

- KF (affine specification)
- EKF (SR model)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linear and non-linear models

The instantaneous risk-free rate is constrained by a lower bound:

$$\underline{r}_t = \max\left(r_t, r_t^{lb}\right), \ r_t^{lb} = \min\left(r_t^d, 0\right) \tag{1}$$

The **shadow short rate** r_t is function of two factors:

$$r_t = x_{l,t}^{ois} + x_{s,t}^{ois}$$

The instantaneous interest rate for country i is linear in the pricing factors:

$$r_t^i = r_t + \lambda_t^i$$

$$\lambda_t^i = \boldsymbol{\rho}_1^{i\mathsf{T}} \, \tilde{\boldsymbol{x}}_t^i$$

$$= \rho_{ois,l}^i \, \boldsymbol{x}_{l,t}^{ois} + \rho_{ois,s}^i \, \boldsymbol{x}_{s,t}^{ois} + \boldsymbol{x}_{l,t}^i + \boldsymbol{x}_{s,t}^i$$
(3)

<ロ> (日) (日) (日) (日) (日)

Shadow rate and observed margin deposit rate

Figure: Observed/constrained rate (Black) - Shadow rate (Red)

13/10/16 12 / 30

イロト イヨト イヨト イヨ

Pricing the yield curves

Given the instantaneous risk-free rate (additional elements) bond yields are expressed as (Duffie and Kan, 1996):

$$y_t^{ois}(\tau) = -\frac{1}{\tau} \log \mathbb{E}^{\mathbb{Q}} \left[exp\left(-\int_t^{t+\tau} r_v \, dv \right) \right]$$
$$= -\frac{1}{\tau} a^{ois}(\tau) - \frac{1}{\tau} \boldsymbol{b}^{ois}(\tau)^{\mathsf{T}} \boldsymbol{x}_t^{ois}$$
(4)

Were $\mathbb{E}^{\mathbb{Q}}$ is the expectation taken under the "risk neutral" world, i.e. by changing the probability measure while to into account of risk pricing.

Change of measure

Idea of changing probabilities is counter-intuitive, illustrate with example of loading a die

- Suppose you make a bet where you roll a dice and you get an amount of money (Euro) equal to the face of the dice
- Expected value of the bet is **3.5** Euro, Variance is 2.9
- By loading the dice, it is possible to change the expected value of the bet while keeping the variance the same (Change of measure). For example the expected value can become **2.5**.
- In term structure models the change of measure is made in order to take into account of risk and in order to price bonds in a "risk adjusted world"

Expected and risk premium components

We can compute the expected and risk premium component for this dice example

- The **expected** component is computed without taking into account of risk: the outcome of the bet without loading the dices, **3.5**.
- The term premium component is computed as the difference between the outcome of the bet with loaded dices and fair dices, so 2.5 3.5 = 1

This technique is applied in our model to obtain the decomposition of countries' yield:

$$y_t^i(\tau) = ec_t^{rf}(\tau) + tp_t^{rf}(\tau) + es_t^{spr}(\tau) + rr_t^{spr}(\tau)$$

- $ec_t^{rf}(\tau) =$ Signalling channel
- $tp_t^{rf}(\tau) = Portfolio rebalancing channel$
- + $es_t^{spr}(\tau) = \mbox{Fragmentation channel: Expected average short term spread}$
- $rr_t^{spr}(\tau) =$ Repricing of risk channel: risk premium for unexpected changes in average future short term spreads

イロン イロン イヨン イヨン 三日

Yield curve modelling

Yield curve modelling

Dewachter et al.

Unconventional MP and Sovereign Spreads

13/10/16 16 / 30

Affine specification for the OIS yield curve (1/2)

The short rate is given by the level and slope factors

$$r_t = \boldsymbol{\rho}_1^{ois\intercal} \boldsymbol{x}_t^{ois}$$

$$r_t = x_{l,t}^{ois} + x_{s,t}^{ois}$$
(5)

The state dynamics of $x_t^{ois} = \left(x_{l,t}^{ois} x_{s,t}^{ois} x_{c,t}^{ois}\right)^{\mathsf{T}}$ under the historical \mathbb{P} -measure solve the following SDEs :

$$d\boldsymbol{x}_{t}^{ois} = \kappa_{ois}^{\mathbb{P}} \left(\boldsymbol{\theta}_{ois}^{\mathbb{P}} - \boldsymbol{x}_{t}^{ois} \right) dt + \boldsymbol{\sigma}_{ois} \ d\boldsymbol{w}_{t}^{ois,\mathbb{P}}$$

$$\tag{6}$$

The market price of risk vector γ_t is essentially affine (Duffee (2002))

$$\boldsymbol{\gamma}_t = \boldsymbol{\gamma}_0 + \boldsymbol{\gamma}_1 \ \boldsymbol{x}_t^{ois} \tag{7}$$

Assuming there exist an equivalent risk-neutral Q-measure, we have:

$$d\boldsymbol{x}_{t}^{ois} = \boldsymbol{\kappa}_{ois}^{\mathbb{Q}} \left(\boldsymbol{\theta}_{ois}^{\mathbb{Q}} - \boldsymbol{x}_{t}^{ois} \right) dt + \boldsymbol{\sigma}_{ois} \ d\boldsymbol{w}_{t}^{ois,\mathbb{Q}}$$

$$\boldsymbol{\kappa}_{ois}^{\mathbb{Q}} = \boldsymbol{\kappa}_{ois}^{\mathbb{P}} + \boldsymbol{\sigma}_{ois}\boldsymbol{\gamma}_{1}$$

$$\boldsymbol{\kappa}_{ois}^{\mathbb{Q}} \boldsymbol{\theta}_{ois}^{\mathbb{Q}} = \boldsymbol{\kappa}_{ois}^{\mathbb{P}} \boldsymbol{\theta}_{ois}^{\mathbb{P}} - \boldsymbol{\sigma}_{ois}\boldsymbol{\gamma}_{0}$$
(8)

1

Affine specification for the OIS yield curve (2/2) Duffie and Kan (1996):

$$y_t^{ois}(\tau) = -\frac{1}{\tau} \log \mathbb{E}^{\mathbb{Q}} \left[exp\left(-\int_t^{t+\tau} r_v \, dv \right) \right]$$
$$= -\frac{1}{\tau} a^{ois}(\tau) - \frac{1}{\tau} \boldsymbol{b}^{ois}(\tau)^{\mathsf{T}} \boldsymbol{x}_t^{ois}$$
(9)

with $a^{ois}(\tau)$ and $\pmb{b}^{ois}(\tau)$ solving the following system of ODEs :

$$\frac{da^{ois}(\tau)}{d\tau} = \boldsymbol{b}^{ois}(\tau)^{\mathsf{T}} \boldsymbol{\kappa}_{ois}^{\mathbb{Q}} \boldsymbol{\theta}_{ois}^{\mathbb{Q}} + \frac{1}{2} tr\left(\boldsymbol{\sigma}_{ois}^{\mathsf{T}} \boldsymbol{b}^{ois}(\tau) \boldsymbol{b}^{ois}(\tau)^{\mathsf{T}} \boldsymbol{\sigma}_{ois}\right), \quad a^{ois}(0) = 0$$
(10)

$$\frac{d\boldsymbol{b}^{ois}(\tau)}{d\tau} = -\boldsymbol{\rho}_1^{ois} - \boldsymbol{\kappa}_{ois}^{\mathbb{Q}\mathsf{T}} \boldsymbol{b}^{ois}(\tau), \quad \boldsymbol{b}^{ois}(0) = 0$$
(11)

Following Christensen et al. (2011):

• OIS factor loadings ${m B}^{ois}(au)\equiv -rac{1}{ au}{m b}^{ois}(au)$ are N-S level, slope and curvature:

$$\boldsymbol{B}^{ois}(\tau) = \begin{bmatrix} 1 & \frac{1-e^{-\kappa^{ois}\tau}}{\kappa^{ois}\tau} & \frac{1-e^{-\kappa^{ois}\tau}}{\kappa^{ois}\tau} - e^{-\kappa^{ois}\tau} \end{bmatrix}^{\mathsf{T}}$$

• We restrict $oldsymbol{\sigma}_{ois}$ to be diagonal

イロン イロン イヨン イヨン 三日

OIS and 1 country: affine specification

In the spirit of Christensen et al. (2014), we add 2 country-specific factors (level and slope).

The short rate for country i is given by:

$$r_t^i = r_t + \lambda_t^i$$

$$\lambda_t^i = \boldsymbol{\rho}_{1}^{i\mathsf{T}} \tilde{\boldsymbol{x}}_t^i$$

$$= \rho_{ois,l}^i x_{l,t}^{ois} + \rho_{ois,s}^i x_{s,t}^{ois} + x_{l,t}^i + x_{s,t}^i$$
(13)

The joint state dynamics of the OIS risk factors and of the country-specific factors x_t^i under the historical \mathbb{P} -measure solve the following SDEs :

$$d\begin{pmatrix} \boldsymbol{x}_{t}^{ois} \\ \boldsymbol{x}_{t}^{i} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\kappa}_{ois}^{\mathbb{P}} & \boldsymbol{0} \\ \boldsymbol{\kappa}_{ois \to i}^{\mathbb{P}} & \boldsymbol{\kappa}_{i}^{\mathbb{P}} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} \boldsymbol{\theta}_{ois}^{\mathbb{P}} \\ \boldsymbol{\theta}_{i}^{\mathbb{P}} \end{pmatrix} - \begin{pmatrix} \boldsymbol{x}_{t}^{ois} \\ \boldsymbol{x}_{t}^{i} \end{pmatrix} \end{bmatrix} dt + \begin{bmatrix} \boldsymbol{\sigma}_{ois} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\sigma}_{i} \end{bmatrix} \begin{bmatrix} d\boldsymbol{w}_{t}^{ois,\mathbb{P}} \\ d\boldsymbol{w}_{t}^{i,\mathbb{P}} \end{bmatrix}$$
which we write in compact form as:

$$d\tilde{\boldsymbol{x}}_{t}^{i} = \tilde{\boldsymbol{\kappa}}_{i}^{\mathbb{P}} (\tilde{\boldsymbol{\theta}}_{i}^{\mathbb{P}} - \tilde{\boldsymbol{x}}_{t}^{i}) dt + \tilde{\boldsymbol{\sigma}}_{i}^{\mathbb{P}} d\tilde{\boldsymbol{w}}_{t}^{i,\mathbb{P}}$$
(14)

Country i zero-coupon bond yield is given by:

$$y_t^i(\tau) = y_t^{ois}(\tau) + s_t^i(\tau)$$
(15)

$$s_t^i(\tau) = A^i(\tau) + \boldsymbol{B}^i(\tau)^{\mathsf{T}} \; \boldsymbol{\tilde{x}}_t^i \tag{16}$$

Yield Decomposition

Yield Decomposition

Dewachter et al.

Unconventional MP and Sovereign Spreads

13/10/16 20 / 30

Yield decomposition: affine case

Recall that we want to provide the following decomposition of country i yield at maturity τ :

$$y_t^i(\tau) = ec_t^{rf}(\tau) + tp_t^{rf}(\tau) + es_t^{spr}(\tau) + rr_t^{spr}(\tau)$$
(17)

From the OIS yield curve pricing we have:

$$\begin{aligned} \frac{da^{ois}(\tau)}{d\tau} &= \boldsymbol{b}^{ois}(\tau)^{\mathsf{T}}(\boldsymbol{\kappa}_{ois}^{\mathbb{P}}\boldsymbol{\theta}_{ois}^{\mathbb{P}} - \boldsymbol{\sigma}_{ois}\boldsymbol{\gamma}_{0}) + \frac{1}{2}tr\left(\boldsymbol{\sigma}_{ois}^{\mathsf{T}}\boldsymbol{b}^{ois}(\tau)\boldsymbol{b}^{ois}(\tau)^{\mathsf{T}}\boldsymbol{\sigma}_{ois}\right) \\ \frac{d\boldsymbol{b}^{ois}(\tau)}{d\tau} &= -\boldsymbol{\rho}_{1}^{ois} - (\boldsymbol{\kappa}_{ois}^{\mathbb{P}} + \boldsymbol{\sigma}_{ois}\boldsymbol{\gamma}_{1})^{\mathsf{T}}\boldsymbol{b}^{ois}(\tau) \end{aligned}$$

The expected component of the risk-free rate $ec_t^{rf}(\tau)$ is obtained by setting the market prices of risk to zero:

$$\frac{da^{ec}(\tau)}{d\tau} = \boldsymbol{b}^{ec}(\tau)^{\mathsf{T}} \boldsymbol{\kappa}_{ois}^{\mathbb{P}} \boldsymbol{\theta}_{ois}^{\mathbb{P}} + \frac{1}{2} tr\left(\boldsymbol{\sigma}_{ois}^{\mathsf{T}} \boldsymbol{b}^{ec}(\tau) \boldsymbol{b}^{ec}(\tau)^{\mathsf{T}} \boldsymbol{\sigma}_{ois}\right), \quad a^{ec}(0) = 0 \quad (18)$$
$$d\boldsymbol{b}^{ec}(\tau) = e^{is} \mathbf{e}^{eis} \mathbf{e}^$$

$$\frac{\partial \boldsymbol{\sigma}^{c}(\tau)}{\partial \tau} = -\boldsymbol{\rho}_{1}^{ois} - \boldsymbol{\kappa}_{ois}^{\boldsymbol{\mu} \boldsymbol{\tau}} \boldsymbol{b}^{ec}(\tau), \quad \boldsymbol{b}^{ec}(0) = 0$$
⁽¹⁹⁾

Yield decomposition: affine case

The expected component of the risk-free rate is then:

$$ec_t^{rf}(\tau) = -\frac{1}{\tau} \left(a^{ec}(\tau) + \boldsymbol{b}^{ec}(\tau)^{\mathsf{T}} \boldsymbol{x}_t^{ois} \right)$$
(20)

The **term premium** component of the **risk-free rate** is then given by the difference between the model-implied OIS yield at maturity τ and the corresponding expected component

$$tp_t^{rf}(\tau) = y_t^{ois}(\tau) - ec_t^{rf}(\tau)$$
(21)

The **expected** component of the **spread** is obtained in a similar fashion:

$$es_t^{spr}(\tau) = -\frac{1}{\tau} \left(a^{es}(\tau) + \boldsymbol{b}^{es}(\tau)^{\mathsf{T}} \, \tilde{\boldsymbol{x}}_t^i \right) \tag{22}$$

and the **repricing of risk** component is obtained as the difference between the model implied spread and the expected component:

$$rr_t^{spr}(\tau) = s_t^i(\tau) - es_t^{spr}(\tau)$$
(23)

Results

2

イロン イロン イヨン イヨン

Yield decomposition for OIS: impact of lower bound

Figure: Comparison of decomposition for 5-year OIS yield

Dewachter et al.

13/10/16 24 / 30

Yield decomposition for OIS: variations around UMPs

		Affine			SR		
Prog	Actu	ec_t^{rf}	$tp_t^{rf}(\tau)$	Actu	ec_t^{rf}	$tp_t^{rf}(\tau)$	
SMP	-23	-37	14	-23	-36	13	
(T)LTRO	5	-17	19	5	-18	19	
OMT	3	-11	16	3	-9	14	
FG	-6	3	-4	-6	0	-1	
APP	4	24	-22	4	1	-7	

Table: Cumulative weekly variations in $ec_t^{rf}(\tau)$ and $tp_t^{rf}(\tau)$ components for 5-y OIS yields around announcements (in basis points)

Yield decomposition for Italy

Figure: Impact of UMPs on each component of 5-year Italian yield (SMP = black, (T)LTROs = blue and OMT = red)

13/10/16 26 / 30

Yield decomposition for Spain

Figure: Impact of UMPs on each component of 5-year Spanish yield (SMP = black, (T)LTROs = blue and OMT = red)

13/10/16 27 / 30

Yield decomposition SR model: Italy and Spain

		Italy - SR				
Prog	Actu	ec_t^{rf}	$tp_t^{rf}(\tau)$	$es_t^{spr}(\tau)$	$rr_t^{spr}(\tau)$	
SMP (T)LTRO OMT FG APP	-170 -125 -152 -46 -49	-36 -18 -9 0 1	13 19 14 -1 -7	-16 -20 -19 -7 -8	-65 -85 -86 -26 -35	
		Spain - SR				
Prog	Actu	ec_t^{rf}	$tp_t^{rf}(\tau)$	$es_t^{spr}(\tau)$	$rr_t^{spr}(\tau)$	
SMP (T)LTRO OMT FG APP	-195 -162 -170 -54 -45	-36 -18 -9 0 1	13 19 14 -1 -7	-31 -38 -42 -8 -5	-98 -120 -124 -35 -35	

Table: Cumulative weekly variations in $ec_t^{rf}(\tau)$, $tp_t^{rf}(\tau)$, $es_t^{spr}(\tau)$ and $rr_t^{spr}(\tau)$ components for 5-y Italian and Spanish yields around announcements (in basis points)

(日) (同) (三) (三)

Yield decomposition SR model: Belgium and France

		Belgium - SR				
Prog	Actu	ec_t^{rf}	$tp_t^{rf}(\tau)$	$es_t^{spr}(\tau)$	$rr_t^{spr}(\tau)$	
SMP	-66	-36	13	-1	-20	
(T)LTRO	-122	-18	19	-1	-104	
ÓMT	-37	-9	14	0	-20	
FG	-9	0	-1	0	-5	
APP	-1	1	-7	0	-7	
		France - SR				
Prog	Actu	ec_t^{rf}	$tp_t^{rf}(\tau)$	$es_t^{spr}(\tau)$	$rr_t^{spr}(\tau)$	
SMP	-23	-36	13	-3	4	
(T)LTRO	-43	-18	19	-3	-35	
ÓMT	-23	-9	14	-1	-10	
FG	-13	0	-1	0	-4	
APP	2	1	-7	1	-6	

Table: Cumulative weekly variations in $ec_t^{rf}(\tau)$, $tp_t^{rf}(\tau)$, $es_t^{spr}(\tau)$ and $rr_t^{spr}(\tau)$ components for 5-y Belgian and French yields around announcements (in basis points)

(日) (同) (三) (三)

Conlusions

Research question

• via which channel has UMP actions worked in the EA government bond market?

Modelling strategy

- Non-linear model for OIS market
- Linear model for the spreads

UMP actions...

- ... worked mostly via the expectation channel in the OIS market
- ... worked mostly via risk repricing channel for the spreads variation

Future work ...

- ... joint modelling of all euro area countries
- $\bullet \ \ldots$ feedback from the spread factors to the OIS market