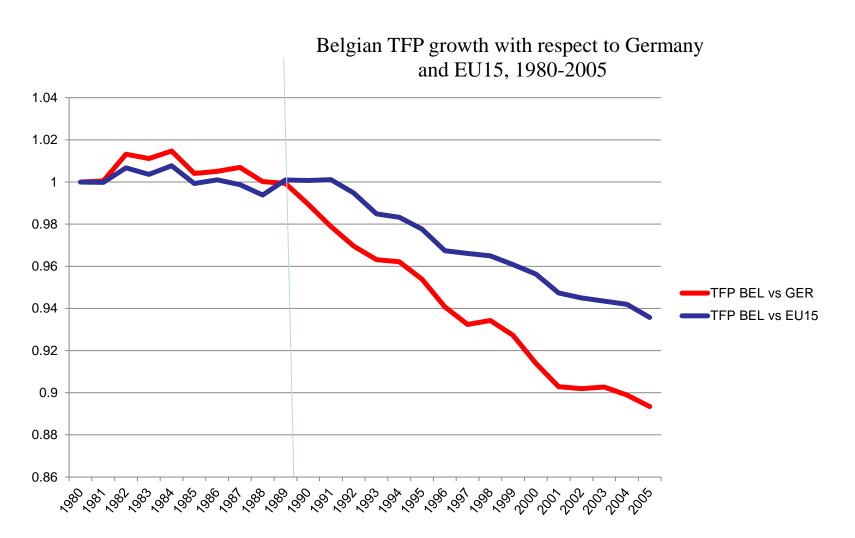
Assessing the role of ageing feminizing & better-educated workforces on TFP growth

Vandenberghe, Vincent
(IRES- UCL)
Ariu Andrea
(McDonough School of Business,
Georgetown University and IRES- UCL)

NBB-BNB Oct 16-17, 2014 Brussels

Main objective= assess impact of:

- Ageing
- Feminisation
- Rising educational attainment


on TFP growth rate at the level of the firm

Secondary objective quantify/simulate the likely impact of sociodemographic changes on Belgium's overall TPF growth, retrospectively (1990-today) and prospetively (today-2040) using demographic & employment data/projections

Motivation

Belgium has experienced a decrease in TFP growth (Biatour et al., 2011)

Age

- the share of workers aged 50 and more increased from 18% in 1980 to 21% in 2005
- the share of workers with less than 35 years decreased from more than 30% in 1980 to about 20% in 2005 (Statbel)

Gender

• The share of older women almost doubled passing from more than 3% in 1980 to 6% in 2005 (EU-KLEMS)

Education

- the share of 2-year-college-educated workers has increased from 17.9% to 19.2% (2002-2011)
- university-educated employees from 7.4% to 8%
 (Vandenberghe & Lebedinski, 2013)

Contribution

- Firm-level perspective on TFP growth
- Negative effect of age (BELGIUM/ Lallemand & Rycx, 2009; Cataldi, A., S. Kampelmann & F. Rycx, 2011;
 Vandenberghe, 2013; Vandenberghe, Rigo & Waltenberg, 2012, Vandenberghe, 2011a,b; FRANCE/ Crépon, Deniau & Pérez-Duarte, 2002; USA/ Hellerstein & Neumark, 2007)
- Gender and Education dimensions of ageing
- Focus on TFP rather than on labour productivity or wages

Analytical framework

Consider a labour-augmented Cobb-Douglas technology

$$Y_{it} = A_{it} K_{it}^{\alpha} (QL_{it})^{\beta}$$
 [1]

with Q_{it} a labour-quality index à la Hellerstein – Neumark (HN), specified as a CES

$$QL_{it} = [\mu_1 (L_{it}^{-1})^{\rho} + \dots + \mu_n (L_{it}^{-n})^{\rho}]^{1/\rho}$$
 [2]

- $-L_{itj}$, j=1... n labour types (e.g age, gender, blue-vs white collar categories)
- $-\mu_j$ reflects the (relative) marginal productivity of type j labour
- $-\rho$ the CES substitutability parameter
- $-A_{it} = A_{i0} e^{\tau . t + \omega_{it}}$; with A_{i0} the starting value of firm *i*'s TFP, $e^{\tau . t + \omega_{it}}$ capturing its dynamic
 - τ is the common annual rate of growth;
 - ω_{it} the firm-specife term, with $\omega_{it} = \Theta_i + \delta_{it}$ containing a fixed effect

Growth specification (
$$T$$
= # year lags)

Output growth Growth in use of inputs

 $In (Yit/Yit_{-T}) = \alpha ln(Kit/Kit_{-T}) + \beta ln(Lit/Lit_{-T}) + TFP growth$
 $\tau T + \beta/\rho ln(\Omega_{it}/\Omega_{it-T}) + \omega_{it} - \omega_{it-T}$ [3]

with

$$\Omega_{it} \equiv S_{it}^{r} + \lambda_{1r} [S_{it}^{l}]^{\rho} + \dots + \lambda_{nr} [S_{it}^{n}]^{\rho}$$

$$S_{it}^{j} \equiv L_{it}^{j} / L_{it} \text{ the employment shares } j = 1 \dots n$$

$$\lambda_{jr} \equiv \mu_{j} / \mu_{r}; \quad j = 1 \dots n, j \neq r; \quad r = \text{ref. cat.}$$

and rel. (marginal) labour productivities (dropping t)

$$\partial Y/\partial L^{j}/\partial Y/\partial L^{r} = \mu_{i}/\mu_{r}(L^{j}/L^{r})^{\rho-1} = \lambda_{ir}(S^{j}/S^{r})^{\rho-1}$$

Data and descriptive statistics

Source 1: Bel-first $(Y_{it}, K_{it}...)$

- Panel of about 9,000 firms (>20 workers) located in Belgium, from all sectors of the for-profit economy (except agri & mining), from 1998 to 2006
- Info on sector, location, size, capital (K_{it}) , labour & value added (Y_{it}) , edu. attainment, ownership nationality, multinational status

Source 2: Carrefour database (i.e. social security registers) $(S_{it}^{\ j})$

- Individual-level information on age, gender, blue-/white collar status of <u>all</u> workers from Bel-first sample.
- Aggregation of Carrefour data at firm level + merge with Belfirst
- Resulting firm-level panel contains labour shares $S_{ii}^{\ j}$; $j \equiv Age\ X$ Gender X Blue/White collar status

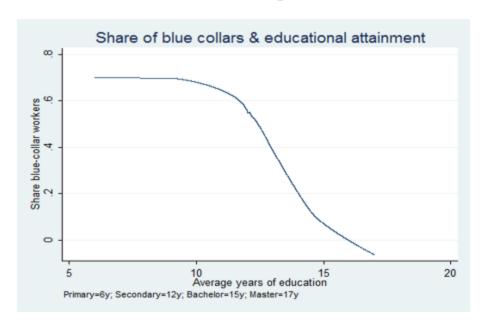
12

NB about educational attainment

• Educational attainment (primary, secondary, tertiary degree) only available at firm-level in Bel-first; while age, gender & blue/while-collar status exists at individual level in Carrefour

• We proxy education using the white/blue collar status and interact it with the two other dimensions

• But we provide evidence that this approximation is reasonable


Table 4: Ageing-Feminisation and rising educational attainment

	Age-mean	Share	Share blue	Aver. years		
		female	collars	education*		
1998	36.567	0.249	0.563	11.490		
1999	36.609	0.256	0.551	11.562		
2000	36.695	0.262	0.541	11.631		
2001	36.764	0.271	0.529	11.709		
2002	37.336	0.280	0.488	11.769		
2003	37.873	0.281	0.482	11.818		
2004	38.109	0.284	0.481	11.766		
2005	38.363	0.289	0.475	11.816		
2006	38.689	0.294	0.465	11.803		
Ν	75,437					

Source: Bel-first; Carrefour. Weight: number of fte (full-time equivalent) workers in the firm.

^{*}Primary degree=6; Secondary degree=12, Bachelor=15 and Master=17 years

Figure 3- Share of blue-collar workers & average educational attainment. Year 2006.

Source: Bel-first; Carrefour. Weight: number of fte workers in the firm. Based on lowess estimation i.e. locally weighted regression of *y* on *x*.

Econometric results

Table 5 - Econometric analysis of the role of age(ing) on & TPF level and growth- 7 age groups:<30,30-35,<mark>35-40[ref]</mark>,40-45,45-50,50-55,55-65

	[1]		[2]	[4]	[5]
	[1] Level	[2] Growth(FE)	[3] Growth(FE)+	رط] Growth(FE)+	ເວງ Growth(FE)+
	Level	Growth(FE)	controls	controls incl.	controls incl.
			COLLIOIS	cohorts	cohorts/2steps
				COHOLES	LP
Cst	4.110***	0.0377***	0.0280***	0.0488**	0.0684***
CSt	(0.0266)	(0.00115)	(0.00400)	(0.0180)	(0.0199)
α	0.112***	0.0317***	0.0423***	0.0423**	(0.0155)
и	(0.00119)	(0.00271)	(0.00313)	(0.0148)	
в	0.908***	0.638***	0.574***	0.571***	0.273***
U	(0.00250)	(0.00487)	(0.00583)	(0.0244)	(0.0677)
	1.054***	0.792***	0.794***	0.790***	0.540***
ρ	(0.0163)	(0.0128)	0.794 (0.0169)	(0.0383)	(0.0710)
n	-0.599***	0.0128)	0.217***	0.187**	0.263*
η <30 (a)	0.209***	-0.026	0.010	-0.013	-0.087
η 30-34	-0.212***	-0.026	-0.066	-0.015	-0.140
η 40-44	-0.537***	-0.144***	-0.066	-0.059 -0.057	-0.140 -0.210*
η 45-49	-0.566***	-0.360***	-0.116**	-0.236***	-0.436***
η 50-54	-0.143***	-0.376**	-0.318***	-0.277**	-0.436***
η 54-64			Firm fixed		
Controls	Year*Sector	Firm fixed		Firm fixed	Firm fixed
		effects	effects+ Share	effects+ Share	effects+ Share
			of women,	of women,	of women,
			blue-collar wks	blue-collar wks	blue-collar wks
NI-l	75 427	CE 750	40.777	+ cohort	+ cohort
Nobs	75,437	65,750	48,777	48,777	48,076
σ≡1/(1- ρ)	-18.643	4.810	4.865	4.751	2.172
DMD	•	_	productivities (1=35		1.156
RMP<30	0.403	1.014	1.151	1.121	1.156
RMP 30-34	1.192	0.982	1.025	1.002	0.965
RMP 35-39	1(ref)	1(ref)	1(ref)	1(ref)	1(ref)
RMP 40-44	0.771	0.880	0.954	0.983	0.923
RMP ₄₅₋₅₀	0.449	0.812	0.935	0.999	0.920
RMP 50-55	0.417	0.701	0.744	0.835	0.704
RMP 55-65	0.814	0.699	0.674	0.809	0.554

Standard errors in parentheses All models are estimated using non-linear least squares, with standard errors robust to firm-level clustering. Source: Bel-first; Carrefour p < 0.05, p < 0.01, p < 0.001 (a): $p = \lambda - 1$

Table 6 - Age-gender & TFP growth- 7 age groups:<30,30-34,35-39,40-44,45-49,50-54,55-64

	[3] Growth(F	E) + controls	
Cst	0.07	13***	
	(0.0	177)	
α	0.02	66***	
	(0.00)517)	
в	0.51	15***	
	(0.0	272)	
ρ	0.77	74***	
	(0.0)	335)	
	Women	Men	Prob η_j W=M
η <30 (a)	-0.112	0.181**	0.001***
η 30-34	-0.170	-0.048	<mark>0.242</mark>
η 35-39	-0.240	0 (ref)	0.048**
η 40-44	-0.246**	-0.048	0.064*
η 45-49	-0.218*	-0.149*	<mark>0.591</mark>
η 50-54	-0.239**	-0.248***	<mark>0.950</mark>
η 55-64	-0.432***	-0.202*	<mark>0.290</mark>
Controls	Firm fixed effects+ Share o	of part-time workers, blue-	
	colla	r wks	
Nobs	40,	969	
σΞ1/(1-ρ)	4.4	132	
	Implied relative margina	al productivities (1=35-39 ref)	
RMP<30	0.925	1.117	
RMP 30-34	0.905	0.975	
RMP 35-39	0.835	1 (ref)	
RMP 40-44	0.833	0.970	
RMP 45-49	0.875	0.896	
RMP 50-54	0.868	0.814	
RMP55-64	0.654	0.883	

Standard errors in parentheses. All models are estimated using non-linear least squares, with standard errors robust to firm-level clustering. Source: Bel-first 1998-2006; Carrefour. *p < 0.05, *** p < 0.01, *** p < 0.001

Table 10 – Age, blue/white collar status & TPF growth- 7 age groups:<30,30-35,35-40,40-45,45-50,50-55,55-65

AGE x Blue vs white collars

	Growth(FE) + cohorts			
Cst	0.08	0.0826 ***			
	(0.0)	(0.0189)			
α	0.02	50***			
	(0.00	0590)			
в	0.50	60***			
	(0.0)	248)			
ρ	0.8	56***			
	(0.0)	319)			
	Blue collars	White collars	Prob η_i		
			blue=white		
η <30 (a)	0.019	-0.101	0.238		
η 30-34	-0.119	-0.110	0.928		
η 35-40	-0.081	0 (ref)	0.395		
η 45-49	-0.213**	-0.236**	0.814		
η 50-54	-0.331***	-0.282***	0.681		
η 54-64	-0.391***	-0.479***	0.524		
η 54-64	-0.275*	-0.604**	0.065*		
Controls	Firm fixed effects+	Share of part-time			
	workers, blu	ue-collar wks			
Nobs	47	830			
σ≡1/(1- ρ)	6.9	947			
lm	plied relative margina	l productivities (1=35-	39 ref)		
RMP<30	0.903	0.873			
RMP 30-34	0.824	0.888			
RMP ₄₀₋₄₄	0.850	1 (ref)			
RMP ₄₅₋₅₀	0.732	0.781			
RMP ₅₀₋₅₅	0.633	0.752			
RMP ₅₅₋₆₅	0.591	0.551			
RMP<30	0.729	0.418			

Standard errors in parentheses. All models are estimated using non-linear least squares, with standard errors robust to firm-level clustering. Source: Bel-first 1998-2006; Carrefour. p < 0.05, p < 0.01, p < 0.001 (a): $p = \lambda - 1$

Table 8 - Age (<30,30-49,50-64), gender, blue/white collar status & TFP growth

AGE x GENDER X Blue/White collars

			[3] Growth	(FE) + contro	ols					
Cst	0.0814***									
		(0.0168)								
α		0.0255***								
		(0.00575)								
в			0.	564 ***						
			(0	.0240)						
ρ			0.	861***						
			(0	.0317)						
		Blue collars			White collars	;	Pro	b η_j		
					Blue=White					
	Women	Men	Prob η_j	Women	Men	Prob η_j	M	W		
			W=M			W=M				
η <30 (a)	-0.076	0.045	0.241	-0.201	-0.019	0.110	0.502	0.349		
η ₃₀₋₄₉	-0.276*	0.009	0.067*	-0.187	0 (ref)	0.184	0.927	0.610		
η 50-64	-0.354**	-0.207*	0.455	-0.489***	-0.335**	0.458	0.431	0.553		
Controls		Firm fixed effects+ Share of part-time workers								
Nobs		50,398								
σ≡1/(1- ρ)			7	7.180						
	Implied	d relative ma	rainal produ	ictivities (1=30	0-49 white coll	ar man ref)				

Implied relative marginal productivities (1=30-49 white collar man ref)

	E	Blue collars	White colla		
	Women	Men	Women	Men	
RMP<30	0.904	0.933	0.814	1.003	
RMP 30-49	0.718	0.891	0.847	1 (ref)	
RMP 50-64	0.681	0.775	0.559	0.715	

Standard errors in parentheses

All models are estimated using non-linear least squares, with standard errors robust to firm-level clustering. Source: Bel-first; Carrefour 1998-2006

(a): <mark>η≡ λ-1</mark>

[•] p < 0.05, • p < 0.01, • p < 0.001

To sum up

- Strong (negative) effect of age on TFP growth
- No statistically significant additional impact of:
 - gender
 - blue-collar status → education does not counterbalance the negative effect of ageing

Additional results:

- Industry (service VS manufacturing): age-related decline of productivity is slightly more pronounced in manufacturing
- Region (VL, W, Bxl): no differential effect
- Foreign Ownership : no differential effect
- Multinational Status: no differential effect

Estimating the overall impact of ageing on TFP growth ...

1990-2040

i) Strategy & data

The key idea is to use

- estimated $\hat{\lambda}$'s, $\hat{\beta}$ and $\hat{\rho}$ (stemming from the estimation of model [3] using 1998-2006 firm-level data)
- alongside observed + projected values of the labour shares by age S_t^j ,

to compute

Annual TFP growth loss=
$$\hat{\beta}/\hat{\rho} \ln (\Omega_t/\Omega_{t-1})$$
 [4]
with $\Omega_t \equiv [S_t^r]^{\hat{\rho}} + \hat{\lambda}_{lr} [S_t^1]^{\hat{\rho}} \dots + \hat{\lambda}_{nr} [S_t^n]^{\hat{\rho}}$

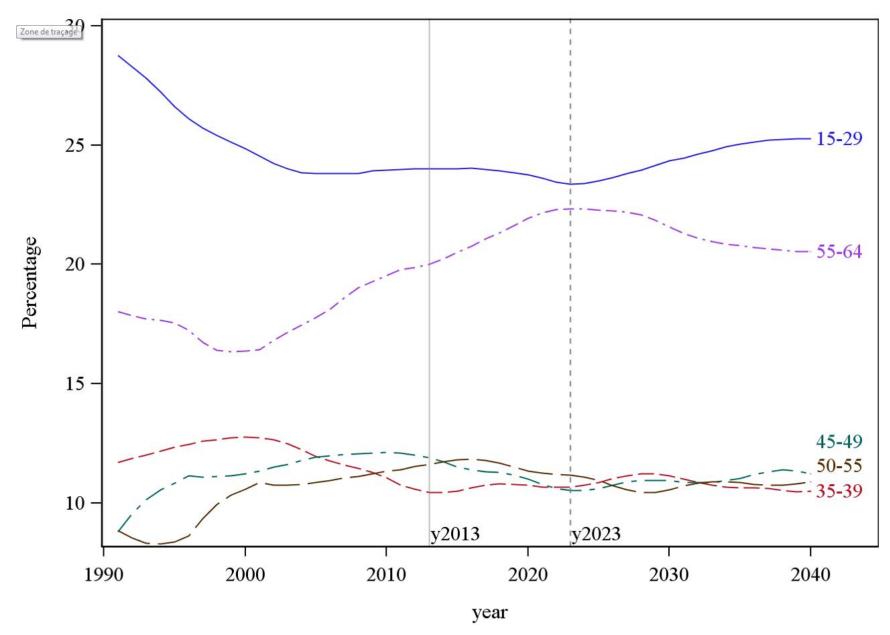

NB: we drop firm index *i* as we no longer work with firm-level Bel-first data

Table 5 - Econometric analysis of the role of age(ing) on & TPF leve 34,35-39[ref],40-44,45-49,50-54,5

	[1]	<u>1,<mark>33-39[[e]],</mark>40-4</u> [2]	[3]
	Level	Growth(FE)	Growth(FE)+ controls
Cst	4.110***	0.0377***	0.0280***
	(0.0266)	(0.00115)	(0.00400)
α	0.112***	0.0317***	0.0423***
	(0.00119)	(0.00271)	(0.00313)
в	0.908***	0.638***	0.574***
	(0.00250)	(0.00487)	(0.00583)
ρ	1.054***	0.792***	0.794***
	(0.0163)	(0.0128)	(0.0169)
η <30 (a)	-0.599***	0.079**	0.217***
η 30-34	0.209***	-0.026	0.010
η 40-44	-0.212***	-0.144***	-0.066
η 45-49	-0.537***	-0.237***	-0.116**
η 50-54	-0.566***	-0.360***	-0.318***
η 55-64	-0.143***	-0.376**	-0.396***

(a): η≡ **λ-1**

ii) Evolution population shares by age

Source: INS 2014, population perspectives 2013-2060

iii) From population shares to employment shares

This said, demographics (P_t^j) is only one part of the full story. What matters are employment shares (S_t^j) , driven by (relative) employment rates (ER_t^j)

$$S_t^j = (ER_t^j / ER_t) P_t^j$$
 [5]

- For the period 1991-2013, employment shares are known
- Beyond 2013, assumptions about employment rates ER_i^j are needed

S 1= we freeze employment rates (ER_i^j) to their 2013 levels

S 2= EU target of a 75% overall employment rate, in 2020

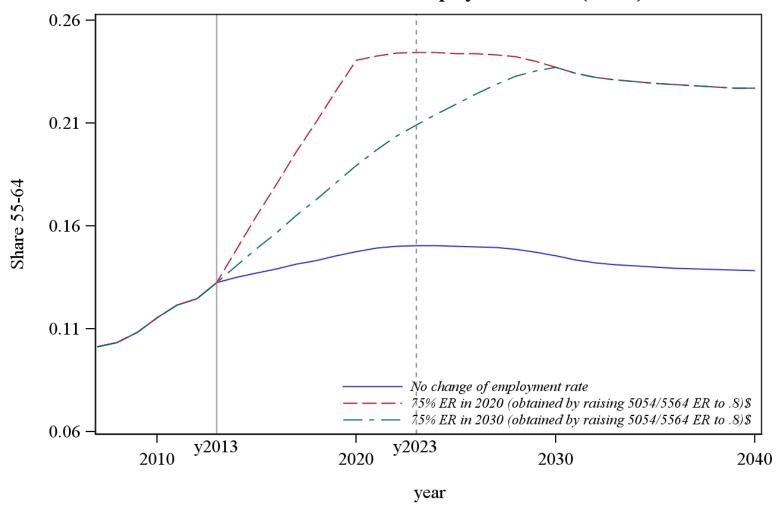
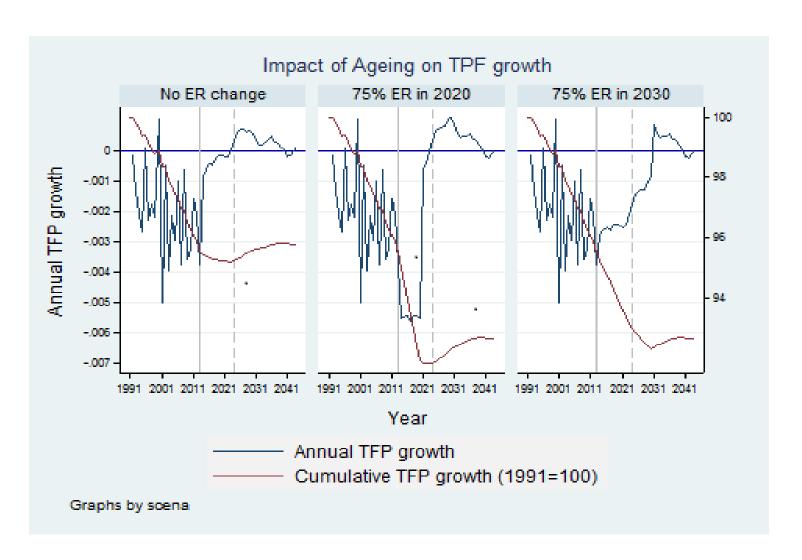
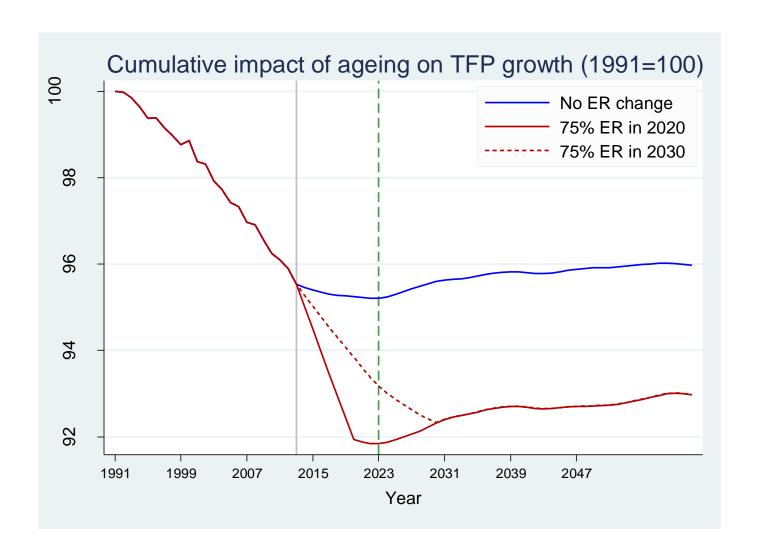

S 3= EU target of a 75% -----in 2030

Table 12: Hypothesis about evolution of employment rates by age (2014-2040)

				· · ·	<u> </u>		-
Scenario 1	<30	30-34	35-39	40-44	45-49	50-54	55-64
2013	.414	.803	.815	.817	.805	.751	.417
2020	.414	.803	.815	.817	.805	.751	.420
2030	.414	.803	.815	.817	.805	.751	.420
2040	.414	.803	.815	.817	.805	.751	.420
Scenario 2							
2013	.414	.803	.815	.817	.805	.751	.417
2020	.414	.850	.850	.850	.850	.800	.800
2030	.414	.850	.850	.850	.850	.800	.800
2040	.414	.850	.850	.850	.850	.800	.800
Scenario 3							
2013	.414	.803	.815	.817	.805	.751	.417
2020	.414	.822	.829	.831	.824	.771	.576
2030	.414	.850	.850	.850	.850	.800	.800
2040	.414	.850	.850	.850	.850	.800	.800


Source: OECD-LFS, our calculus


Predicted evolution of employment share (55-64)

\$:EU2020 target of 75% of the 20-64 year-olds to be employed Source: INS 2014, Population Perspectives 2013-2060, OECD, Eurostat. Our calculs

Figure 7a,b – Impact of ageing on annual and cumulative TFP growth: 1991-2040, three scenari

Conclusions

This paper examines the role of socio-demographic changes in the composition of the workforce on TFP growth

- Ageing workforce
- Feminization of ageing
- Increased educational attainment of older workers.

Using data on Belgian firms (1998-2006), we find evidence that the TFP growth slowdown could have been driven by ageing

- But no gender bias
- And no sign that rising educational attainment could counterbalance ageing
- The impact of ageing uniform across industries, regions & degrees of international exposure

Combining firm-level results & country-level demographic/ employment data, we estimate that

- over the 1991-2013 period, ageing may have dented cumulative TPF growth by -4.5 percentage points.
- that loss could rise to -7 percentage points by 2030

The latter is not so much dictated by Belgium's demography (peak of ageing workforce = mid-2020s)...

Rather by the EU target of 75% overall employment rate. Reaching that target by 2020/2030 will require a sharp rise of the 55-64 employment rate

Thank you!

aa1540@georgetown.edu vincent.vandenbeghe@uclouvain.be